
EAI European Alliance
for Innovation 1

Security Issues in ProtoGENI

Fnu Shalini1, Yang Xiao1*, Bo Sun2

1Department of Computer Science, The University of Alabama, Tuscaloosa, AL 35487-0290 USA
2Department of Computer Science, Lamar University, P.O. Box 10056, Beaumont, TX 77710, USA

Abstract

Network security consists of primary concerns in future Internet development due to the ever increasing threats to current
Internet. ProtoGENI is a federated testbed facility supporting slice-based experiments to manage, utilize, and monitor the
resources for innovative network research. Security research in ProtoGENI is crucial because experiments conducted in
manipulated or corruptted test environment can mislead about security mechanism’s capabilities in a system. In this paper,
existing ProtoGENI security mechanisms and functions are tested and analyzed through different experiments to find out
the exploitable attacking loopholes. Experiments elaborate the existing functioning and security issues that can cause non-
functional, semi non-functional or malfunctioned systems. Results indicate threats to ProtoGENI resources and run-time
interactions. Cross-experiment communication in Emulab wireless nodes have the capability of assisting in verifying
isolation between ProtoGENI slices. Host security is one of the security components, which can be enhanced by modifying
default security settings including SSH port number and root login rights. Documentation of experiment environment,
experiment design, results, and analysis including many observations is helpful to understand the basic functioning and
security issues to improve the overall functioning and security of ProtoGENI.

Keywords: Security, GENI, ProtoGENI

Received on 30 September 2015, accepted on 19 October 2015, published on 01 January 2016

Copyright © 2016 Y. Xiao et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.1-1-2016.150807

*Corresponding author. Email:yangxiao@ieee.org

Research Article
EAI Endorsed Transactions
on Industrial Networks And Intelligent Systems

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

Y. Xiao et al.

2

1. Introduction

Information stealing or misuse of available information
has gone to an extent to warn the Internet community to
seriously think about security and accountability in
Internet [1-2]. There is a notable increase in reported
cybercrimes every year and the associated financial
losses are only one side of these cybercrimes [3].

Internet threats such as IP spoofing [4], malicious
mobile code [4], obfuscated code, throttling limiting the
rate of delivery, malicious/tracking cookies, browser
hijackers, and distributed DoS (denial of service) [6-7]
motivated researchers to work on reducing security in
terms of deterrence, detection mechanisms, and
accountability (detection, traceability, and universal
cyber laws) [8] in the Internet. Most of the security
problems are based on the exploitation of fundamental
flaws in current Internet’s architecture, which did not
consider the security as its primary concern. This basic
problem encourages attackers to maximize the attacking
effect by studying vulnerabilities of software
applications and Operating System.

Does everyone want a secure Internet in the future?
Does the Internet user community really understand the
threats? It is more like a burden on research community
who can see clearly the threats, the causes, the
consequences, and the damage. Researchers are working
around the world independently as well as in
collaboration to find out the solutions to future Internet.
GENI (Global Environment for Network Innovations)
[9], FIND (Future Internet Design) [10], FIRE (Future
Internet Research and Experimentation) [11], AKARI
[12], and NICT (National Institute of Information and
Communication Technology) [13] are a few of the
frontiers.

Security needs are updated in the most efficient and
possible ways with these limitations but unfortunately
security cannot serve as an add-on. Therefore, we need
to develop a future Internet with built-in capabilities to
survive the security challenges [10, 13-17]. Moreover,
security is a process and not a product; therefore, any
security system should necessarily be capable when
considering detection of new possible threats to be pro-
active in order to detect any unusual or malicious
activity in the network. Detection of any new threat may
help to develop strategies to tame the threat before the
threat damages too much to system’s overall
functioning. Detection can be very useful in developing
resistance techniques against the threats or to have
alternative management systems to keep the network in
a solid functioning state despite of being attacked
through some new mechanisms, which may not be
already included into system’s surveillance and
resistance framework.

It will take time and efforts to test the feasibility of
research ideas. Hardware and software resources may
not be up to date to carry out the required testing. There
is a necessity for specific arrangements to test research
ideas [18, 19]. The research ideas are good to
implement, total transformation to new infrastructure
will be a difficult challenge. Another challenge will be
the drawing of a universal policy to resolve cybercrimes
as different countries follow different set of legal and
social rules [20]. A balance of accountability and
privacy is a constant question to implement any new
security policies in Internet [22-29].

As switching to future Internet is not idealistic in the
near future, researchers are also working to improve
current Internet [30-35] until researchers reach a
feasible point to change to new technologies and
mechanisms for future Internet.

Security is a fundamental reason for a clean-slate
Internet design [14, 16]. Clean-slate approach advocates
building future Internet with new architecture, new
control, management, and security features. The other
direction focuses on getting as much infusion of security
and accountability in current Internet as possible.

GENI, an National Science Foundation (NSF) funded
project to develop future Internet, is expected to be
dedicated to research and to serve as an extraordinary
platform for researchers and supposedly to be secure
and advanced. However, if it could be broken (there is
always a possibility), it would be very destructive for
the overall GENI functionality.

ProtoGENI [36, 37] is a prototype of GENI
functionality. ProtoGENI is the Control Framework for
"Cluster C" of spiral I of the GENI effort [38].
ProtoGENI is based on Emulab [18] software and the
slice-based Facility Architecture (SFA).

In this paper, we report our research funding for
security issues in ProtoGENI. Some of the related work
along this line is summarized as follows. The papers
[33, 34] use Emulab to study 4D future Internet. The
papers [39-40] use Emulab to study MapReduce for
cloud computing. The papers [41, 42] use Emulab to
study building global view with log files. The papers
[33-45] study security and attacks for ProtoGENI. The
paper [46] provides a survey of authentication and
access control for ProtoGENI. The paper [47] provides
a tutorial for ProtoGENI experiments. However, none of
the above related work is comprehensive. In the paper,
we provides a better and a more comprehensive survey,
tutorial, and experiments for security issues in
ProtoGENI.

The rest of the paper is organized as follows. Section
2 gives some background information. Section 3 studies
issues and concepts of GENI security. Section 45
provides our experiment results. We analyze our results
in Section 5 and provide a future work in Section 6.
Finally we conclude the paper in Section 7.

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1EAI European Alliance

for Innovation

Security Issues in ProtoGENI

3

2. Background

2.1. Security in GENI/ ProtoGENI

Even though it is impossible to prove whether a
complex system is secure mathematically or
experimentally, there are many security questions that
need to be answered [1]. Impacts of network load and
differentiated degrees of security on system
performance, usability, and functionality need to be
studied [48-49]. Responses to known attacks should not
interference with normal operations under the
experiments [48-49]. Well-behaved nodes need to
perform well and bad-behaved notes should not disrupt
the normal operations [48-51].

The goal of GENI/ProtoGENI security architecture is
to prevent, detect, and manage attacks. GENI also
believes that it is almost impossible to prevent all
possible kinds of intentional or unintentional problems,
no matter how careful the validation is adopted. With all
possible threats, GENI believes to have the capability to
dispose of any malicious experiment or component that
requires adequate monitoring and control management.

In the extreme case, GENI is expected to shut off
itself, but not periodically. GENI can be attempted for
denial service attacks due to its scale and its visibility
[48]. GENI doesn’t claim to provide 100 % technical
solution, as it has to use many pre-existing components
and vulnerable software to be cost-effective in early
phases [49-50].

2.1.1 Security implementation in ProtoGENI
Currently ProtoGENI is applying one Public Key
Infrastructure (PKI), which is covering all ProtoGENI
registries, slice authorities, aggregates, and principals.
Each principal has an Emulab account and SSL (Secure
Sockets Layer) certificate that can be generated on
user’s Emulab account. This SSL certificate is the
identity of the researcher, which may be used to identify
user’s credentials. This allows researchers to activate a
session with RPC (Remote Procedure Call) servers.
Credentials are signed by the appropriate authority
(slice). X.509 format certificate is being used to
implement ProtoGENI public key infrastructure.
Certificates are transferred using X.690 ASN.1 DER
(Distinguished Encoding Rules) [49]. The aggregate
which receives these credentials may verify it using a
set of root certificates.

2.1.2 Threats to ProtoGENI Components

ProtoGENI [56] is capable of providing researchers
with its facilities until all components work together
efficiently and adequately. ProtoGENI control

framework is Emulab based, and operates on enhanced
functionality of Emulab and its subsystems to provide a
close system to GENI environment. There are security
issues related to different threads, which are required to
weave an experiment on ProtoGENI.

