EAI Endorsed Transactions

on Digital Transformation on Industrial Processes

Research Article **EALEU**

A Two-Phase Hybrid GWO:TP-AB Algorithm for Benchmark and Engineering Optimization Problems

A. Baskar¹, and M. Anthony Xavior^{2*}

¹Panimalar Institute of Technology, Chennai - 600123, India ²Vellore Institute of Technology, Vellore – 632014, India

Abstract

INTRODUCTION: Population-based algorithms are popular stochastic algorithms used for solving optimization problems. Grey Wolf Optimizer (GWO) proposed in 2014 is one of the most studied algorithms in the past decade. Population-based two-phase trigonometric AB (TP-AB) is a recently proposed algorithm for handling optimization problems.

OBJECTIVES: The objective of this work is to propose one new hybrid algorithm combining the strengths of two better performing algorithms in two different phases. The performance is analysed using popular benchmarks and the results are compared with a few popular algorithms available in the literature.

METHODS: One new two-phase hybrid algorithm is designed by taking GWO in its first phase and the second phase of the TP-AB algorithm in the second phase. In the second phase, the Levy Strategy is introduced which was not in the original TP-AB algorithm.

RESULTS: The performance of the new hybrid GWO:TP-AB algorithm is analysed using 23 classic mathematical functions, 10 numbers of the CEC2019 dataset and 18 real-world engineering problems In addition, to demonstrate its capability to handle higher dimension problems, 13 scalable problems are solved. These include unimodal and multimodal instances with dimensions 30, 100, 500 and 1000.

CONCLUSION: The results demonstrate the better performance of the GWO:TP-AB algorithm when compared to several optimization algorithms of recent times.

Keywords: Metaheuristic, Hybrid Algorithm, Grey Wolf Optimizer, Two-Phase AB (TP-AB) Algorithm, Real-World Applications, Industrial Optimization

Received on 18 February 2025, accepted on 12 May 2025, published on 19 May 2025

Copyright © 2025 Author *et al.*, licensed to EAI. This is an open access article distributed under the terms of the <u>CC BY-NC-SA 4.0</u>, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.

1

doi: 10.4108/dtip.8741

1. Introduction

Industrial revolutions increase the focus on industrial digital transformation (IDT) for its industrial value creation potential (Abiodun et al., 2023). In today's digital era, understanding the critical factors that drive industrial digital transformation is essential for any organization to evolve in the technological landscape (Tangwaragorn, 2024). Industrial optimization aims to balance the resources and their usage to achieve the set objectives.

Operations Research (OR) finds its place in almost all elements of manufacturing, marketing, sales and service

activities to improve the profit and reduction in wastages. Designing optimal layouts, efficient scheduling and proper design of machines and machine elements are a few areas of focus in any industry.

Metaheuristic algorithms are popular nowadays in solving complex optimization problems in varying domains of Operations Research due to their versatility and flexibility (Tomar et al., 2024). We could find the applications of such optimization algorithms in solving constrained, unconstrained, single-objective, multi-objective, linear, and non-linear problems with continuous and discrete search spaces. They are more popular due to their ability to combine exploration and exploitation capabilities to reach optimal/near-optimal solutions.

^{*}Corresponding author. Email: manthonyxavior@vit.ac.in

Exact methods could be effective for smaller problems only. When the problem dimensions increase the computing time increases exponentially. As a result, metaheuristics are widely used by researchers for larger problem sizes to obtain results with acceptable accuracy. The genetic algorithm proposed by Holland (1992) is an evolutionary heuristic algorithm which is population-based and stochastic. Since then, numerous heuristics have been proposed by researchers over the years which could be classified based on:

Nature inspired Evolutionary Algorithms (Example: Genetic Algorithms)

Collective behaviour of swarms inspired Swarm-Based Algorithms (Example: Particle Swarm Optimization of Kennedy and Eberhart, 1995)

Human Behaviour inspired Human-Based Algorithms (Example: Teaching-Learning Based Optimization of Rao et al., 2011)

Science-inspired Science-Based Algorithms (Example: Harmony Search Algorithm of Kim, 2016).

Maths inspired Maths-Based Algorithms (Example: Trigonometric Sine (AB) and T-Cos algorithms of Baskar; 2022, 2024)

Another way of classifying such algorithms is population-based or trajectory-based.

In population-based algorithms, a set (population) of approximate solutions is generated within the bounds and these solutions are iteratively moved towards the optimal/near-optimal solutions. Evolutionary and swarm-based algorithms fall under this population-based category. On the other hand, trajectory-based algorithms explore the search space by following a single solution path (trajectory) at a time and iteratively refine the single solution. Simulated Annealing (Kirkpatrick, 1983) is a good example of a trajectory-based algorithm.

Based on the number of objectives that need to be optimized, algorithms may also be classified as single-objective and multi/many-objective optimization algorithms.

Another popular category is hybrid algorithms in which two or more strategies are extracted from better-performing algorithms available in the literature to improve the performance of the new hybrid algorithm.

This paper is one such hybrid algorithm that combines the Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014) and TP-AB trigonometric algorithm (Baskar et al., 2024) whose performances were demonstrated using a set of well-known benchmark problem sets.

The rest of this paper is organized as follows: The newly proposed hybrid algorithm is detailed in Section 2 and Section 3 explains briefly the benchmarks used for analysing the performance of the proposed GWO: TP-AB hybrid algorithm. A comprehensive analysis is performed and some comparisons are performed in Section 4. Finally, in the conclusion section 5, we conclude with a summary, of the main advantages and future work involving the proposed hybrid algorithm.

2. Hybrid GWO: TP-AB Algorithm

The objective function of any optimization is usually represented in terms of a mathematical equation which is evaluated for the set of variables that result in minimization or maximization of the objective function. This process of optimization in practical cases is subjected to constraints that are equality or inequality or mixed in nature. The single-objective minimization function could be defined as presented in equation (1) and two types of constraints in equations (2) and (3).

