
Virtual Character Animations from Human Body
Motion by Automatic Direct and Inverse
Kinematics-based Mapping
Andrea Sanna, Fabrizio Lamberti, Gianluca Paravati, Gilles Carlevaris, Paolo Montuschi
Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino 10129, Italy

Abstract

Motion capture systems provide an efficient and interactive solution for extracting information related to
a human skeleton, which is often exploited to animate virtual characters. When the character cannot be
assimilated to an anthropometric shape, the task tomapmotion capture data onto the armature to be animated
could be extremely challenging. This paper presents two methodologies for the automatic mapping of a
human skeleton onto virtual character armatures. Kinematics chains of the human skeleton are analyzed
in order to map joints, bones and end-effectors onto an arbitrary shaped armatures. Both forward and inverse
kinematics are considered. A prototype implementation has been developed by using the Microsoft Kinect as
body tracking device. Results show that the proposed solution can already be used to animate truly different
characters ranging from a Pixar-like lamp to different kinds of animals.

Keywords: virtual character animation, automatic armature mapping, motion capture, graph similarity, forward
kinematics, inverse kinematics

1. Introduction
Several techniques are used to animate virtual charac-
ters. One of the most used is based on virtual skeletons
(named rigs), which are related to meshes to be ani-
mated and deformed. The animator can move bones of
the virtual skeleton in order to move mesh vertices. The
so called keyframing method uses forward and inverse
kinematics techniques to fix a set of key frames (poses),
which will be automatically interpolated by the ani-
mation program [1][2]. The keyframing approach has
been often outperformed by motion capture solutions
[3]. Mocap solutions allow to directly gather the motion
of the animator: motion data can been used both to
animate interactively a virtual character and recorded
and then applied to the character.
The keyframing approach allows animators to author

animations that would be difficult or impossible to act
out. On the other hand, complex actions usually need
a lot of time (and skilled animators) to be produced
by keyframing. Motion capture systems can gather
complex motion data in a very accurate and smooth
way, thus allowing animators to create very realistic
(human) movements. Mocap systems are, in general,
very expensive and data representing the animators’
movements might be hard to be used for animating

∗Corresponding author Andrea Sanna. Email: andrea.sanna@polito.it

non-anthropometric characters (even if a solution to
partially cope with this latter limitation has been
proposed in [4]).

The goal of this paper is to automatically map the
skeleton of the animator onto the armature of any
virtual character, thus relaxing any possible constraints
related to the armature topology to be animated.
This task has been manually addressed in a number
of previous works, such as [5] [6] and [7]. Manual
association (mapping) can be a time consuming and
difficult task, since only skilled animators are generally
able to immediately identify the best match.

This work proposes and compares two different
solutions that aim to find an efficient mapping of
the human skeleton onto virtual character armatures.
Exploiting graph similarity criteria, user preferences,
motion constraints and information about the armature
topology, the skeleton of the animator can be mapped
onto the character armature bones both by a direct
mapping and by a mapping of the end-effectors. The
first solution (already presented in [8]) can be used
when the character is animated by forward kinematics
and the number of bones of the virtual character does
not exceed the number of bones tracked by the mocap
system. On the other hand, end-effectors are considered
when the character is animated by Inverse Kinematics
(IK); an end-effector is a bone on which the movement
is applied, then the position of all the other bones

1

EAI Endorsed Transactions
on Creative Technologies Research Article

Received on 16 April 2014, accepted on 05 May 2014, published on 27 February 2015

Copyright © 2015 Andrea Sanna et al., licensed to ICST. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/ct.2.2e6