2.1.2.1 The Secure Shell (SSH) and SSL
SSH is a set of programs that employ public/private key
technology to authenticate and encrypt sessions between
user accounts on distributed hosts on the Internet.
ProtoGENI only allows users to interact through SSH
keys. SSH was not designed to protect against password
crackers, IP & TCP attacks, and covert channels [52].
SSH-agent remembers the passphrase so the user has no
need to repeatedly type the password every time while
communicating or sending data to the server. This
information can be obtained through PC backup
programs. If assessed, SSH keys are usable by the root
user, but could not be transported to other machines for
indefinite misuse. SSH Keys also can be regenerated if
any indication of misuse can be detected. SSL
certification may be forged if it is MD5 algorithm
based. It is found that the improved algorithms, like
SHA-1 and SHA-2, are also vulnerable while SHA-3 is
under development [52].

2.1.2.2 Emulab Security Issues
Emulab does not protect against spoofing on the control
network. The test networks are fully separated between
experiments by virtualization, but virtualization also
may have security threats [53]. A port scanner [54] is
often adopted by administrators to verify security, and is
also by attackers to scan system vulnerabilities.

2.1.2.3 Other Security issues in ProtoGENI
Unix/Linux operating systems are believed to be more
reliable on security measures in comparison to
Windows operating system and less vulnerable to
attacks [55, 56, 57].

In reality, there are an increasing number of threats to
Unix operating system like Trojan and other attacks
which prevent others from running a program or
exhausting system resources [58, 59].

Other than issues discussed above, there is a
likelihood of insider attack that can be a result of many
possible reasons based on human complex nature [60].
Carelessness, in protecting passwords, passphrases, or
machine’s unrestricted access to all may also contribute
a lot in security breach [61-62].

Many parts of ProtoGENI software use the existing
software. It is very time-consuming and cost-expensive
to rebuild each and every part of software being used in
Existing vulnerabilities in such software may be
exploited to threat overall ProtoGENI security [48].

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

4

2.2. Secure and Accountable Internet

Security is an important aspect to motivate building
future Internet. Both lower layers and higher layers of
the protocol stack suffer security attacks [14]. Add-on
security mechanisms are not very successful since
assuming either the edge or the core of the network will
be responsible all security features. The newly designed
future Internet should not be a collection security
mechanisms but a total new design of security
architecture [15]. These efforts need a platform like
GENI to experiment proposed methods in a huge scale.
Security architecture needs to handle all layers in a
system wide approach.

Researcher are going on to build an accountable
future Internet with the minimum overhead of switching
to new infrastructure, new protocols and web policies.
There are serious efforts to acknowledge the present and
possible threats to Internet security and reliability in the
future, as well as new concepts that are being developed
innovatively and with support of previous work done in
the same problem area. WASCo distributed computing
platform provide its net space to run the experiments by
untrusted, semi-trusted or trusted clients as PlantLab
[63, 64] provides, however, legal relationship between
clients and servers has not been defined well.
XenoServer project [65] is similar to PlanetLab. The
OSU flow-tool package can help resolving security
incidents [66].

The paper [67] studied accountability of packet loss
and delay under Byzantine fault detection [67]. The
paper [68] proposed network storage accountability.
The paper [31] studies fault localization similar to loss
and delay accountability paper. Another work is
regarded as the basis to build an alternative audit system
to keep track for the loss and delay of packets in
network traffic [32]. Similar to Accountable Internet
Protocol (AIP) [30], self-certifying addressing forms are
done and AIP extends self-certification to the whole
network. To implement source accountability,
installation of filters at border routers is the easiest way.

A novel accountable logging methodology called
flow-net was proposed in [8], and its performance was
studied in [28, 69]. Accountability in operating system
was proposed and studied in [2, 55]. Accountability for
cloud computing was proposed and studied in [39, 40,
70, 80]. Accountability for smart grids was proposed
and studied in [71, 72, 73, 74]. Temporal accountability
was studied in [75]. Some quantifiable accountability
schemes were proposed in [76, 77]. Multiple resolution
logging with flow-net for accountability was studied in

SSH (Secure Shell) was developed to keep network
traffic protected through encryption, however, studies
show that in recent years, brute-force attack against
SSH, ftp, and telnet servers is the most common form of
attack [81]. Linux is the most popular operating system

among today’s Unix type systems. Again Unix/Linux
system is considered safer in comparison to Windows
OS but as per one study, Linux is the ‘most breached’
OS (65% of 154,846 hacked systems) on the net (web
2004) [81]. Though it is said that an updated OS with
latest patches are secure, but brute-force attacks against
SSH are possible on fully updated Linux OS. Earlier
ProtoGENI [82] resources, Emulab [18] machines used
FreeBSD as its default OS (operating system) but now
Linux is the default OS, and there is always a possibility
to breach the security because of OS vulnerabilities.
Even FreeBSD OS has been reported to vulnerable to
certain kind of vulnerability, but it is most secured OS
at present by reports [83].

An experimental study shows that weak and
guessable passwords are among other reasons to attack
against SSH [83]. Literature suggests that default port
22 for SSH service and other default settings may
provide an easier way to attack [84, 85]. Most of the
existing attacking kits have built-in scripts to exploit
these default settings and attacks are almost ineffective
if these default settings are changed to a different non-
standard port. Technically, it is not a strong way to
enhance security, as it is just a change of port, but
practically it is more work for the attacker as port
scanners may or may not respond to this non-standard
port so it is always hard to guess which non-standard
port is listening on host. Disabling logins via SSH for
the root account is another method of adding strength to
SSH security.

3. Issues and Concepts of GENI
Security

3.1. Initial Requirements of GENI

GENI tries to support prototype network deployment
and experiments on it.

3.1.1 Functional requirements
GENI is expected to test multiple ideas and concepts

by allowing long-running continuous experiments. One
approach to slices is virtualization, which allows
multiple virtual processors work like real and separate
processors. GENI need to support isolation among slices
o conduct experiments so that they are not interfering
each other [18].

3.1.2 Support for security
Several requirements are needed for GENI experiments:
the stable and secure infrastructure and the robust
isolation among slices [18].

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1EAI European Alliance

for Innovation

Y. Xiao et al.

5

3.1.3 Support for experimenters: Ease of Use;
Observability; Fail-safe
In order to provide security, GENI needs to run
experiments in “bounding box” that limits the activities
under control and monitoring; otherwise, the
experiments should be shut down or changed into a safe
mode [48].

3.2. What is critical in GENI Security?

As per GENI Facility Security (Draft) [48], GENI is a
tool used enable new research of large scale
experiments, but it is subject to being attacks.

A GENI slice is a fully programmable substrate and
can be configured to conduct attacks similar the
experience of PlanetLab [48]. There are four distinct
factors which make GENI more focused on advanced
security features [48].
 GENI will embody more critical and sensitive

resources than PlanetLab so misuse of GENI will
be devastating.

 GENI is deeply programmable, providing
programmability across every layer dealing with
outdoor sensors and wireless nodes and all
different kind of hardware so one policy may not
be work for all.

 As supposed and claimed by GENI goals, it
would be at scale large enough not to be
managed by some manual handling, as currently
being done in PlanetLAb. Therefore, it would be
better to take care of that issue immediately, as
opposed to waiting for this to happen.

 As the most promising and prestigious project by
NSF, security is among top issues to protect itself
from converting a most capable attacking facility
by malicious users.

3.3. What are goals and principles of
GENI Security Architecture?

The goal of GENI security architecture is to prevent,
detect, and manage attacks; in this case, GENI need to
be both safe and usable.

GENI works on virtual network and allows
authorized users to interact on GENI, in turn, it is
auditable considering which nodes are responsible for
problems as the system has their credentials and
monitoring allows verification of network traffic
activities.

GENI proposes specification-based intrusion
detection and anticipates some declaration from each PI
about expected behaviour of experiments to monitor the
behaviour of experiment and it can detect any
abnormalities. Though it suits GENI’s nature but may

be not straightforward to define an expected behaviour
of research experiments. GENI proposes specification-
based intrusion detection for network behaviour but also
suggests other common, well-known detection methods
for other activities like Tripwire tool to detect
unexpected modifications of files [48].

3.4. GENI’s Approach to Threats:

The GENI’s approach to threats [9]:
 Experiments violating isolation or accidently taken

over by an attacker will be separated via
negotiation between GENI and hosting
organization.