Minimize $f(x_i)$, $x_i \in X_i$ (i = 1 to I, $X_i =$ bounds in 'P' dimensions) (1)

 $g_j(x_i) \le 0$ (inequality constraints, j = 1 to J) (2)

 $h_k(x_i) = 0$ (equality constraints, k = 1 to K). (3)

The objective function is negated for a maximization problem.

This mathematical expression is evaluated for different input variables (randomly generated initially within the bounds) and the best ones are retained and used for generating the next set of approximate solutions during the next iteration. Different updating expressions are used for generating the new approximate solutions by different algorithms. The quality of newly generated approximate solutions is a function of these updating expressions.

Grey Wolf Optimizer (GWO) is a nature-inspired metaheuristic algorithm proposed by Mirjalili et al. in 2014. It is one of the most studied algorithms in the last decade, and several improvements including hybrid variants have been proposed. Şenel et al. (2019) proposed a hybrid algorithm fusing the exploration ability of the grey wolf optimizer (GWO) with the exploitation ability of the particle swarm optimization (PSO). Vo et al. (2024) combined GWO and Cuckoo Search Algorithm (CS) to solve one multi-objective spatial truss design problem.

TP-AB is a two-phase population-based trigonometric algorithm recently proposed by Baskar et al. (2024). This work proposes one two-phase hybrid version by combining GWO (with a linear reduction from 2 to 0) in its first phase and the 'second phase of TP-AB' (without tuning) in the second phase. The Levy Flight Strategy (LFT) is used in the second phase for more randomization.

LFT refers to a random walk in which the step sizes are drawn from a Lévy distribution. Compared to normal distribution, Levy distribution has a higher probability of generating larger steps. The mixture of larger and shorter steps permits to explore the search space and avoids local optima. Sharp peaks and asymmetry are important features of LFT's probability density distribution (PDF).

The shape parameter ' β ' is taken between 0 and 2. In this work, the simulations are carried out by taking 1.5 as the shape parameter.

The Levy distribution could be approximated as given in equation (4).

 $L(s) \sim s^{(-1-\beta)}$ (Chawla and Duhan, 2018) where 's' is the step size. (4)

The updating expression in the second phase of the TP-AB algorithm without tuning is given in equation (5).

$$X = X + Sine(2*pi*rand)*Step$$
 (5)

Where "Step" is the difference between two adjacent approximate solutions.

In the proposed hybrid algorithm, the Levy function "**RL**" replaces the "**rand**" function keeping other things the same. That is, the updating expression used here is as given in equation (6).

$$X = X + Sine(2*pi*RL)*Step.$$
 (6)

Figure 1 shows the flowchart of the proposed hybrid algorithm.

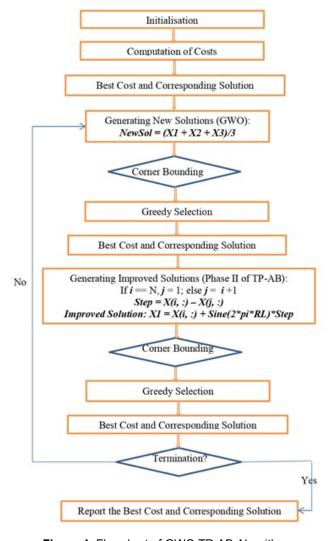


Figure 1. Flowchart of GWO:TP-AB Algorithm

"RL" in the flowchart refers to the Levy Function with a beta value of 1.5. Studies have shown that a beta value of 1.5 can provide a good balance between exploration and exploitation in various contexts (Cui et al., 2022). It allows for the generation of both small and large steps in the search space, increasing the chances of finding good solutions.

The choice of $\beta = 1.5$ in Lévy flight is a compromise between exploring a wide search space and exploiting promising regions, making it a popular and effective choice for various optimization problems.

The new algorithm is coded in MATLAB (online version) and run on a desktop i5 PC with 8 GB RAM.

3. Benchmarks Used

For assessing the performance of optimization algorithms, several benchmark datasets are available in the literature with their optimal values, number of variables, constraints and bounds. The first dataset of 23 classic functions (Mirjalili and Lewis, 2016) has three different sub-sets; the first seven problems are unimodal (F1-F7), the next six problems (F8-F13) are multimodal and the remaining problems (F14-F23) are fixed dimensional multimodal instances that have dissimilar search spaces. The second sub-set (F8-F13) has multiple local optima which increase exponentially with increasing dimensions.

The second dataset considered is 10 composite functions of CEC2019 (Table 1), popularly identified as the "100-digit challenge". Complete details could be seen in the technical report published by Price et al. (2018). The salient feature of this dataset is that the optimal value is "1" for all ten problems.

Table 1. CEC2019, 100 Digit Challenge Test Functions [Price et al., 2018]

S. No.	Function	Dime nsion	Search Span	Opti mal
1	Storn's Chebyshev Polynomial Fitting Problem	9	[-8192, 8192]	1
2	Inverse Hilbert Matrix Problem	16	[-16384 , 16384]	1
3	Lennard-Jones Minimum Energy Cluster Problem	18	[-4, 4]	1
4	Rastrigin's Shifted and Rotated Function	10	[-100, 100]	1
5	Griewangk's Shifted and Rotated Function	10	[-100, 100]	1
6	Weierstrass Shifted and Rotated Function	10	[-100, 100]	1
7	Schwefel's Shifted and Rotated Function	10	[-100, 100]	1
8	Schaffer's Shifted and Rotated F6 Function	10	[-100, 100]	1
9	Happy Cat Shifted and Rotated Function	10	[-100, 100]	1
10	Ackley Shifted and Rotated Function	10	[-100, 100]	1

The third set of problems is 18 numbers of real-world constrained engineering problems. Finally, 13 scalable problems (Mirjalili and Lewis, 2016) with dimensions 30, 100, 500, 1000 and Cobb-Douglas Production Function are analysed. The number of variables, constraints and optimal costs are presented in the results and discussions section.