EAI Endorsed Transactions on
Creative Technologies

01-02 2015 | Volume 2 | Issue 2 | e6

A. Sanna et al.

of the kinematics chain is updated automatically by
an IK solver in order to place the end-effector in the
selected position. Users can choose whether control
a character by forward or inverse kinematics and
then accept/reject/modify the association that has been
automatically found.
The current implementation uses armatures defined

in Blender [9] and the Microsoft Kinect sensor [10]
as motion capture device. Nonetheless, the proposed
methodology is general and it could be easily extended
to any other tracking system. A mapping between the
human skeleton tracked by the Kinect and the Blender
armature allows the devised methods to translate
the local movements of human skeleton bones into
translations and rotations of the associated armature
bones. In this way, a real-time markerless motion
capture system for digital puppetry with generic
characters is actually implemented.
The paper is organized as follows: Section 2

briefly reviews other approaches that have been
designed to map a human skeleton onto a virtual
character armature. Section 3 presents the first solution
(which implements a direct mapping in forward
kinematics) and shows how the similarity scores in
the mapping matrix are computed. Section 4 proposes
some applications of the matching algorithm to non-
anthropometric virtual characters. On the other hand,
Sections 5 and 6 present the solution based on the
inverse kinematics and some examples, respectively.
User feedbacks are presented in Section 7 where an
assessment of both solutions is presented. In order to
help reader to better understand automatic mapping
algorithms, some mathematical steps, applied to a
reference character, are also presented in the Appendix.

2. Background
Several works are known in the literature that propose
solutions to use a performer as a sort of controller for
animating virtual characters. Anthropometric limbs are
interactively controlled by inverse kinematics in [11];
in this case, only sub-parts of the whole skeleton can be
animated independently, thus this approach might be
unable to cope with constraints that require the whole
body to be animated. All body parts are considered in
[12], where the main goal is to map the movements
made by a performer onto an animated character
by only considering constraints on the end-effectors,
thus animating only by the inverse kinematics. An
extension targeted to the control of non-anthropometric
characters is proposed in [13]; an intermediate skeleton
with less degrees of freedom is used and the remaining
degrees of freedom are computed analytically in [13].
The above works basically relies upon specific

representations of motion (e.g., through simplified
skeletons). A comparable approach is also used in

[14], where a data structure especially dedicated to
motion adaptation is proposed. Moreover, in all the
works considered, the focus is mainly on human-like
animation.
Generic-shape characters are considered in a recent

and impressive work [15]. The solution proposed in
[15] allows animators to directly set a mapping between
their own skeletons and the mesh of the object to be
controlled. The character mesh is segmented from the
background; then, the body of the animator is embedded
to position vacated by the object. By a vocal command,
limbs of the animator are attached to the parts of the
mesh the body overlaps. These attachments serve as
constraints for the deformation model that is inspired
by the Embedded Deformation method proposed in
[16].
Another solution proposing the animator as a direct

controller of a virtual character has been presented in
[17]. As [18], the solution proposed in [17] combines
different feature mapping functions together with an
intelligent blend scheme in order to generate highly
realistic output motions. In particular, some features
of the animator body are directly used by a direct
mapping to animate the character, whereas another
stage of motion classification allows the system to
identify frames of pre-set clips of the virtual character
to be blended with the direct mapping motion.
The approach proposed in [19] is tailored for non-

humanoid characters. The motion of the animator is
gathered and analyzed. The basic idea is to compare,
by a statistical mapping function, a small set of
corresponding key poses in order to define a mapping
between the motion of the animator and the virtual
character. Therefore, this approach is not completely
automatic as a set of poses for the character has to be
defined; moreover, it is not aimed to obtain a real-time
puppetry animation.
This paper extends and improves the work presented

in [8]. In [8], only an automatic mapping for armature
controlled by forward kinematics was presented: this
part is reviewed in Sections 3 and 4; on the other
hand, the solution presented in [8] is not able to
cope with armatures composed by a number of bones
larger than the animator’s one. The present manuscript
tackles this issue and presents a second automatic
mapping algorithm, which is based on the animation
of end-effectors by inverse kinematics. Moreover, both
automatic mapping techniques are evaluated in this
paper; user tests have been performed in order to gather
subjective and objective user feedbacks.

3. The first solution: a direct skeleton mapping
The first technique to map the skeleton of the animator
onto an armature of a virtual character is shown
in Figure 1. Basically, different blocks contribute to

2 EAI Endorsed Transactions on
Creative Technologies

01-02 2015 | Volume 2 | Issue 2 | e6

Virtual Characters Animation

Figure 1. The first mapping algorithm described by a flow-chart.

compute a score matrix; coefficients of this matrix are
used to automatically map the human skeleton onto the
Blender armature. A set of parameters/constraints are
considered:

• topology details (e.g., node-edge similarity);

• motion constraints (related both to the animator
and the character to be animated);

• length of kinematic chains;

• symmetries of the armature.