 Errors caused by the experiments need to traced
and studied to prevent future problems. Misuses
need to traced and studied.

 Security enhancements are needed in terms of
authentication and access control to prevent theft of
an experimenter’s credentials.

 Keys of experiments of corrupting OS need to be
revoked or changed.

 Above discussed threats suggests security
requirements in GENI as follows: Explicit trust,
least privilege, revocation, auditability, scalability,
autonomy, usability, and performance are major
requirements in GENI security architecture.

3.5. Challenges in GENI Security

There is a possibility of unanticipated DoS against
GENI control plane and GENI is supposed to return to a
previous safe mode. GENI control plane expects to
adopt the most suitable and most advanced mechanism
to avoid DoS attacks during its deployment [48].
Operational security and privacy issues are still in
infancy stage and need more discussion, plan, and
consideration of challenges to finalize them. GENI has
some legacy components and so there is certain level of
threat associated [48]. Hosts participating in GENI have
strong views about conducting experiments on security
and are aware about possible risks to shared resources.
There are many segments in GENI that may cause
security issues like vulnerable software, secured hosts,
secured communication etc. Network protocols,
algorithms, operating system vulnerabilities may as well
create security problems.

Other than technical issues, limitations due to human
errors like guessable passwords and keep them in
writing, leaving systems unattended and unlocked may
feed attackers.

4. ProtoGENI Security Experiments

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1EAI European Alliance

for Innovation

Security Issues in ProtoGENI

6

4.1 Research methodology

There are several issues which are of great importance
to evaluate the functionality of ProtoGENI and GENI.
Some basic questions arise by default: do we have
infrastructure capable to conduct these research
experiments? Are there threats to disturb the normal
resource management and availability of resources? Can
traffic be affected between slices and slivers? What can
disturb a running network experiment? What are the
limitations of using resources? Is system working as it is
supposed to work? Are there any unusual observations
during experiments? Are there threats to modify or
affect any running experiment by inside/ outside
attacker? What would be the action in case of any
component is compromised?

Resource management involves several security
issues. First, who are authorized to use the resources?
Which involves the question of identification and
authorization; second, what are the availability or usage
conflicts? Third, is there interference between
experiments? Virtualization security and management
are critical to GENI.

Recording network behaviour can be a major help in
controlling and regulating network traffic but privacy
issues need to be considered.

On the basis of questions and issues about
ProtoGENI, this research work focuses on experiments
to observe and analyze ProtoGENI functionality and
identifying the security issues in ProtoGENI. This
research work tried to get answers for following three
main research questions (RQs) and their associated sub-
problems:

RQ1: Is there any threat to ProtoGENI resources?
 Outage of resources
 Non-usability of available resources
 Vulnerability of wildcard specifications in

RSpecs
RQ2: Is there any problem in run-time interactions

between ProtoGENI components?
 Communication between slices/ slivers
 Interactions between component managers
 Traffic load and malicious traffic
RQ3: Is there any threat because of default settings

for SSH and operating system vulnerabilities?
 How default setting can threat the security in

ProtoGENI?
 What can be done to improve the overall security

of ProtoGENI?
Availability and accessibility of ProtoGENI

resources are of much significance as any experiment
may be executed only if resources are available as per
experiment’s requirement for the required time and with
consistent performance. Any loose end will put a doubt
on the output of experiment and any small interference

due to the traffic load or malicious traffic may disturb
other experiments. This work focuses on capturing
different issues that affect the basic functionality of
ProtoGENI, and eventually, may affect the whole GENI
system. In the subsequent chapter, different experiments
are designed and executed to gather information.
Experiments try to explore the possible threats or
operational glitches. The documentation helps to repeat
the experiments and a base for expanding experiments
to evaluate more, and to improve the overall ProtoGENI
functionality and security.

4.2. ProtoGENI Resources Acquisition,
Utilization, and Releasing through Test
Scripts

This work can help a novice learner to understand
ProtoGENI functionality and associated problems a bit
more with practical outputs and results. It can help to
initiate, and to follow a straightforward path where the
user can see the application of each test script, the
redundancy of operations and rights available to use
resources. This work also includes the observations
about inconsistency in outputs and not getting the
intended operations.

Utah Emulab is a primary component manager, along
with many of the other component mangers that exist.
There are different kinds of machines available which
are helpful to conduct specific experiments in order to
reveal the working on that particular type of machine
and are also useful to verify the compatibility issues
among different type of machines. We tried to explore
the usability and applicability of test scripts provided by
ProtoGENI.

As we are concerned to identifying the loose ends,
and to improve descriptions to follow steps with more
ease, we tried to execute the available test scripts to see
their effect on experiments and what information may
be more helpful to be available through test scripts.

A suite of available command-line tools act as an
interim user interface, to provide a means to control
ProtoGENI facilities until more sophisticated tools are
available. They are also a convenient debugging
mechanism to test the emerging ProtoGENI
components. All python test scripts help in doing
different ProtoGENI operations.

Slice Authority handles some operations that include
unprivileged operations, information operations,
registration operations, and few special operations. The
component manager interacts with user, SA, and
clearinghouse through some information operations,
ticket operations, manipulation operations, and special
operations.

Attack through common test script test-common.py

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

Y. Xiao et al.

7

test-common.py script is being used by all other
scripts. This test-script can be a prominent attacking
target as it can halt the execution of all other test-scripts.
test-common.py was modified and a convincible output
was generated when user tried to execute any other test
script. Following code lines were inserted in the end of
the test script file:

 Print “ProtoGENI resources are down, please try
later”

 exit()
As per Fig. 1, the user may assume that something is

in process, so resources are not available and it might
restrict any further effort from user to investigate the
actual problem.

Fig. 1: System is unable to run any script after
changes in test-common.py

getticket.py, redeemticket.py, releaseticket.py and
getticket.py were executed one after another to see the
sequence of processes. After redemption of a ticket the
slice got an active sliver and then no ticket operation
works on active sliver as shown in Fig. 2.

Fig. 2: No ticket operation after redemption of ticket
as sliver act as active

RSpec .xml file can be borrowed from tutorial of
ProtoGENI website [82] and works well to check initial
functionality, shown in Fig. 3.

If more resources are required, the same RSpec .xml
file can be modified, or a new one can be created once
the user is more familiar with RSpec details. OS type of
a particular node and a particular kind of PC can be
defined in RSpec .xml file.

Different modifications in test scripts were executed
to verify the functioning of test scripts available and
observed problems that are discussed in great detail of
result and analysis section. Experiments helped to
distinguish between different ways to acquire resources
and preferred the simpler way to acquiring and releasing
the ProtoGENI resources to ensure a better accessibility
and availability of resources to all ProtoGENI users.

Fig. 3: .rspec files are available in ProtoGENI test
scripts suite

4.3. Outage of ProtoGENI Resources

4.3.1 All resources in one sliver, possible?
There was an attempt to acquire all the resources all
together by putting advert.xml to create a sliver as it
might have a potential threat if all resources may be
acquired by one user in a single sliver.

Fig. 4: Effort to acquire all available resources in
one sliver

From Fig. 4 we can see that system doesn’t allow the
creation of a single sliver having all available resources
in that one sliver. System is taking care of this issue,
and the ProtoGENI authorities can monitor any
abnormal demand of resources as well as a sliver may
be terminated if required. Most generally used RSpec
provides two GENI nodes without any particular node
type, ID or OS that results in two available up nodes
with default Linux OS image (as on 07-21-2010).

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

Security Issues in ProtoGENI

8

Different RSpecs files were created to see if the
system has the capability of providing the requested
resources as per specified or not. An experiment can be
assembled if the availability of resources is known,
available resources can be requested as per
requirements, and resources can be allocated or
promised to an experimenter [38].

There are several issues about RSpecs with regards to
connectivity, topology, and expressiveness of the
language to define resource specifications [38, 86].
Rspec can identify every resource explicitly.

4.3.1.1 Non-Availability of Resources
Subsequently, there is an attempt to reveal how
availability of resources can affect different network
experiments. A file boundtype.xml was created from
bound-type.rspec file in test script package. It initially
requested two PC2000 type PCs. As we can see from
Fig. 5, there was only one free node of PC2000 type, we
could not create the slice. We again modified the RSpec
details to request and included PC2400w with PC2000.
There were 9 free PC2400w PCs, however, sliver could
not be created shown in Fig. 6. We tried to look for
characteristics of PC2400w type PC and found its
virtnode_capacity was defined as zero [18].