4. Results and Discussion

The performance is analysed using the above-described 23 classic benchmark functions, the tough CEC2019 test suite and, 18 constrained real-world engineering problems.

Arora et. al. (2019) proposed one hybrid algorithm by combining Grey Wolf Optimization and the Crow Search

Algorithm (GWOCSA) and compared the performance with 10 other algorithms; Bat Algorithm (BA), Biogeography-based optimization (BBO), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), School Based Optimization (SBO), Enhanced Grey Wolf Optimizer (EGWO) and Accelerated Grey Wolf Optimization (AGWO). The authors used a population size (PS) of 30 for all benchmarks. The GWO:TP-AB is run for the same number of function evaluations (NFE) and the "mean" results are compared (Table 2 to Table 4). The PS is taken as 5 and 30 in separate simulations and the number of iterations varies to keep the NFE the same

Table 2. Classical 23 Functions: F1-F7 Results (NFE: 9000; Trials: 30)

F.No.	PS	GWO:TP-AB				Arora et. al.	
F.NO.	P3	Minimum	Mean	Maximum	STD	Best Mean	Algorithm
F1	5	2.6983e-47	4.3867e-43	1.1016e-41	2.0028e-42		
	30	2.9548e-24	1.7420e-22	2.2166e-21	4.2034e-22	1.01e-28	GWOCSA
F2	5	5.1319e-31	6.5977e-29	4.3354e-28	1.0716e-28		
	30	1.0425e-14	1.1618e-13	3.7946e-13	8.9822e-14	1.50e-17	GWOCSA
F3	5	4.2321e-03	1.8745	18.949	3.9349		
	30	0.1206	7.2749	52.776	11.122	5.18e-04	GWOCSA
F4	5	1.7251e-05	1.4758e-03	0.010886	2.5913e-03		
	30	1.0515e-03	0.022094	0.1184	0.025889	2.07e-07	GWOCSA
F5	5	25.133	25.714	28.717	0.7431		
	30	25.590	26.147	28.727	0.5528	27.0	GWOCSA
F6	5	8.1793e-05	0.048195	0.4988	0.1163	1.23	GWOCSA
	30	2.3421e-04	0.2890	0.9180	0.2286	1.20e-03	PSO
F7	5	1.4706e-03	6.3952e-03	0.014130	2.7275e-03		
	30	3.9778e-03	9.8687e-03	0.019780	4.0070e-03	1.92e-03	GWOCSA

Table 3. Classical 23 Functions: F8-F13 Results (NFE: 9000; Trials: 30)

		GWO:TP-AB	GWO:TP-AB			Arora et. al.	
F.No.	PS	Minimum	Mean	Maximum	Standard Deviation	Best Mean	Algorithm
F8	5	-9994.5	-8014.7	-5294.5	1214.8	-3.57e03	GWOCSA
	30	-8793.4	-6268.3	-5126.6	824.08	-2.84e+71	BA
F9	5	12.183	49.651	135.86	29.854		
	30	17.083	48.145	131.62	26.222	1.19	GWOCSA
F10	5	7.5495e-15	1.4181e-14	2.1760e-14	3.1959e-15		
	30	4.4453e-13	3.0334e-12	1.3938e-11	2.7647e-12	1.37e-14	GWOCSA
F11	5	0.0	0.012906	0.049090	0.013932		
	30	0.0	4.3439e-03	0.018402	6.0436e-03	0.0	GWOCSA AGWO
F12	5	4.1374e-06	7.2490e-03	0.2075	0.037868		
	30	2.4607e-05	0.026940	0.2142	0.045540	4.92e-02	GWOCSA
F13	5	1.4298e-04	0.1679	0.6053	0.1508	0.939	GWOCSA
	30	6.6747e-04	0.2722	0.5350	0.1383	5.68e-02	SBO

Table 4. Classical 23 Functions: F14-F23 Results (NFE: 9000; Trials: 30)

		GWO:TP-AB	3			Arora et. al.	
F.No.	PS	Minimum	Mean	Maximum	Standard Deviation	Best Mean	Algorithm
F14	5	0.9980	3.6044	18.304	4.2355		
	30	0.9980	0.9980	0.9980	1.8281e-13	9.98e-01	GWOCSA
F15	5	3.0753e-04	5.1487e-03	0.020363	8.5396e-03		
	30	3.7232e-04	1.9196e-03	0.020363	5.0142e-03	3.38e-04	GWOCSA
F16	5	-1.0316	-1.0316	-1.0316	6.3477e-16		
	30	-1.0316	-1.0316	-1.0316	1.2596e-13	-1.03	All
F17	5	0.3979	0.3979	0.3979	4.5608e-14		
	30	0.3979	0.3979	0.3979	9.3996e-15	3.98e-01	All except GA
F18	5	3.0000	8.4000	84.000	20.550		
	30	3.0000	3.0000	3.0000	1.0615e-14	3.0000	CSA, DA, GWO, PSO, EGWO, AGWO, GWOCSA
F19	5	-3.8628	-3.8628	-3.8628	2.2809e-15		
	30	-3.8628	-3.8628	-3.8628	5.0154e-12	-3.86	All except GA
F20	5	-3.3220	-3.2719	-3.1376	0.062771		
	30	-3.3220	-3.2824	-3.2031	0.057005	-3.31	GWOCSA
F21	5	-10.153	-7.9446	-2.6305	3.2742	-6.80	GWOCSA
	30	-10.153	-9.2054	-2.6305	2.1916	-9.14	GWO
F22	5	-10.403	-9.2624	-1.8376	2.6578	-8.76	GWOCSA
	30	-10.403	-10.403	-10.403	3.3586e-05	-10.4	GWO
F23	5	-10.536	-9.0955	-2.4217	2.9890	-8.82	GWOCSA
	30	-10.536	-10.536	-10.536	3.9977e-05	-9.72	GWO

When all 23 functions are considered, GWOCSA accounts for 13/23 best "mean" results, GWO:TP-AB is closely behind at 12/23 for best results, and GWO reports the best results in 7/23 cases.