Moreover, user preferences can be exploited to force
some mappings, thus possibly overriding the above
mentioned criteria (e.g., arms might be favorite with
respect legs, and so on).

3.1. Graph representation
The first step of the mapping algorithm considers both
the human and the virtual character skeletons. The
Microsoft Kinect used as mocap device in this work
provides tracking data containing information related
to the center of mass and the position of each of
the twenty joints of the captured skeleton. Moreover,
a status information is associated with each joint: it
indicates whether the joint position is being tracked
or inferred (which happens when the Microsoft Kinect
cannot see this point and tries to accurately guess it
on the basis of information from previous frames and
neighboring joints). Joints tracked for the skeleton are
split into three main sections:

Figure 2. The skeleton extracted by the Kinect application: 20
joints are tracked.

1. the central area, containing the head, the neck, the
spine and the hip center;

2. the arms, containing for each arm the shoulder,
the elbow, the wrist and the hand;

3. the legs, containing for each leg the hip, the knee,
the ankle and the foot.

The skeleton extracted by the Kinect application is
shown in Figure 2. The Kinect application is connected
by a socket to the Blender Game Engine (BGE): a
Python script receives joint data and translates them
into valid transformations for controlling the armature
of the virtual character. A bone-to-bone mapping is
performed; in other words, the position/rotation of
a bone tracked by the Kinect is used to set up
the position/rotation of a well defined bone of the
character armature (for more details about the software
architecture see [5]).
Blender armature is also analyzed: the starting

point is the root bone. This step describes the
armature as a sort of graph where bones are associated
to nodes/vertices and relations between bones are
considered as arcs/edges. The graph can be represented
by an adjacency matrix [20]; given a graph GA, GA =
G(VA, EA) where VA are the vertices and EA are
the edges, if the cardinality of VA is na, then the
adjacency matrix A of this graph is a na × na matrix
in which entry [A]ij is equal to 1 if and only if
(i, j) ∈ EA, 0 otherwise. The adjacency matrix of an
undirected graph will always be symmetric. Another
useful graph representation is obtained by means of
pair of matrices called edge-source matrix As and edge-
terminus matrix At . This representation allows self-
loops to be considered in the graph [20]. Let sA(i) denote
the source of edge i, and let tA(i) denote the terminus of
edge i. Then As and At can be defined as follows:

[As]ij =

1 if sA(j) = i

0 else

3 EAI Endorsed Transactions on
Creative Technologies

01-02 2015 | Volume 2 | Issue 2 | e6

A. Sanna et al.

[At]ij =

1 if tA(j) = i

0 else

The graph representation given by As and At has the
following properties:

• the adjacency matrix A is equal to AsA
T
t ;

• AsA
T
s is equal to a diagonal matrix DAs

with the
out-degree (i.e., the number of outgoing edges) of
node i in the i-th diagonal position;

• AtA
T
t is equal to a diagonal matrix DAt

with the
in-degree (i.e., the number of incoming edges) of
each node in the corresponding diagonal entry.

3.2. Node-edge similarity scores
Describing armatures as graphs allows the automatic
procedure to assign a similarity score between pairs
of nodes belonging to two different graphs (e.g,
armatures); in this way, a match between two bone
configurations (i.e., the skeleton extracted by the Kinect
application and the Blender armature) is possible from
a mathematical point of view. The applied similarity
criterium considers both node and edge similarity as
proposed in [20].
Given two graphs GA and GB, a simple way to give

a definition of an edge score is: an edge in GB is like
an edge in GA if their source and terminal nodes are
similar, respectively. A is the adjacency matrix of GA
and B the adjacency matrix of GB. DAs

, DAt
and DBs

,
DBt

are the diagonal matrices containing the out-degree
and the in-degree values of every node in GA and GB,
respectively.
By iterating an certain number of times (usually, a

satisfactory convergence is obtained with 11 iterations
[20]) equation (1), a n ×m scores matrix X is obtained,
where n is the total number of bones in the Blender
armature and m is the number of bones in the Kinect
skeleton.