Fig. 5: Requested PC was busy- Status can be
seen at Emulab

Fig. 6: Sliver creation attempt with PC type
PC2400w

The RSpec file was then again modified to
experiment with other types of nodes. 10 PC600 type
nodes were free and the node type virtnode_capacity
was defined as 10, so that we requested for two PC600
type PCs. Slice was created successfully.

The experiments in the next section are related to
slice/ sliver creation and deletion to see how it affects
availability of resources to other experiments.
Experiments show that one user can pose threat in
execution of other experiments by holding resources in
one or another way.

There is a deep concern regarding the threats to
resources for all ProtoGENI users. Sometimes a novice
experimenter can create many slices to experience
different basic experiments and may lose the track of
slices created and deleted in process and may hold
network resources. This unnoticed and unidentified
holding of resources may create shortage of resources or
a bottleneck for another topology. Though slices and
slivers are short lived for few hours if not being
renewed but still some basic experiments, observing the
effect of extending sliver time of existence through
redeemticket.py, may hold resources for a longer period
that can block these resources to be obtained by other
ProtoGENI users. These experiments will help to
understand the possible threats to availability of
resources to other experimenters.

4.3.1.2 Requesting few resources in too many
slices/slivers
We observed Emulab account to keep tracking of
available, consumed, and freed resources with creation
and deletion of slices. Before starting of the experiment,
33 PCs were free on Emulab account, thus, there was a
decision to go up to16 Slices at first to see the resources
consumption.

The sample RSpec in tutorial [82] was used for all
slices, which request only two PCs without stating any
specific type. There was an attempt to create one after
another in separate terminals with a pattern of slice
names like shailslice1, shailslice2 and so forth. Initial 6
slices were created without any problem, but 7th and 8th
slices were stuck in creating slices and therefore,
aborted both of them, continuing to create the next
slices with same name pattern. Again, shailslice11 was
not successfully created.

Shailslice13 and shailslice14 could not be created
when tried in same terminal with previous slice, but
were successfully created when attempted in separate
terminals. By the time of creation of shailslice15, there
was only one free PC on Emulab records, and system
did not create shailslice15 as saying, “could not map to
resources, “could not create the slice”. Emulab
resources were distributed among previous slices and
left with one 1 free PC which could not help with
creating a sliver with request of two PCs. Fig. 7 shows
creation of a series of slices. Figs. 8, 9, and 10 show
deletion of slices and resources being freed.

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

Y. Xiao et al.

9

Fig.7: Creation of a series of slices from shailslice1 to shailslice16

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

Security Issues in ProtoGENI

EAI European Alliance
for Innovation 10

Fig. 8: Outage of ProtoGENI Resources through
many sliver by single user

Fig. 9: More resources available with deletion of
more slices.

Fig. 10: Communication between Client and Server Machines

4.3.1.3 Stress test
For stress test, there was an attempt to request many
resources at a time which again may reduce the possible
number of experiments on Emulab resources. Modify the
basic RSpec file to add more resources in one resource
.xml file. Thus, create stressrspec.xml (an expansion of
basic RSpec, with more resources in same format with a
requirement of 6 PCs and 3 links at a time). Available
resources were 33 PCs. Creation of two slices reduced the
Emulab resources down to 21 free PCs. More resources
were added in one request. A slice was created with all 14
PCs and 7 links and Emulab resources reduced to 7 free
PCs. Next attempt was to create a similar slice with 14
PCs and 7 links, it could not be created and stated: “could
not map to resources, could not create sliver”.

One may notice that more resources requested at a time
in a single slice reduce the chances of creation of other
slivers. This poses a threat to availability of resources to
experimenters. We also observed the reverse activity of
resources being freed with deletion of stress slices.

4.4. Run-Time Interactions between
ProtoGENI Components

Run-time network interactions can be a cause of network
problems as different experiments interact with different
ProtoGENI components. Communication among the
ProtoGENI nodes and also between ProtoGENI and
outside network is important to explore further
experiments. This section focuses on experiments to test
whether a ProtoGENI sliver can receive from (or send to)
another slice, or outside network.

As known, a user can own resources in a sliver
therefore; he or she can have control on those nodes, and
may conduct the experiments. Now the interests are to see
the communication capabilities between different slivers
and between ProtoGENI sliver and its constituent outside
network.

This may provide an idea about possible isolation or
cooperation between ProtoGENI slivers, as well as
between ProtoGENI sliver and outside network. This
work may help to identifying the threats which could
impact the accessibility of GENI.

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

Y. Xiao et al.

11

The experiments to discover the answers for following
have been conducted as follows:

 Whether a sliver can receive from (or send to)
another slice?

 Whether a sliver can receive from (or sent to)
outside network?

 Is communication possible between nodes from
two component managers?

 How communication between wireless nodes in
different slivers can pose threats to network
traffic?

There was a use of the simple approach to create
different slivers and test the communication through
simple client-server programs. Subsequently, using the
Linux virtual machine (Ubuntu 9.0) as outside network
node and verified the communication via client-server
programs.

4.4.1 Communication between two ProtoGENI
nodes as Client and Server:

For the Client-Server program on remote machines, the
server must be initiated first.

At the machine treated as Server:
gcc -o srv server.c handletcpclient.c DieWithError.c
At machine treated as Client:

gcc -o cli client.c DieWithError.c ResolveName.c
After compilation, systems generate executable files to

run client and server programs.

4.4.2. Communication between nodes of different
slivers

Two slices were created with no particular rspec file
and system allowed one node to each sliver.

PC69 were allotted to clientslice and PC97 was allotted
to server slice. There was an upload of simple basic client
server C program files on both nodes as we planned to
observe both nodes as operating client as well as server.
Files were uploaded one by one by following command
with the required file name to upload:

sudo scp HandleTCPClient.c
shail01@pc69.emulab.net:/users/shail01/

After this, roles were reversed for both slivers to check
two-way operation between ProtoGENI slivers. PC97 was
reset to act as client and PC69 was reset to act as client.
Communication worked fine with reversed roles of sliver
nodes, shown in Fig. 11. These operations show that
different slivers can send or receive from each other. Fig.
12 shows verification of both slivers as client and server.

Fig. 11: Communication between two different sliver PCs

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

Security Issues in ProtoGENI

12

Fig. 12: verification of both slivers as client and server

4.4.3 Communication between a ProtoGENI sliver
and outside network node

We continued with same serverslice sliver with single
node PC97 and opted for our own PC as outside network
node to communicate with ProtoGENI sliver.

ProtoGENI sliver is operating as a server as well as a
lab machine that is used as outside network node.
Communication is worthy with this setting, but
connection could not be established when the serverslice
node was set as a client. To diagnose furthermore, there
were created slivers again with shrspec1.xml and PC105
was allotted to experiment. Operational settings for both
ProtoGENI node and outside network node were repeated
to verify client and server operations, however, it yielded
the same results. ProtoGENI node is working fine as
server with an outside network client nod, but could not
establish the connection when ProtoGENI node was reset
as client and outside network node as server. Figs. 13 and
14 show these results.

Fig. 13: Communication of a ProtoGENI sliver with
outside network

Fig. 14: Error in communication when ProtoGENI
node acted as client

ProtoGENI sliver is working partially with outside
network node. More work is required to find out the
reason of why it is not working as a client with an outside
server node. Although there is some clarification required
for non successful communication between a ProtoGENI
node as client and outside network node as server, there is
anticipation that more experiments would be helpful to
explore the reasons.

4.4.4 Communication between ProtoGENI nodes
from two Component Managers

Sliver twocm was created with tuntest.py test script
requesting two nodes from two different Component
Managers (CM) Utah Emulab and Kentucky Emulab.

Node geni1: Utah Emulab pc206.emulab.net;
Node geni2: Kentucky Emulab, pc27.uky.emulab.net
As before, we uploaded client server program files on

remote nodes, and compiled the programs.
Communication was tried both ways: both nodes acting

as server as well as client Results show in Figs. 15 and 16.

Fig. 15: Kentucky Emulab ProtoGENI node as server

Fig. 16: Utah Emulab ProtoGENI node as server

4.4.5 Communication between Emulab wireless
nodes

These experiments are to explore wireless traffic
issues. Though these are not through slivers and initiated
as Emulab experiments as more work is proposed on
wireless nodes through ProtoGENI, this is initial work to
interact with wireless nodes and to observe possible
communication issues that will affect ProtoGENI
experiments as well.