That is, GWO:TP-AB performs reasonably well among the considered 12 algorithms especially better than the original GWO and at par with the hybrid GWOCSA for this dataset.

Figure 2 shows the convergent curve for the unconstrained "sphere" function for 20 trials (dimension: 30) with a broader search range of [-100, 100].

The convergence is steep during earlier iterations and remains almost flat after 40 iterations. The curve shows the consistency of convergence also for this function.

Lei et. al. (2023) proposed one Enhancing Grey Wolf Optimizer with Levy Flight (LFGWO) and analysed the performance with eight other algorithms; AHA, AO, DA, DMOA, GBO, HGS, HHO, and MVO. It was concluded that LFGWO reported the best "mean" results in 9 of the 10 problems of the CEC2019 dataset. However, LFGWO

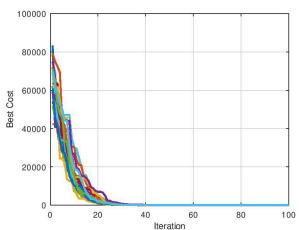


Figure 2. Convergent Curve for the Un-constrained Sphere Function

reported values below "1" in 7 of the 10 cases whereas; the optimal values are "1" in all cases. Hence, the results of LFGWO are discarded and the second-best "mean" results

are considered. GWO:TP-AB is run again for the same NFE and results are compared (Table 5).

For the tough CEC2019 dataset, GWO:TP-AB reports better "mean" values in 5/10 cases and HGS (Hunger Games Search) in 4/10 cases.

One hybrid algorithm of Grey Wolf Optimizer and Harris Hawks Optimization (HGWO) was proposed by Tu et. al. (2023) and the performance was analysed in a few datasets including four real-world engineering problems.

The results obtained after 15000 NFE were compared with seven popular optimization algorithms; GWO, WOA, GJO, MVO, SSA, SOA, and AOA and three hybrid algorithms; AGWO_CS, PSOGWO and AGWO. GWO:TP-AB is simulated for the same NFE (Table 6, Table 7) and results are compared. The results show that in all four cases, GWO:TP-AB is ahead of all other algorithms when the population size is 5 and better in 2 of the 4 cases

if the population size is increased to 30 keeping NPE constant. The penalty approach is applied with a penalty parameter of 10^9 .

Finally, the GWO:TP-AB algorithm is tested against a few more constrained real-world engineering other than those listed in Table 6. The results are presented in Table 8, the summary of which in Table 9. In this simulation also, NFE is taken as the same 15000 and the best costs reported in 20 trials are taken. The first 11 problems are taken from the paper of Bayzidi et. al., 2021, Himmelblau's Function (Himmelblau, 1972), discrete spring (Deb and Goyal, 1997) and, continuous stepped cantilever beam (MathWorks Help Center) are the other three problems analysed. The penalty approach is applied with a penalty parameter of 109 here also.

Table 5. CEC2019: Results (NFE: 10000; Trials: 30)

		GWO:TP-AB				Lei et. al.	
F.No.	PS	Minimum	Mean	Maximum	Standard Deviation	2 nd Best Mean	Algorithm
F1	5	8.0475e+06	1.0401e+09	5.9214e+09	1.3994e+09		
	100	4.6057e+07	1.2903e+09	3.2562e+09	9.0679e+08	9.95e+09	ННО
F2	5	18.3429	18.3429	18.3429	1.0565e-13		
	100	18.3434	18.3445	18.3459	6.6920e-04	64.4	AHA
F3	5	13.7024	13.7024	13.7024	4.2034e-07		
	100	13.7024	13.7024	13.7024	1.1931e-07	12.7	AHA
F4	5	17.9143	50.8669	107.9310	25.0574		
	100	22.2618	49.1965	65.6646	11.0490	646	HGS
F5	5	2.0129	2.2382	2.6805	0.1690		
	100	2.0754	2.5548	2.7451	0.1531	1.43(I) 1.63 (II)	GBO HGS
F6	5	10.1574	12.0530	13.2727	0.8014		
	100	9.7858	12.0989	13.2506	0.8323	7.41	HGS
F7	5	70.8095	475.9432	1.1057e+03	282.8184		
	100	206.2003	638.0031	996.8844	196.0447	608	HGS
F8	5	2.1125	5.3242	6.8696	1.0878		
	100	2.3297	4.7987	6.5713	1.0689	4.59	HGS
F9	5	3.3918	3.6207	4.0527	0.1822		
	100	3.4218	3.7690	4.0961	0.1744	64.2	GBO
F10	5	1.0000	20.7783	21.6454	3.7372		
	100	3.7712	20.9394	21.7370	3.2436	20.2	HGS

Table 6. Constrained Engineering Problems [Tu et. al., 2023]

Problem	No. of Variables	No. of Constraints	Optimal Value	GWO:TP-AB	APD	HGWO (Tu et. al.)
Pressure Vessel	4	4	5885.332773	5885.3327736	1.01948E- 08	5885.334276
Speed Reducer	7	11	2994.424466	2994.4244658	0	2994.613691
Three- Bar Truss	2	3	263.8958434	263.89584338	0	263.8958539
Welded Beam	4	7	1.724852308597	1.724852317362	5.08159E- 07	1.725201706

Table 7. Four Real-World Engineering Problems: Results (NFE: 15000; Trials: 20)