xk ←− (A ⊗ B + AT ⊗ BT +DAs
⊗DBs

+DAt
⊗DBt

)xk−1.
(1)

The symbol ⊗ represents the Kronecker’s matrix
product, k the k-th iteration and xk a column
vector obtained by concatenating the columns of the
scores matrix X. The iteration method presented well
recognizes nodes that are very similar and provides
good results if one of the two graphs is a subgraph of
the other one.
A topological similarity is not sufficient to denote

how two skeletons/armatures are similar, thus other
parameters have to be taken into account.

3.3. Motion constraints scores
Bone motion constraints are another important param-
eter to be considered in the score matrix generation: the

mapping technique should select pairs of bones that
exhibit similar degrees of freedom. For example, it is
easier to control a virtual segment exhibiting a high
degree of freedom by means of a hand rather than with
the spine. Constraint similarity is taken into account by
assigning a penalty proportional to the different degree
of freedom of each pair of bones; moreover, if two bones
have completely different movement types, their score
is set in the matrix X in such a way that they cannot be
matched. Motion constraints scores are added to node-
edge similarity scores (see Figure 1).

3.4. Length of paths scores
Length of kinematics chains are another parameter to
be taken into account: sub-chains of similar length
of the human skeleton and of the virtual armature
character should have a greater mapping score than
not similar long paths. A sort of bonus is added (see
Figure 1) to the score of all those bone pairs that share
the same position in a chain starting from the bone
root. The bonus is added to enhance the probability
of mapping a bone of the virtual character, place in a
well given position of the chain, onto a bone placed at
the same (or similar) position in the human skeleton.
Updating the matrix of scores according to this criterion
brings another advantage: the probability of mapping
sequential bones in a chain by respecting the natural
rank order is implicitly increased.

3.5. Symmetries scores
Armatures can exhibit some kind of symmetry; for
instance, parts of the body of animals (e.g., legs) can
be subdivided into small groups. On the other hand, a
main symmetry in the human skeleton can be obtained
by splitting left parts from right parts. This kind of
symmetry can be present also in Blender armatures
where bones are labeled by the suffix “.L” or “.R” to
denote left and right parts with respect to the spine,
respectively. By searching for the bones containing
“.L” or “.R” in their names, it is possible to force a
mapping of these bones onto the corresponding parts
of the human body. The skeleton tracked by the Kinect
application is already split in five groups: body, left
arm, right arm, left leg and right leg. Depending on
the bone type in Blender, the search space is reduced
to a few groups that compose the Kinect skeleton. In
this way, the left part of an armature will be always
mapped onto the left arm or the left leg of the animator
and the right part of the armature onto the right arm or
leg. Scores can assume the following values: 0 (to avoid
mapping a bone in the left part onto a bone in the right
part and vice versa), 1 (to leave unchanged the score of
bones not related to symmetries, like the spine bones)
and 2 (to force left part bones to be mapped onto left

4 EAI Endorsed Transactions on
Creative Technologies

01-02 2015 | Volume 2 | Issue 2 | e6

Virtual Characters Animation

part bones and vice versa). Symmetries scores multiply
the previously obtained scores recorded in the matrix.

3.6. Evaluation component: Hungarian algorithm
In order to identify the best matching between two
graphs, the node pairs with the highest scores in the
matrix, according to a certain evaluation criterion, have
to be found. This problem is known as the maximum
weight bipartite graph matching problem. A common
algorithm for identifying such a maximumweight is the
Hungarian algorithm, described in [21]. In the proposed
technique, the Hungarian algorithm is applied to the
scores matrix to obtain a matching between the nodes
of the graph representing the Blender armature and the
nodes of the graph representing the Kinect skeleton,
which maximizes the sum of squared matched scores.
Thus, for each bone in the Blender armature, the Kinect
bone it will be mapped onto is obtained.