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

Y. Xiao et al.

13

Two experiments were created to see communication
between wireless nodes. One experiment had 4 wireless
nodes pcwf1, pcwf3, pcwf5, pcwf7 and second
experiment was created with pcwf2 and pcwf4, shown in
Fig. 17. Configuration of nodes can be verified to
communicate via wireless channel through ifconfig
command at remote nodes.

Fig. 17: Emulab topology for wireless nodes

We tried to see the effect of pinging one node to other
separately, pinging to every node together and effect of
sending data in indefinite loop to see how these all affect
traffic outputs and other communication process. Details
show that max rtt (round trip time) is inclined with the
increasing number of packets and especially when they
were pinging all together.

We observed that system applied different pipes to
cope with the communication load but it increases the rtt
significantly and loss of packets.

Fig. 18: Cross communication between two experiments with wireless nodes

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

Security Issues in ProtoGENI

14

Fig. 19: Configuration details at remote node in wireless experiment

Fig. 20: Pinging pcwf1-3-5-7-1, 500 pkts. (All at
same time)

Client-server programs were tested while pinging and
also tried when two nodes were communicating in

indefinite loop and any other node tried to communicate
with one of the busy nodes. Cross communication
between two experiments is shown as per Fig. 18.

Next, we tried to communicate with a busy node in an
indefinite loop of client server communication, shown in
Figs. 19, 20, 21.

Fig. 21: pcwf2 handling two clients

Experiments showed some different outputs like any
third node that was not able to communicate with the busy
node, but in certain cases when we close the client node,
server showed handling of another client, which had
already been suspended. It was inconsistent as at other

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

Y. Xiao et al.

15

times it just denied the connection stating “connection
was reset by peer”. More experiments will be helpful to
diagnose theses issues.

Experiments show that different slivers can
communicate and also can communicate to outside
network.

Wireless node communication experiments need more
exploration, but it can be seen that even pinging can affect
the traffic behavior, and communication can be affected if
one user keeps busy another node in an indefinite loop.

4.5. SSH Security Issues in ProtoGENI

SSH is considered as a comparatively secure way to
communicate remotely but there are many security issues
associated with SSH. The protocol, default port settings
are causes of security concerns. Port configuration to a
non-standard port, and disabling logins via SSH for the
root account may help to increase the required work done
in attacking the network. Experiments shows that port
scanner like nmap, zenmap (GUI) can scan open ports and
associated services. Default settings of SSH client and
server can be vulnerable for attacks.

Non-standard port for SSH and some other changes
may help in protecting and reducing brute force attacks
via SSH. Experiments show to follow certain steps to
make a more secure SSH. In this section, the discussion of
the methods to activate these defense mechanisms will
take place.

Zenmap is GUI for nmap and has different types of
scan. We used intense scan to get port details, shown in
Figs. 22, 23.

Fig. 22: Nmap output after scanning an IP address

Fig. 23: OS details of a machine through zenmap
scan

The user can go to /etc/ssh to find the sshd_config file
to make changes. Port 22 is set as default for SSH
services. This default setting is vulnerable to exploit
through automated attacking tools. The port setting in
sshd_config file can be changed to a suitable port number.
SSH-server will listen on any unused port among 65,535
ports provided by the TCP protocols [83]. Current
available port scanners are not capable to detect each and
every detail of all 65,535 ports and usually developed to
detect most common default settings.

Some other details so using a non-standard port
number can be helpful to keep information secured, which
will reduce the attacking possibilities. File sshd_config
can be modified as per Fig 24. Nmap like scanning tools
can scan around 1600 ports by default so other than
default port settings it is a bit difficult to trace open non-
standard ports. While it is not a preferred method to apply
security, but it works most of the time as experiments
shows that there were no attacks after changing default
SSH port settings from 22 to a non-standard port number.

Fig. 24: Modification in sshd_config file for non-
standard port for SSH

During the same time period, over 100,000 attacks
were reported on systems with default port settings [84].
The only additional work here seems to coordinate with
all legitimate users to convey the right port settings for
communication. After setting the port 22 to a non
standard port number, as shown in Fig 25, settings should
also be modified accordingly in /etc/services.

Home:~$ cd /etc
Home:/etc$ sudo vim services
Here, there was a change to the only incoming port

settings to new non-standard port for SSH connection
because the remote Emulab machines have settings for
default settings for SSH as port 22. There was also a
modified PermitRootLogin as No in sshd_config file so
now open port detection is difficult, and there is also no
permission to access SSH remotely that is shown in Fig
26. This exercise is conducted to make SSH more secure
and previous research supports and advocates customized
settings to make it more difficult for attackers and not to
be hacked by automated attacking scripts.

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

Security Issues in ProtoGENI

16

Fig. 25: Changing port no to non-standard port in
services

Fig. 26: Restricting Root login via SSH

After completing all settings to work with new SSH
non-standard port, there was an attempt to login to
Emulab machines. Prior to that there also was a verified
that system, listening to that new port and could not be
reached on default port 22 to access SSH as per Fig 27
and Fig 28.

Fig. 27: Verification of new port working as listening
port

Now, the verified network operation to connect to
Emulab machines in our sliver to check proper working of
SSH with non-standard port is in check. System activities
may be monitored through logwatch package as shown in
Fig 28.

Fig. 28: User login to Emulab machines with
changed SSH port

5. Analysis on Results and Observations

5.1. Attack through modifying test-
common.py script:

test-common.py test script is being used by all other
scripts if the attacker has access to the physical machine
he can inject simple messages as print outputs without
disturbing the actual process of script to fool users. It may
stop users to try any further and thus stopping the
execution of ProtoGENI experiments by that user.

5.2. Non-Availability of ProtoGENI
Resources:

Non-Availability of ProtoGENI Resources:
1) Outage of Resources: Experiments show that

ProtoGENI can face outage of resources for other
experimenters if few experiments keep reserving
resources without proper utilization.

The system did not give any warnings, while all
resources were being reserved by one user only.

Future work: This outage was for short time and after
verification of problem, we released the resources, it may
be subject of further exploration that after what time,
system can identify this unusual resource reservation by
one user.

2) Failing to map the resources as per RSpec :
Many times, we couldn’t create a sliver as requested
because it failed to map the requested resources. A
particular type of pc was not free; a particular pc was
down; the node was free, available, but could not grasp
for experiment. Third situation is certainly of concern, as
we couldn’t get the reason for not getting the resource.
Characteristics of a certain pc type like virtnode_capacity
also restricted the acquisition of a node in experiment.

One experiment couldn’t be activated as one fix node
was required with other wireless nodes. It took almost 4
hr. while tried with several free and up nodes been shown
on Emulab, but system denied each time stating that fix
node is not available. This problem indicates that even

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI European Alliance
for Innovation

Y. Xiao et al.

17

after system showing everything o.k. and good through
sliverstatus.py, some other problems may halt the access
to resources that may hurt the accessibility of resources.

5.3. Non-usability of ProtoGENI Resources:

Non-usability of ProtoGENI Resources:
Resources not usable: In some cases, resources were

allotted to sliver, but could not get hold on those nodes
mainly because they were reported to be nodes with old
OS image or old machines with no consistency in
performance. Sliver sharednode was created successfully,
and get two nodes virtually shared. Sliverstatus.py
showed one node ‘ready’ and one as ‘not ready,’ which
did not come up even after hours. Therefor, it could not
be used any further.

Suggestion: After defined period, system resources
should be evaluated for their performance consistency and
a list of available resources and other related issues like
OS images should be updated accordingly. Related error
message or advising notes may also be helpful to choose
the right resources to save time and effort, and moreover
to remove the confusion clouds of “what went wrong.”

Observations:
Slice/Sliver Creation: During several instances, the

system got stuck somewhere in displaying the process of
creation of sliver and never returned to normal. On screen,
it seems that the process is hung and the only solution is
to terminate it by closing the terminal. It is determined
that even system does not show any progress or
completion of slice/sliver creation, it completes it in the
background. If status is checked for the same sliver in
another terminal, it shows the existing sliver with its
current status. This problem creates confusion and this is
required to occurr in different terminals. It consumed
some time to understand the problem. Sometimes slivers
in sequence couldn’t be created in one terminal but when
tried in a separate terminal, it worked well.