			GWO:	TP-AB	
Problem	PS	Minimum	Mean	Maximum	Standard Deviation
Pressure Vessel	5	5885.332773616459 2351997271180153	6330.373584443833 3515427075326443	7319.000702050244 3992882035672665	566.8030181064092 4031758913770318
	30	5885.808221375861 6489940322935581	6063.741826910575 5825876258313656	6901.176660791176 8005578778684139	298.2040189605771 1610410478897393
Speed Reducer	5	2994.424465756736 4811256993561983	2994.424523466068 4218397364020348	2994.425611988040 6004085671156645	0.000256215478349 9746607718094981 7205
	30	2994.442854964683 6472675204277039	2994.521409040356 9571208208799362	2994.612996779795 5941932741552591	0.054145148091894 3919840025102985 24
Three Bar Truss	5	263.8958433765234 3037916580215096	263.8969798296510 0209185038693249	263.9078447126003 0841222032904625	0.002627642957340 2187295227960817 101
	30	263.8958511865188 2567064603790641	263.8969699162076 9495057174935937	263.9068374935147 8581957053393126	0.002450429052419 8489055474059483 686
Welded Beam	5	1.724852317362365 9943132224725559	1.725995751134212 9965470348906820	1.739945487567939 4305620917293709	0.003356452198412 4533540705392908 876
	30	1.725274403004670 9422521189480904	1.729033081226155 1773900691841845	1.735730645879692 8350096777649014	0.002786684135570 4730261166890414 870

Table 8. GWO:TP-AB; Real-World Engineering Problems: Results (PS: 5; NFE: 15000; Trials: 20)

Problem	Minimum	Mean	Maximum	Standard Deviation
Gear Train	2.700857148886513 3510618295276270 e-12	3.885600265842422 7023371842362580 e-10	0.000000001361649 1390639914138666 632958431	4.933931658925533 4254863205465302 e-10
	7940326733609310849	9715257064, 19.176286	5014264217527625078 5335807000774366315	218989,
Himmelb lau	- 30665.53867174592 9605094715952873	- 30665.09025723783 9978188276290894	- 30662.86979485190 3861854225397110	0.830034906393407 7120663346249784 8
-			9525602588212436216 3718008094620017800	
Spring (Cont.)	0.012665288863087 1211100847872899 07	0.012893069386288 7909423298182787 22	0.013698309070519 8630454564323599 7	0.000285573533930 0641273396763608 6163
-		18683372543, 0.357950	03800756076437039610	
Spring (Disc.)	2.658559165969599 2916567774955183	2.682082452191697 7190016950771678	2.800157076098202 413305671143462	0.034328213635197 3354848610142653 34
	35907229116602423779 0099638071574901232		72723764701359172590	08554508,
Corrugat ed Bulk Head	6.842958010080837 8162469125527423	-	6.850007816968991 7473306195461191	0.001663136831300 5936380305493926 812
_	92307692307692307692 7692307692307692307)348674351475892763 ⁻	119191,
I-Beam Deflectio n	0.013074118905223 3346828968407749 02	0.013074119012222 5844211234502267 87	0.013074119853702 5430509439516413 29	0.000000000254385 8803023858375654 7308798888
	50.0, 0.9, 2.321792260			
_	8.412698323106445 3860881258151494 00000000000039093728 1798362192114950630		167.4727522629003 1469034147448838 13589918118043442518	81.18707042392038 8861915853340179 86831504,
Car Side Impact	22.84296946106668 3578565061907284	22.94304873921230 1256884529720992	23.83879355386385 8676322706742212	0.231674390762749 0661749192213392 2
1.3022307 0.5000000 0.7665259	1986541147122977690 0871024928850161472	742118, 0.50000000000 8374989, 0.6453167030 5699374, -19.56507884	57460717085556467509 0016187051699034782 0796312930718272582 090141047295219323	359, 1.5, 4532,
Cantilev er Beam	1.339958586868323 6977716433102614	1.340084493560021 7944227097177645	1.340496753767818 9604122280798038	0.000135852180184 2391379510494031 6349
4.4881755		97812, 3.50340949776	73744538338996790110 5511471101262941374	665285,
Tubular Column	26.48636147244781 4691122403019108	26.48636149114111 7596725962357596	26.48636184594287 3571857489878312	0.000000083511676 2320275793193060 38498072

X = [5.4521807362239060879005592141766, 0.29162642929940890690332366830262]

Stepped Cantilev 63182.59189017744 64635.92670512168 67554.01241114015 1148.502154952016 er 2110143601894379 1152377277612686 2835287153720856 3262059213593602 (Cont.) $X = \begin{bmatrix} 3.0207850831358924459379977633944, \, 60.379446489702502276486484333873, \, \\ 2.8362681880493596509040798991919, \, 56.715153988680000907152134459466, \, \end{bmatrix}$

2.5404275476987918658267062710365, 50.805714405453464621587045257911,

2.5404275476967916056207062710505, 50.605714405453404621567045257911,

1.7565262685745965942629709388711, 34.935821838849271614435565425083]

Stepped

Cantilev 63940.58604217450 64567.88959520826 66332.01489590133 717.9882011163940 er (Disc.) 1926638185977936 028892770409584 1328786909580231 6604808755218983 P=10^3

X = [0.51644851041369410626913349915412, 1.0, 0.99964915861882264191962121913093,

0.67043182206102891473875615702127, 0.36468171849495778502614484750666,

0.5682596817710487968611232645344, 2.2045556994630848279825841018464,

44.091113756159664660572161665186, 1.7497572849831612984417006373405,

34.995137571156725186938274418935]

 $P=10^{\circ}9 \qquad \begin{array}{c} 64334.68813721633 \qquad 65285.22925308065 \qquad 68830.70504375842 \qquad 1285.026504302996 \\ 3416290581226349 \qquad 8963881433010101 \qquad 5745181739330292 \qquad 0452258819714189 \\ X=[0.41141878796092445913501478571561, 0.94554554531470202949350323251565, 1.0, \\ 0.51079837050743448489953379976214, 0.39966761790870086734628330304986, \\ 0.59517948631771078193963830926805, 2.2250047407244641917145600018557, \\ 44.500089954629025612575787818059, 1.7497724998207522251192358453409, \\ 34.995389553054110365337692201138] \end{array}$

Pressure 6059.714340026797 6601.494375016084 7544.492517925084 506.4246785388986 Vessel 7995099499821663 6320795826613903 9396339617669582 6091776639223099 X = [12.968038549028149120090347423684, 6.6985812743516381928543523827102, 42.098445554985254091207025339827, 176.63659634892306371511949691921]

RCC 359.207999999999 360.1398000049356 362.6340000000000 1.462536937870176 Beam 6998667484149337 3693453324958682 1455191522836685 9118578113193507

X = [0.26595640638212081352520499422099, 0.48467334436690662213820246506657, 8.5]

The convergent curve for the constrained "car side impact" problem is presented in Figure 3 for 20 trials. The lower bound is [0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 1.50,

It is one of the toughest problems with 11 variables and 10 constraints. Unlike the sphere function, the variations in cost are slightly higher during earlier stages of iteration. However, the curves remain flat after 60 iterations. Another observation is that the curves are not steep but moderately curved while converging.