3.7. Preferences
Preliminary tests that considered all the above
mentioned criteria in order to generate the score
matrix outlined how the resultingmapping can propose
users to use some parts of the Kinect skeleton (e.g.,
the shoulders) which are very difficult to control
for animating characters. This issue has been tackled
by adding user’s preferences to the overall mapping
strategy.
If some armature bones are mapped onto the arms,

forearms or hands are preferred to the shoulders. Of
course, any other preferences could be coded in the
matrix. Furthermore, the user can choose to avoid the
mapping of the possible unused parts belonging to a
mapped arm. The same approach is applied for the legs.
After the application of the preferences, the Hungarian
algorithm is used again to assign all the other unused
bones.

4. Experimental results: forward kinematics
Three non-anthropometric characters (a Pixar-like
lamp, a fish and a dog) have been used to the the
first mapping technique. Blender armatures have been
mapped onto the human skeleton extracted by the
Kinect application and results are shown in Figures
3, 4 and 5, respectively. The kinematics chain of the
lamp is mapped part onto two bones of the left arm
(bones 1 and 2) and part onto three bones of the right
arm (bones 3, 4 and 5). Arms are selected here, since
their preferences score is the highest one (see Section
3.7). A completely different mapping has been obtained
for the fish. In this case, it can be noticed how the
symmetry (see Section 3.5) related to the fins is taken
into account for mapping bones 4 and 5 on the right
arm and bones 6 and 7 on the left arm. Since bones

Figure 3. Mapping of the human skeleton onto the armature used
to animate a Pixar-like lamp (a video is available at http://

youtu.be/iEuT7pzdMqw).

Figure 4. Mapping of the human skeleton onto the armature
used to animate a fish (a video is available at http://youtu.
be/v1mMtAgFhzQ).

Figure 5. Mapping of the human skeleton onto the armature
used to animate a dog (a video is available at http://youtu.
be/cQIKeOAwN24).

1, 2 and 3 are topologically similar to the spine of
the human skeleton, they are mapped onto it. The
computation of mapping scores is detailed, for this
character, in the Appendix. The dog armature is the
most complex one among the three considered. Again,
because of topological similarity, the spine of the dog is

5 EAI Endorsed Transactions on
Creative Technologies

01-02 2015 | Volume 2 | Issue 2 | e6

A. Sanna et al.

Figure 6. Flow-chart of the second mapping algorithm.

mapped onto the spine of the human skeleton (bones
1, 2 and 3). The symmetry is used to map the left
parts of the skeleton onto the left parts of the armature
and vice versa. Moreover, still because of topological
similarity, the arms aremapped onto the front paws (the
tail makes the similarity score for the back paws, with
respect the skeleton arms, lower than the front paws).
In this case, the user can choose to obtain a mapping
also for the head and the tail or, as shown in the Figure
5, to leave these two bones unmapped as the five main
kinematics chains of the skeleton have been already
(even if not completely) used.

5. The second solution: a direct mapping of the
end-effectors
The solution shown in Section 3 presents a main
drawback: it is impossible to cope with armatures
including a number of bones larger than the one
provided by the tracking device. Unmapped bones
cannot be animated (e.g., the dog’s head of the
previous example: the bone N. 4 is unmapped and the
dog’s head cannot be animated). In this case, forward
kinematics cannot be used for the mapping, unless
the target armature is reduced by collapsing pairs of
bones. In order to control a chain of bones by the
inverse kinematics it is necessary to consider the end-
effectors (EEs) and update, by a IK solver, positions and
orientations of all the other bones of the chain. Multiple
solutions are generally possible and constraints are used
to “help” the solver in order to find the best solution.

Therefore, before to start the mapping step, all possible
end effectors for an armature model have to be found.
The armature is explored by starting from the root bone;
following all possible chains it is possible to obtain all
the paths forming the whole armature. Each of these
paths should be animated in order to provide a realistic
motion, thus one end effector has to be identified for all
of the paths. The best choice is to take the terminal bone
of a chain as the end effector, as moving the terminal all
the other bones of the chain will be animated.
When the end-effectors have been identified, a