Different variations to create slice and slivers are
confusing and difficult to differentiate for the benefits or
problems associated with each. Resources may be
acquired in a sliver without registering a slice first or also
through getticket operation with or without registration of
slice. Currently, slice can handle only one sliver identical
to slice name. Ticket operations were quite interesting as
getticket provides a certain time to redeem the ticket but it
expires within minutes. Even a deleted sliver became
active when the ticket was redeemed.

No ticket operation works once a slice/sliver is active
so to renew the time for extending the experiment, user
has to go through different path to renew the slice/sliver.
We could not get the execution part for rleaseticket.py or
unregisterslice.py.

5.4. Deleting the Slice/sliver and release of
ProtoGENI Resources:

Resources are released with the deletion of sliver but
sliver/slice is kept in system’s records until its expiration
time at Clearinghouse. Test script showuser.py provides a
list of slices for particular users but include all such slices
that are not expired, but resources are released. If this
includes only active slices holding the resources, it can
help user to manage better.

Suggestion: New test script slicestatus.py stating the
status of slice as empty/deleted or active

6.5. System bugs: Problem observed in
execution of all test scripts

Sometimes bugs interfere and stall the system. During
trial of renewing a slice, test script renewsliver.py did not
work, shown Fig. 29. No other test scripts could be
executed because of a bug. The problem was sent to
ProtoGENI people. This bug halted the basic functionality
for more than 12 hours.

Fig. 29: System bug created problem in executing
test scripts

Here observation was that the acquired node was active
and good to login but test scripts were not working.

Other thing is that though bug stopped the new
operations on ProtoGENI, users could utilize the
resources which were already acquired and up for
experiments.

As we are concerned about the threats to ProtoGENI
resources, experiments show that though system is
basically protected with encryption, authorization, and
authentication but system is not consistent in certain
functions and prone to bugs that can halt the whole
availability and accessibility of ProtoGENI resources.
System is also prone to be attacked if host system is
compromised and a corrupt test-common.py can affect all
other test scripts and so the functionality of ProtoGENI.

Availability and accessibility of resources is very
important to do any experiments further to see the

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI for Innovation
European Alliance

Security Issues in ProtoGENI

18

network behavior and to identify the ways to breach the
system which can be used to improve the overall
ProtoGENI functionality.

Emulab resources are allocated to a single user at a
time. If nodes are being used by some experimenters, it
may hinder the possibility of other experiments to run
because of unavailability of resources or because of non-
usability of resources for different reasons as described
above.

Sometimes a novice experimenter can create many
slices to experience different basic experiments and may
lost the track of slices created and deleted in process and
may hold network resources. This unnoticed holding of
resources might create shortage of resources. These
resources on hold might be required for more important
and preferable experiments to execute to see network
behavior by mature experimenters. A beginner may not be
capable to understand the severity of problem by holding
few resources that could be resulted as bottleneck for
another topology. Though slices and slivers are short lived
for few hours if not being renewed, but still some basic
experiments observing the effect of extending sliver time
of existence through redeemticket.py may hold resources
for a longer period that can block theses resources to be
obtained by other ProtoGENI users. This poses a threat to
resources available to experimenters.

5.6. Vulnerability of Wildcard Specification
in RSpecs

Emulab has different types of resources, and
experimenters can define their required type of resources
through specifying the details in RSpecs. Sometimes, it
may be hard to find the required specific resources
because of other running experiments. It is also complex
to know each and every detail about the characteristics of
a node type to make sure the adequate choice for
experiments. Especially, novice experimenters may not
understand complexity of details, therefore, it is a general
practice to use wildcard allocation of available resources.

It is simple and repeatable process to get resources of
Emulab based on the best availability. In certain cases, the
system may assign some special type of PCs which are
very few in numbers, and because of holding of resources;
they may be unavailable for some time depending on
experimenter acquired those PCs. Subsequently, this may
cause a bottleneck for other experimenters who may need
that special kind of PC in their topology. Therefore, many
other available resources would not help, as sliver cannot
be created without availability of all asked resources in
RSpecs. As shown in Fig. 30, a network topology can
suffer by unavailability of resources because of wildcard
allocation through RSpecs.

Fig. 30: A network topology which may suffer due to
wildcard allocation of resources.

In this example, if 10- pcpgeniphys has allotted to
some other experiment through wildcard, the topology
will be very restricted to perform the desired operations or
interconnections among all nodes of topology.

For example, if 10-pcpgeniphys is not available, 6-
pc600 will be almost isolated with all other nodes. 2,3,4
pc600 and 1,5,6 pc600 can have some usability in this
topology. With the availability of 10-pcpgeniphys, the
network topology may have much more interaction and
functionality possible in the experiments.

5.7. Run-time Interactions between
ProtoGENI Components:

Communication between nodes of same sliver: it was
good in both ways as client as well as server

Communication between nodes of two slivers: good in
both ways. Communication between nodes of two
Component Managers in two slivers: good in both ways.
Communication with outside network and ProtoGENI
sliver: good when ProtoGENI sliver node acts as server,
but couldn’t establish connection when tried in reverse.
Though there is some clarification is required for not
successful communication between a ProtoGENI node as
client and outside network node as server, there is an
expection that more experiments will be helpful to
explore the reasons.

Wireless Communication in Emulab: Traffic load can
force system resources to utilize its resources at best in
concurrency that may lead to significant delays in some
processes and loss of packets. It can also affect the
communication efforts by other network nodes.

Again there are some unsolved issues and need more
experiments. ProtoGENI uses the same resources in same
manner but in sliver. Further work is supposed to repeat
settings in ProtoGENI sliver settings.

Observation: All wireless nodes with required
specification were busy in other experiments and the
group had to wait for 6 days then a request was sent to

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI for Innovation
European Alliance

Y. Xiao et al.

19

Emulab people and they provided the required type of
nodes by reserving them.

5.8. Attack via stealing user credentials

Passphrase: Once a sliver is created and resources are
acquired, the passphrase may be deleted from the host
machine through forgetpassphrase.py. The user can login
to remote nodes and can do further actions which leaves
the host machine a bit more secured as there is no
passphrase to steal.

5.9. Attack via SSH

Experiments explore the problems related to SSH (Secure
Shall), possible ways to attack via SSH and methods to
restrict attackers to attack via SSH like changing the
default SSH port no and restricting other users as root
user.

More experiments are required to see actual effort and
amount for an outsider to collect data and to perform
attack. It would be helpful to create a setup as honey-pot
and then analyzing outcomes before and after these SSH
settings.

The group would like to work on the possibility of
defining a non-standard SSH port for all ProtoGENI
nodes. Further experiments may explore the better and
more secure ways to yield and utilize ProtoGENI
resources.

6. Future Work

These experiments deal with basic RSpecs and an effort to
see the consumption and release pattern of Emulab
resources with creation and deletion of slices and slivers.
Future work is proposed to experiment with different
combinations of wildcard allocation and specific kind of
PCs in one RSpec. More study is necessary to understand
detailed description of Emulab node types and their
characteristics to incorporate them in the RSpec to create
desired network experiments. More elaborate experiments
are required to analyze run-time interactions with
different network settings. SSH attacking possibilities also
may be verified with specific setup as honey-pot for more
concrete results on attacking possibilities.

Further studies on security issues and progress of
GENI and ProtoGENI are supposed to continue with
evolving systems.

7. Conclusions

GENI and ProtoGENI security architecture with
operational security issues, and security issues associated
with ProtoGENI components are discussed. Security
threats to existing ProtoGENI system are identified which
can help to improve overall ProtoGENI/GENI security.

The group conducted experiments to exploit possible
threats to availability and accessibility of resources in
ProtoGENI experiments. Communication between
ProtoGENI slivers and slices were observed under
different network conditions. The Emulab experiment
focused on wireless communication, which may be
further explored for more analysis.

Though ProtoGENI showed a certain degree of
security through authentication and privilege mechanisms,
experiments showed that whole ProtoGENI may face
serious threats for outage of resources, non-availability,
and non-accessibility of resources. ProtoGENI network
traffic is also vulnerable to unwanted traffic loads and
attacks through SSH or Host machine’s vulnerability. It is
also observed that certain operational glitches can halt the
whole system for several hours. Further experiments may
assist to demonstrate the severity of these issues.

GENI and ProtoGENI are evolving and not in a stable
state. The group wishes to receive further updates on
GENI security architecture and technologies applied; also,
expecting to do more ProtoGENI experiments to explore
different security issues in network experiments.