18 problems considered (Table 7 and Table 9) have a mixture of continuous or discrete or both discrete and continuous variables. APD in Table 9 refers to Average Per cent Deviation from the optimal value. Most of the variables are continuous and, the following benchmarks have discrete or discrete and continuous variables:

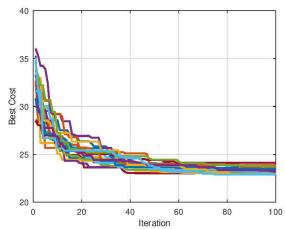


Figure 3. Convergent Curve for the Constrained Car Side Impact Function

Table 9, Constrained Engineering Problems (PS: 5; NFE: 15000; Trials: 20)

CN		Dimer	Canati			
S.N o.	Problem	Dimen sions	Constr aints	Optimal Value	GWO:TP-AB	APD
1.	Cantilever Beam	5	1	1.3399576	1.339958586868	7.36492E-05
2.	I-shaped Beam	4	2	0.0130741	0.013074118905	0
3.	Tubular Column	2	6	26.486361473	26.486361472448	-2.08409E-09
4.	Piston Lever	4	4	8.41269832311	8.412698323106	0
5.	Corrugated Bulkhead	4	6	6.8429580100808	6.842958010081	0
6.	Pressure Vessel (different version) Tension/Compre	4	4	6059.7143350484 36	6059.7143400267 98	8.2155E-08
7.	ssion Spring (Continuous)	3	4	0.01266051	0.012665288863	0.037746212
8.	Gear Train	4	0	2.70085714e-12	2.70085714e-12	0
9.	Reinforced Concrete Beam	3	2	359.2080	359.2080	0
10.	Car Side Impact Cantilever	11	10	22.84296954 63893.43079587	22.842969461067 63893.43130309	-3.45546E-07
11.	Stepped Beam (Discrete)	10	11	(violating the sixth constraint)	(violating the sixth constraint) 64334.68813722	7.93853E-07
					(satisfying all constraints)	
12.	Himmelblau's Function	5	6	-30665.5398	- 30665.538671745 930	-3.67922E-06
	Tension/Compre					
13.	ssion Spring (Discrete)	3	8	2.65855916	2.658559165970	2.24558E-07
14.	Cantilever Stepped Beam (Continuous)	10	11	63408.9	63182.591890177 442	-0.356902753

Pressure Vessel: The first two are discrete variables

Gear Train: All four are discrete variables

Reinforced Cement Concrete Beam: The first two are discrete variables

Tension/ Compression Spring (Discrete): The first two are discrete variables

Cantilever Stepped Beam (Discrete): The first six are discrete variables.

In 11 out of 18 instances, GWO:TP-AB reports the optimal values (marked in bold) whereas in the remaining 7 cases the results are very close to the optimal values.

In the case of the stepped cantilever beam (discrete) problem, we get a higher cost of 64334.68813722. The variables' set is,

X = [3.0, 60.0, 3.10000000000000888178419700125, 55.0, 2.60000000000000000888178419700125, 51.0, 2.2250047407244641917145600018557,

44.500089954629025612575787818059,

1.7497724998207522251192358453409,

34.995389553054110365337692201138] and the constraints' set is,

Here, though the reported cost is high, all constraints are satisfied.

However, when the penalty parameter is reduced to 10³ from 10⁹, the new cost obtained is 63893.43130309. Corresponding variables and constraint sets are:

X = [3.0, 60.0, 3.10000000000000888178419700125, 55.0, 2.60000000000000000888178419700125, 50.0, 2.2045556994630848279825841018464,

44.091113756159664660572161665186,

1.7497572849831612984417006373405,

34.995137571156725186938274418935];

G = [-5.0285e-05, -2.8800e-06, -1.5385e+02, -1.2034e+03, -1.1111e+02, 4.7155e-02, -4.6455e-06, -1.0574e-07, -7.6923e-01, -2.2581e+00, 0].

Here though the cost is less, the sixth constraint is violated.

SNS algorithm (Bayzidi et. al., 2021) reports a cost of 63893.4307958715 (NFE: 20000) which is close to the

value obtained above for 15000 NFE. However, when the results given in the SNS paper are analysed, the obtained constraints set is, G = [-1.4881e-06, -2.3780e-06, -1.5385e+02, -1.2034e+03, -1.1111e+02, 4.7155e-02, 0, -4.5361e-09, -7.6923e-01, -2.2581e+00, 0]. That is, the sixth constraint is violated here also.

Above discussed analyses demonstrate the effectiveness of the newly proposed hybrid algorithm in solving realworld engineering problems.

4.1. Performance on a few High Dimensional Benchmarks

Abualigah et al. (2021) proposed one Arithmetic Optimization Algorithm (AOA) and its performance were compared with several benchmarks. The benchmarks include scalable sets of unimodal and multimodal test functions (F1–F13) with four dimension spaces (30, 100, 500, and 1000). The results were compared with 11 other popular algorithms which include GWO, GA, PSO and Differential Evolution (DE). GWO was ranked second behind AOA among 12 algorithms

For the same NFE, the proposed algorithm is run and results are presented in Table 10.