suitable mapping for a human animator has to be
found. It has been assumed that the skeleton provided
by the Microsoft Kinect could have a maximum of five
control points (CPs) able to drive kinematics chains:
the head, the two hands and the two feet. At the
next step, the best association between end-effectors
of the character and control points of the animator
has to be determined. Through the use of similarity
scores calculated by the graph similarity theory, it
is possible to evaluate each combination EE-CP, thus
identifying the highest score. The similarity score is
not only the similarity between two bones, but it also
depends on all the other similarity scores of the bones
connected to them (as illustrated in the coupled node-
edge scoring of the graphs similarity theory). It results
to be very suitable for character animation, as the
algorithm aims to maximize the similarity of the human
part (corresponding to a control point) with a chain
of bones (corresponding to an end-effector). When the
best scored combination is found, the corresponding
control point is labeled as "no longer available" and the
algorithm iteratively considers the next best pair EE-CP.
When the control points are terminated, two events can
occur: 1. there are not other EEs to be mapped, that is,
the mapping is complete. 2. other EEs are not mapped
and the 5 control points have been already assigned.
The event 2 can be managed only by grouping two (or
more) EEs under the influence/control of amaster bone.
In this case, the algorithm has to be able to retrieve
bones controlling multiple EEs; this can happen when
an animator wants to force the animation of multiple
model parts with a single EE (see for instance Figure
8 where both wings are controlled by a master bone).
In this case, the score of a master bone is determined
by averaging scores of the EEs it controls. The complete
flow chart of the second mapping algorithm is shown in
Figure 6.

6. Experimental results: inverse kinematics
This section shows the application of the second
mapping algorithm to three non-anthropomorphic
characters (a seagull, a snake and an ostrich). Moreover,
for the seagull model, both the application without
master bones and with a master bone controlling both

6 EAI Endorsed Transactions on
Creative Technologies

01-02 2015 | Volume 2 | Issue 2 | e6

Virtual Characters Animation

Figure 7. Mapping of the human skeleton onto the armature
used to animate a seagull model(a video is available at http://
youtu.be/KL55NuRKQAk).

Figure 8. Mapping of the human skeleton onto the armature
used to animate a seagull model with master bone controlling
two end-effectors (a video is available at http://youtu.be/

qaqP3za2dJM).

the EEs of the wings have been tested. Results are shown
in Figure 7, 8, 9 and 10, respectively. In the seagull
armature (see Figure 7) there are six different chains of
bones and six corresponding EEs. This armature is very
similar to the human one, apart the presence of an extra
segment (the tail). The proposed system maps the head
(end-effector 1) onto the human head, the twowings (EE
2 and 3) onto the two arms, the paws (EEs 4 and 5) onto
the legs and the tail (EE 6) is unmapped. A different
mapping is obtained considering the seagull model
where a master bone to control both wings has been
inserted (Figure 8). In this case the five end effectors
are mapped onto each animator control point. The head
of the seagull (EE 1) is assigned to the animator head,
the master bone controlling the wings is mapped onto
one hand, the two paws (EEs 3,4) are matched with
the two legs and the tail (EE 5) is animated with the
other hand. A completely different mapping is obtained
for the snake model. The armature is formed by two
chains of bones: one for the body and the head and
one for the tail. The resulting mapping is as follows:
the snake head (EE 1) is associated with the right hand
and the snake tail (EE 2) is mapped onto the left hand.

Figure 9. Mapping of the human skeleton onto the armature used
to animate a snake model (a video is available at http://youtu.
be/1ROz0mNgt8g).

Figure 10. Mapping of the human skeleton onto the armature
used to animate an ostrich model (a video is available at http://
youtu.be/sM_ZiHVHFtY).

The last character is an ostrich model. Its armature
configuration is not complex and it includes two chains
of bones for the legs and a long chain composed by
many bones for the body, the neck and the head. The
two paws (EEs 2 and 3) are mapped onto the two
animator’s legs, whereas the body-neck-head part (EE
3) is controlled by the right hand of the animator.