Acknowledgements.
This work is supported in part by The Global Environment for
Network Innovations (GENI) (via BBN Technologies from
NSF) with Project # 1783, entitled “GENI Experiments for
Traffic Capture Capabilities and Security Requirement
Analysis”, the National Natural Science Foundation of China
(NSFC) under grant 61374200, and the U.S. National Science
Foundation (NSF) under grants: No. 1427838, CNS-0716211,
CCF-0829827, CNS-0737325, and CNS-1059265. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References

[1] E. McCary and Y. Xiao, "Smart Grid Attacks and
Countermeasures," EAI Endorsed Transactions on Industrial
Networks and Intelligent Systems, Vol. 2, No. 2, pp. e4, Feb. 25,
2015, doi: 10.4108/inis.2.2.e4

[2] Y. Xiao, "Accountability for Wireless LANs, Ad Hoc Networks,
and Wireless Mesh Networks," IEEE Communication Magazine,
Vol. 46, No. 4, Apr. 2008, pp. 116-126.

[3] Y. Zhang, Y. Xiao, K. Ghaboosi, J. Zhang, and H. Deng, "A
Survey of Cyber Crimes," (Wiley Journal of) Security and
Communication Networks, Vol. 5, No. 4, pp. 422–437, Apr. 2012.

[4] S. Malliga and A. Tamilarasi, "A backpressure technique for
filtering spoofed traffic at upstream routers," International Journal
of Security and Networks, Vol. 5, No.1 pp. 3 - 14, 2010.

[5] C. Hsieh, J. Chen, Y.-B. Lin, K. Chen, H. Liao, and C. Liang,
"NTP-DownloadT: a conformance test tool for secured mobile
download services," International Journal of Security and
Networks, Vol. 3, No. 4 pp., 240 - 249, 2008.

[6] B. Sun, L. Osborne, Y. Xiao, and S. Guizani, "Intrusion Detection
Techniques in Mobile Ad Hoc and Wireless Sensor Networks,"
IEEE Wireless Communications Magazine, Oct. 2007, pp. 56-63.

[7] B. Sun, K. Wu, Y. Xiao, and R. Wang, "Integration of mobility and
intrusion detection for wireless Ad Hoc networks," (Wiley)
International Journal of Communication Systems, Vol. 20, No. 6,
pp. 695-721, Jun. 2007.

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI for Innovation
European Alliance

Security Issues in ProtoGENI

20

[8] Y. Xiao, "Flow-Net Methodology for Accountability in Wireless
Networks," IEEE Network, Vol. 23, No. 5, Sept./Oct. 2009, pp. 30-
37.

[9] GENI: Global Environment for Network Innovations.
https://www.geni.net/

[10] FIND: Future Internet Design, http://www.nets-find.net/
[11] FIRE: Future Internet Research and Experimentation,

http://en.wikipedia.org/wiki/Future_Internet_Research_and_Experi
mentation

[12] AKARI, New Generation Network Architecture AKARI
Conceptual Design (ver1.1) ,
http://web.archive.org/web/20100414082316/http://akari-
project.nict.go.jp/eng/concept-
design/AKARI_fulltext_e_translated_version_1_1.pdf

[13] NICT: National Institute of Information and Communication
Technology http://www.nict.go.jp/en

[14] D. D. Clark, “ Toward the design of a Future Internet”, Version 7,
Oct 2009

[15] T. Magedanz and S. Wahle “ Control framework design for Future
Internet” Springer Eelktrotechnik & Informationstechnik(2009), p.
274-279

[16] J. Roberts, “The clean-slate approach to future Internet design: a
survey of research initiatives” Ann. Telecommun. 2009, p 271-276

[17] T. Spyropoulos, S. Fdida, and S. Kirkpatrick, “Future Internet:
Fundamentals and Measurement” [Report of the COST

Arcadia Future Internet Workshop]
[18] https://www.emulab.net/
[19] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.

Newbold, M. Hibler, C. Barb, and A. Joglekar, “An Integrated
Experimental Environment for Distributed Systems and Networks”,
appeared at OSDI 2002, December 2002

[20] H. F. Lipson, “Tracking and Tracing Cyber-Attacks: Technical
Challenges and Global Policy Issues, CERT® Coordination
Center, November 2002, SPECIAL REPORT

[21] Protecting America's Freedom in the Information Age. Markle
Foundation, 2002.
http://www.markle.org/downloadable_assets/nstf_full.pdf

[22] D. Brin, ‘The Transparent Society’, Addison-Wesley, April 1998
[23] D. Weitzner, “Beyond Secrecy: New Privacy Protection Strategies

for Open Information Spaces,” IEEE Internet Computing, Sept/Oct
2007.

[24] D.J. Weitzner, et al., "Transparent Accountable Data Mining: New
x Discretionary, rule-based access for the world wide web,
http://www.w3.org/2006/01/tami-privacy-strategies-aaai.pdf

[25] Thuraisingham, editors, Web and Information Security. IRM Press,
2006

[26] http://www.sparta.com/
[27] B. Fu and Y. Xiao, "A Multi-Resolution Accountable Logging and

Its Applications," Computer Networks, Vol. 89, No. 4, Oct. 2015,
Pages 44–58.

[28] Y. Xiao, K. Meng, and D. Takahashi, “Accountability using Flow-
net: Design, Implementation, and Performance Evaluation," (Wiley
Journal of) Security and Communication Networks, Vol.5, NO. 1,
pp. 29–49, Jan. 2012,

[29] H. Chen, Y. Xiao, X. Hong, F. Hu, J. Xie, "A Survey of
Anonymity in Wireless Communication Systems," (Wiley Journal)
Security and Communication Networks, Vol. 2 No. 5, Sept./Oct.,
2009, pp. 427-444.

[30] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D.
Moon, and C. Shenker, Accountable Internet Protocol (AIP), In
Proc. ACM SIGCOMM, Aug 2008

[31] M. Huang, A. Bavier, and L. Peterson, “PlanetFlow: Maintaining
accountability for network services,” ACM SIGOPS Operating
Systems Review, v.40 n.1, January 2006

[32] K. Argyraki, P. Maniatis, O. Irzak, A. Subramanian, and S.
Shenker, "Loss and Delay Accountability for the Internet”, ICNP
2007 Beijing, China.

[33] S. Yue, Y. Xiao, and G. Xie, "Experiments on an Election
Algorithm for Decision Element Failures in 4D Future Internet
Architecture," Proceedings of The 2009 International Conference
on Future Generation Communication and Networking (FGCN
2009), FGCN/ACN 2009, CCIS 56, pp. 250-258, 2009. Springer

[34] S. Yue, Y. Xiao, and G. Xie, "Fault Tolerance Experiments in 4D
Future Internet Architecture," Journal of Internet Technology, Vol.
11 No. 4, pp. 543-552, July 2010.

[35] J. Gao, Y. Xiao, S. Rao, and F. Shalini, "Security Tests and Attack
Experimentations of ProtoGENI," International Journal of Security
and Networks, Vol. 10, No. 3, 2015, pp. 151-169.

[36] http://www.protogeni.net/trac/protogeni
[37] ProtoGENI CF Overview, 022709 GENI-SE-CF-ProtoGENIOver-

01.4, February 27, 2009
[38] http://www.protogeni.net/trac/protogeni/wiki
[39] Z. Xiao and Y. Xiao, "Accountable MapReduce in Cloud

Computing," in Proceedings of 2011 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS),
2011, pp. 1082 - 1087.

[40] Z. Xiao and Y. Xiao "Achieving Accountable MapReduce in
Cloud Computing," (Elsevier) Future Generation Computer
Systems, Vol. 30, No.1, Jan. 2014, pp. 1–13.

[41] S. Yue and Y. Xiao "Building Global View with Log Files in a
Distributed/Network System," Proceedings of the IEEE Global
Telecommunications Conference 2010 (IEEE GLOBECOM 2010).

[42] Y. Xiao, S. Yue, B. Fu, and S. Ozdemir, "GlobalView: Building
Global View with Log Files in a Distributed / Networked System
for Accountability," (Wiley Journal of) Security and
Communication Networks, Vol. 7, No. 12, pp. 2564–2586, Dec.
2014.

[43] J. Gao, Y. Xiao, S. Rao, and F. Shalini, "Security Tests of
ProtoGENI and Attack Experimentations," Proceedings of 2011
International Conference on Security Science and Technology
(ICSST 2011), pp. 186-190.