Table 10. Results of Functions: F1 to F13 [Abualigah et al., 2021]

Function	Dimensions	Min	Mean	STD	_
F1	30	1.8001e-165	7.0612e-156	3.8134e-155	
	100	1.5797e-89	7.5366e-85	1.7290e-84	
	500	4.5379e-48	2.4857e-45	6.3428e-45	
	1000	1.1060e-38	1.3048e-36	1.8493e-36	
F2	30	8.5273e-107	2.9422e-100	7.9454e-100	
	100	4.9259e-62	1.9907e-59	2.9870e-59	
	500	2.6689e-37	1.8016e-36	1.9349e-36	
	1000	36.9111	1.7440e+305	Inf	
F3	30	2.9824e-17	1.6685e-07	9.1082e-07	
	100	187.7449	2.1837e+03	1.9332e+03	
	500	5.2263e+05	6.4115e+05	7.8782e+04	
	1000	2.1779e+06	2.9122e+06	4.7946e+05	
F4	30	3.9841e-18	7.7940e-14	2.6726e-13	
	100	0.2699	3.8297	3.5131	
	500	60.1462	66.8094	3.7809	
	1000	72.3021	76.3728	2.8889	
F5	30	23.9472	24.2096	0.1600	
	100	93.7587	95.9218	1.9525	
	500	497.0563	497.8931	0.1848	
	1000	996.9183	997.6922	0.1875	
F6	30	2.5473e-14	1.0584e-10	2.2125e-10	
	100	4.9810	6.6586	0.8581	
	500	92.2365	95.1988	1.6096	
	1000	211.8232	215.4090	1.8141	
F7	30	8.4695e-04	0.0019	8.6477e-04	
	100	0.0026	0.0074	0.0023	
	500	0.0131	0.0280	0.0090	
	1000	0.0240	0.0449	0.0114	
F8	30	-1.0122e+04	-8.2140e+03	1.2301e+03	
	100	-2.9545e+04	-1.8776e+04	5.3723e+03	
	500	-8.5594e+04	-5.1633e+04	1.9095e+04	
	1000	-1.3466e+05	-7.6548e+04	3.2235e+04	
F9	30	10.9446	46.6085	26.8965	
	100	21.3406	186.8156	124.6664	
	500	3.4043	116.9499	156.7475	
	1000	11.0667	63.9113	43.7354	
F10	30	3.9968e-15	7.1942e-15	1.0840e-15	

	100	7.5495e-15	1.4300e-14	2.8529e-15
	500	2.8866e-14	3.6445e-14	4.2483e-15
	1000	3.9524e-14	5.4564e-14	6.9621e-15
F11	30	0	0.0076	0.0092
	100	0	0.0065	0.0138
	500	1.1102e-16	6.4139e-04	0.0035
	1000	2.2204e-16	0.0048	0.0143
F12	30	7.9174e-16	0.0138	0.0358
	100	0.0440	0.0901	0.0403
	500	0.6355	0.7016	0.0326
	1000	0.7715	0.8252	0.0243
F13	30	3.5036e-13	0.0433	0.0701
	100	1.5172	3.3119	0.7783
	500	43.1530	44.4169	0.6382
	1000	93.4243	95.5878	1.0833

The results show that the proposed hybrid GWO:TP-AB algorithm performs better than GWO in 35 out of 52 cases when the "mean" values are considered. It outperforms GWO in 34 cases if "standard deviation" is the metric.

It performs well in 10 problems of dimension 30, 9 each of dimensions 100 and 1000 and, 7 problems of dimension 500 for the "mean" results.

The SD is better in 11 cases of dimension 500, 9 of dimension 1000, 8 of dimension 30 and 6 problems of dimension 100.

4.2. Cobb-Douglas Production Function

The Cobb-Douglas production model (Felipe and Adams, 2005) is a maximization problem. It has two input variables; units of capital (K) and, the units of labor (L) invested in the economy. "A" refers to the total factor of productivity,

The general model can be expressed as presented in equation (7).

$$Y(K,L) = A * L^{\alpha} * K^{(1-\alpha)}$$
(7)

If a manufacturing activity is more labor-intensive, " α " takes a higher value. In most of the cases, it takes a value of 0.6. This is one of the widely studied forms of a production problem which includes economics of production also.

To demonstrate the ability of the proposed algorithm, the following objective function (equation 8) is solved.

Maximize Production, $Y = 300 * L^{0.6} * K^{0.4}$. (8)

In this case, the capital cost "K" is assumed as 130 units and the labor cost "L" as 85 units. If the maximum cost is fixed as 100000 then, the inequality constraint can be expressed as in equation (9).

$$Total\ Cost = 130*K + 85*L \le 100000. \tag{9}$$

The search range is taken as [0, 500] for both 'K' and 'L'.

Table 11. Cobb-Douglas Problem: Results for Different Population Sizes and Iterations

Population	Population Size: 5							
IT 100	IT 200	IT 500	IT 750	IT 1000				
-	-	-	-	-				
139541.	139541	139541	139541	139541				
1059	.1181	.1734	.1837	.1866				
Number of	of Function	Evaluation	ns: 10000	_				
PS: 5	PS: 10	PS: 20	PS: 25	PS: 50				
-	-	-	-	-				
139541.	139541	139541	139541	139541				
1884	.1876	.1679	.1700	.1435				
Standard	Deviation			_				
7.1064	3.1096	1.8551	2.2806	1.6191				
	3							

Table 11 shows the results for this problem when different population sizes (5, 10, 20, 25 and 50) and number of iterations (100, 200, 500, 750 and 1000). For 1000 iterations (NFE = 10000), the obtained cost is 139541.1866 which is very close to the known value of 139541.6776.

As the number of iterations increases, the results improve. When the population size is 5, the result is better when compared to the population size of 50. However, the standard deviation (SD) is high when the population size is 5.

Figure 4 shows the convergence curve for 100 iterations and 20 trials. The steep curves below 10 iterations show the improvements are high during initial stages and remain almost flat after 40 iterations.