[44] J. Gao and Y. Xiao, "ProtoGENI DoS/DDoS Security Tests and
Experiments," Proceedings of First GENI Research and
Educational Experiment Workshop (GREE12), in conjunction with
GENI GEC 13.

[45] J. Gao, Y. Xiao, S. Rao, and F. Shalini, "Security Tests and Attack
Experimentations of ProtoGENI," International Journal of
Security and Networks, Vol. 10, No. 3, 2015, pp. 151-169.

[46] Z. Xiao, B. Fu, Y. Xiao, C. L. P. Chen, and W. Liang, "A Review
of GENI Authentication and Access Control Mechanisms,"
International Journal of Security and Networks (IJSN), Vol. 8, No.
1, 2013, pp. 40-60.

[47] F. Shalini, Y. Xiao, and B. Sun, "ProtoGENI Experiments,"
International Journal of Security and Networks, accepted

[48] GENI Security Architecture, Spiral 1 Draft 0.55, July 31th, 2009
[49] GENI Facility Security, GDD-06-23, Distributed Services working

group, Draft work in progress (version 0.5)
[50] GENI Security Architecture, Spiral 2 Draft 0.5, March 15th, 2010
[51] GENI: Towards Operational Security For GENI, Draft, GDD-06-

10, July 2006
[52] http://en.wikipedia.org/wiki/Secure_Shell#Security_issues
[53] http://www.networkworld.com/news/2008/062408-sloppy-

virtualization.html
[54] http://en.wikipedia.org/wiki/Port_scanner
[55] L. Zeng, H. Chen, and Y. Xiao, "Accountable Administration and

Implementation in Operating Systems," Proceeding of The IEEE
Global Telecommunications Conference 2011 (IEEE
GLOBECOM 2011).

[56] L. Zeng, Y. Xiao, and H. Chen, "Accountable Logging in
Operating Systems," Proceedings of The IEEE International
Conference on Communications 2015 (IEEE ICC 2015).

[57] L. Zeng, Y. Xiao, H. Chen, "Auditing Overhead, Auditing
Adaptation, and Benchmark Evaluation in Linux," (Wiley Journal
of) Security and Communication Networks, accepted. DOI:
10.1002/sec.1277.

[58] M. Bishop, “Security Problems with the UNIX Operating System”,
version2, January 31, 1983[unpublished]

[59] M. Bishop, “Reflections on UNIX Vulnerabilities” , Computer
Security Applications Conference, 2009. ACSAC 2009. Annual,
Page(s): 161 - 184

[60] M. Bishop, C. Gates, D. Frincke, and F. Greitzer, “AZALIA: an A
to Z assessment of the likelihood of insider attack”, Technologies
for Homeland Security, 2009 IEEE, Page(s): 385 – 392

[61] M. Lei, Y. Xiao, S. V. Vrbsky, and C.-C. Li, “Virtual Password
Using Random Linear Functions for On-line Services, ATMs, and

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI for Innovation
European Alliance

Y. Xiao et al.

21

Pervasive Computing," Computer Communications Journal,
Elsevier, Vol. 31, No. 18, Dec. 2008, pp. 4367-4375.

[62] Y. Xiao, C.-C. Li, M. Lei, and S. V. Vrbsky, "Differentiated
Virtual Passwords, Secret Little Functions, and Codebooks for
Protecting Users from Password Theft," IEEE Systems Journal,
Vol. 8, No. 2, Jun. 2014, pp. 406-416.

[63] http://www.planet-lab.org/
[64] S. Goyal and J. Carter, "A Lightweight Secure Cyber Foraging

Infrastructure for Resource-Constrained Devices
," http://www.cs.utah.edu/~retrac/wmcsa04.pdf

[65] http://www.cl.cam.ac.uk/research/srg/netos/projects/archive/xeno/
[66] M. Fullmer, "The OSU Flow-tools Package and Cisco NetFlow

Logs,"
https://www.usenix.org/legacy/publications/library/proceedings/lis
a2000/full_papers/fullmer/fullmer_html/index.html

[67] M. Castro and B. Liskov, "Practical Byzantine Fault-Tolerance and
Proactive Recovery," ACM Trans. Computer Systems, vol. 20, no.
4, pp. 398-461, 2002.

[68] A. R. Yumerefendi and J. S. Chase, "Strong Accountability for
Network Storage," http://www.cs.duke.edu/nicl/pub/papers/cats-
fast07.pdf

[69] Y. Xiao, K. Meng, and D. Takahashi, "Implementation and
Evaluation of Accountability using Flow-net in Wireless
Networks," Proceedings of the IEEE Military Communications
Conference 2010 (IEEE MILCOM 2010), pp. 7 - 12 .

[70] Z. Xiao, Y. Xiao, and H. Chen, "An Accountable Framework for
Sensing-Oriented Mobile Cloud Computing," Journal of Internet
Technology, Vol. 15, No.5, pp. 813-822, 2014.

[71] Z. Xiao, Y. Xiao, and D. Du, "Building Accountable Smart Grids
in Neighborhood Area Networks," Proceeding of The IEEE Global
Telecommunications Conference 2011 (IEEE GLOBECOM 2011).

[72] J. Liu, Y. Xiao, and J. Gao, “Achieving Accountability in Smart
Grids,” IEEE Systems Journal, Vol. 8, No. 2, Jun. 2014, pp. 493-
508.

[73] Z. Xiao, Y. Xiao, and D. Du, "Non-repudiation in Neighborhood
Area Networks for Smart Grid," IEEE Communications Magazine,
Vol. 51, No. 1, pp. 18-26, Jan. 2013.

[74] Z. Xiao, Y. Xiao, and D. Du, "Exploring Malicious Meter
Inspection in Neighborhood Area Smart Grids," IEEE Transactions
on Smart Grid, Vol. 4, No. 1, Mar. 2013, pp. 214-226.

[75] J. Liu, and Y. Xiao, “Temporal Accountability and Anonymity in
Medical Sensor Networks,” ACM/Springer Mobile Networks and
Applications (MONET), Vol. 16, No. 6, pp. 695-712, Dec. 2011.

[76] B. Fu and Y. Xiao, "Q-Accountable: A Overhead-based
Quantifiable Accountability in Wireless Networks," Proceedings of
IEEE Consumer Communications and Networking Conference
(IEEE CCNC 2012), pp. 138-142.

[77] B. Fu and Y. Xiao, "Accountability and Q-Accountable Logging in
Wireless Networks", Wireless Personal Communications, Vol. 75,
No. 3, Apr. 2014, pp. 1715-1746.

[78] B. Fu and Y. Xiao, "A Multi-Resolution Flow-Net Methodology
for Accountable Logging and Its Application in TCP/IP
Networks," Proceedings of The IEEE International Conference on
Communications 2014 (IEEE ICC 2014).

[79] B. Fu and Y. Xiao, "A Multi-Resolution Accountable Logging and
Its Applications," Computer Networks, Vol. 89, No. 4, Oct. 2015,
Pages 44–58.

[80] Z. Xiao, Y. Xiao, and J. Wu, “A Quantitative Study of
Accountability in Wireless Multi-hop Networks," Proceedings of
2010 39th International Conference on Parallel Processing (ICPP
2010), pp. 198 - 207.

[81] P. Hochmuth, November 11, 2004. LinuxWorld. Linux is 'most
breached' OS on the Net, security research firm says. Available at:
http://www.linuxworld.com.au/index.php/id188808220;fp;2;fpid;1.

[82] http://www.protogeni.net/trac/protogeni/wiki/Tutorial
[83] J. Owens, J. Matthews, A study of passwords and methods used in

brute-force SSH attacks, Available on (last accessed on 06-10-
2010): http://people.clarkson.edu/~owensjp/pubs/leet08.pdf

[84] S. Lemon, September 20, 2006. Computer World Security.Bruce
Schneier: We are losing the security war. Available at:
http://www.computerworld.com/s/article/9003477/Bruce_Schneier
_We_are_losing_the_security_war

[85] D. Ramsbrock, R. Berthier, and M. Cukier, 2007. “Profiling
Attacker Behavior Following SSH Compromises,” in Proceedings

of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pp.119-124.

[86] http://www.protogeni.net/trac/protogeni/wiki/RSpecTutorial

EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems
09 2015 -01 2016 | Volume
3 | Issue 6 | e1

EAI for Innovation
European Alliance

Security Issues in ProtoGENI