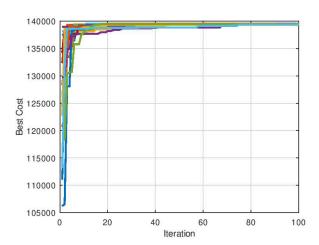


Figure 4, Convergent Curves for the Cobb-Douglas
Problem

5. Conclusion, Limitations and Future Work

This paper combines the capabilities of one of the most popular optimization algorithms in the literature, GWO and another recent population-based TP-AB algorithm. It is a two-phase hybrid algorithm in which GWO improves the population in phase I and, the second phase of the TP-AB algorithm in phase II. In the second phase, the Levy strategy is applied to randomize the created solutions.

The new hybrid algorithm GWO:TP-AB is tested against 23 classic test functions, a tough CEC2019 dataset and 18 real-world engineering problems. Real-world engineering problems include continuous, discrete, discrete and continuous variables. In all cases, the performance is better than many other popular algorithms of recent times. To demonstrate the ability of the algorithm to handle larger dimension problems, 13 unimodal and multimodal problems are tested for 30, 100, 500 and 1000 dimensions. The "mean" and "standard deviation" results indicate its better performance over several algorithms including GWO.

The preliminary analyses show that the proposed hybrid GWO:TP-AB algorithm is a fair competitor for similar algorithms available in the literature. The main limitation of this algorithm is that the problems and constraints should be represented as mathematical expressions accurately. Future work includes the feasibility of solving multi-objective and other industrial optimization problems in the digital domain using the proposed hybrid algorithm.

References

- [1] Abiodun T, Rampersad G, Brinkworth R. Driving industrial digital transformation. Journal of Computer Information Systems. 2023 Nov 2;63(6):1345-61.
- [2] Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH. The arithmetic optimization algorithm. Computer

- methods in applied mechanics and engineering. 2021 Apr 1;376:113609.
- [3] Arora S, Singh H, Sharma M, Sharma S, Anand P. A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection. Ieee Access. 2019 Feb 18;7:26343-61.
- [4] Baskar A. New simple trigonometric algorithms for solving optimization problems. Journal of Applied Science and Engineering. 2022 Mar;25(6):1257-72.
- [5] Baskar A. Simple population-based algorithms for solving optimization problems. RAIRO-Operations Research. 2024 Jan 1;58(1):253-80.
- [6] Baskar A, Xavior MA, Jeyapandiarajan P, Batako A, Burduk A. A novel two-phase trigonometric algorithm for solving global optimization problems. Annals of Operations Research. 2024 Mar 21:1-51.
- [7] Bayzidi H, Talatahari S, Saraee M, Lamarche CP. Social network search for solving engineering optimization problems. Computational Intelligence and Neuroscience. 2021;2021(1):8548639.
- [8] Chawla M, Duhan M. Levy flights in metaheuristics optimization algorithms—a review. Applied Artificial Intelligence. 2018 Nov 26;32(9-10):802-21.
- [9] Cui Y, Shi R, Dong J. CLTSA: A novel tunicate swarm algorithm based on chaotic-Lévy flight strategy for solving optimization problems. Mathematics. 2022 Sep 19;10(18):3405.
- [10] Deb K, Goyal M. Optimizing Engineering Designs Using a Combined Genetic Search. InICGA 1997 Jul (pp. 521-528).
- [11] Jesus F, Gerard AF. The estimation of the Cobb-Douglas function: a retrospective view. East. Econ. J. 2005;31(3):427-45.
- [12] Himmelblau DM. Applied nonlinear programming. McGraw-Hill; 2018 Nov 1.
- [13] Holland JH. Genetic algorithms. Scientific american. 1992 Jul 1;267(1):66-73.
- [14] Kennedy J, Eberhart R. Particle swarm optimization. InProceedings of ICNN'95-international conference on neural networks 1995 Nov 27 (Vol. 4, pp. 1942-1948). ieee.
- [15] Kim JH. Harmony search algorithm: A unique musicinspired algorithm. Procedia engineering. 2016 Jan 1;154:1401-5.
- [16] Kirkpatrick S, Gelatt Jr CD, Vecchi MP. Optimization by simulated annealing. science. 1983 May 13;220(4598):671-90
- [17] Lei W, Jiawei W, Zezhou M. Enhancing grey wolf optimizer with levy flight for engineering applications. IEEE Access. 2023 Jul 13;11:74865-97.
- [18] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in engineering software. 2014 Mar 1;69:46-61.
- [19] Mirjalili S, Lewis A. The whale optimization algorithm. Advances in engineering software. 2016 May 1;95:51-67.
- [20] Price KV, Awad NH, Ali MZ, Suganthan PN. Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. InTechnical report 2018 Nov. Singapore: Nanyang Technological University.
- [21] Rao RV, Savsani VJ, Vakharia DP. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-aided design. 2011 Mar 1;43(3):303-15.
- [22] Şenel FA, Gökçe F, Yüksel AS, Yiğit T. A novel hybrid PSO–GWO algorithm for optimization problems. Engineering with Computers. 2019 Oct;35:1359-73.
- [23] Tangwaragorn P, Charoenruk N, Viriyasitavat W, Tangmanee C, Kanawattanachai P, Hoonsopon D,

- Pungpapong V, Pattanapanyasat RP, Boonpatcharanon S, Rhuwadhana P. Analyzing key drivers of digital transformation: A review and framework. Journal of Industrial Information Integration. 2024 Nov 1;42:100680.
- [24] Tomar V, Bansal M, Singh P. Metaheuristic algorithms for optimization: A brief review. Engineering Proceedings. 2024 Mar 13;59(1):238.
- [25] Tu B, Wang F, Huo Y, Wang X. A hybrid algorithm of grey wolf optimizer and harris hawks optimization for solving global optimization problems with improved convergence performance. Scientific Reports. 2023 Dec 21;13(1):22909.
- [26] Vo N, Tang H, Lee J. A multi-objective Grey Wolf-Cuckoo Search algorithm applied to spatial truss design optimization. Applied Soft Computing. 2024 Apr 1;155:111435.
- [27] https://in.mathworks.com/help/gads/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html [Accessed on 11-11-2022].