7. User feedbacks
In order to validate proposed automatic mapping
algorithms, 10 students of the Computer Animation
course of the Master of Science degree in Computer
Science at Politecnico di Torino have performed some
tests. The main goal was to compare the proposed
mapping strategies with manually selected mappings,
thus focusing the analysis on how good and useful are
the proposed hints and how automatic mappings can
help the user to efficiently animate virtual characters.
Two different models have been chosen for the

tests. The lamp model has been selected to be
animated by forward kinematics, whereas the ostrich
model to be animated by inverse kinematics. The two
models have been chosen for their particular armature

7 EAI Endorsed Transactions on
Creative Technologies

01-02 2015 | Volume 2 | Issue 2 | e6

A. Sanna et al.

configurations and consequently for the large number
of mappings that could be associated to eachmodel; this
allows students to find the mapping that better fits their
preferences. Students had to set their own mappings
between the Kinect skeleton and the armature of virtual
characters, then they were asked to animate models by
using the chosenmapping and subsequently to retry the
animation by using the automatic mapping. Students
had to animate the lamp and the ostrich reproducing
some very simple motions presented by two reference
videos.
After the animation step, students evaluated some

characteristics of mappings such as: intuitiveness,
usability, difficulty to be retrieved and so on. Moreover,
the time necessary to manually define a mapping has
been also measured. Tests have shown as an average
time of 48s has been measured for the lamp and 33s
for the ostrich. Taking into account that these models
are composed by a limited number of bones, the initial
step of mapping definition might be much more time
consuming for complex model armatures. Furthermore,
a careful mental effort and a good model analysis were
required to students in order to reach a satisfactory
mapping.
For the lamp model test, for which students were

asked to find a direct mapping for each bone belonging
to the armature, exactly half of students have preferred
the automatic mapping (the technique proposed in
Section 3), whereas the other half have preferred their
personal mapping in terms of ease of use. Then,
it was asked students to evaluate the intuitiveness
of mappings providing a grade in a range between
1(lowest rate) to 7(highest rate). It was found that the
students have better evaluated the automatic mapping
(an average rate of 4,7) respect their mapping (an
average rate of 4,2). For the ostrich test, to be animated
by inverse kinematics, students were asked to find a
mapping for the three possible end-effectors (head,
left paw, right paw). In this case, only two students
have preferred their mapping, whereas the others have
preferred the automatic one (the technique presented
in Section 5) or have given an equal preference. Also
the intuitiveness of the suggested mapping was better
evaluated than the one chosen by the students (5,6
for the automatic mapping versus 5,3 for the manual
mapping).
Another interesting factor to be analyzed is how

many manual mappings were similar (or exactly the
same as) the suggested one. Considering the two tests
aggregated, about the 22% of students selected a
mapping completely identical to the one automatically
provided, whereas the 89% have identically defined
the mapping of at least one bone (or end-effector).
Generally, the 56% of the bones to be mapped have
received the same point of control than the one
automatically provided. In conclusion, it was studied

the user satisfaction and the personal opinion about
the automatic mapping. Approximately all the students
have said that the automatic mapping could be useful
for animating a model and about the 55% of them has
said that would have defined a different mapping after
the usage of the automatic one.

8. Conclusion and future works
This paper presents two automatic procedures to map
the human skeleton captured by a tracking system (the
Microsoft Kinect, in the proposed implementation) onto
the armature of a virtual character to be animated.
Proposed solutions are able to efficiently tackle issues
related to the control of non-anthropometric characters
by taking into account topological similarity scores as
well as other parameters such as motion constraints,
kinematics chains length, user preferences and so forth.
Both skilled animators and, above all, an audience with
little or no experience in computer animation could
take advantage of the devised approach. The step of
mapping the animator’s skeleton onto the armature of
the character to be animated is efficiently automated,
thus reducing time losses and frustrating attempts.
User feedbacks have been also gathered and they

show how proposed solutions well fit user expectations,
thus they can be considered as a valuable alternative
to manual mappings, which require both time to be
correctly defined and skills of an expert animator.
Several other open problems need to be further

investigated. At the moment, all approaches known in
the literature try to migrate the humanmotion toward a
corresponding/similar motion of the virtual character;
on the other hand, other forms of mapping could be
considered in order to move toward a context awareness
animation.

Appendix A. Mapping process for the fish character
This Appendix provides the details of the mapping
process for the fish character. Figure A.1 shows the
two matrices produced by the node-edge similarity and
the motion constraints blocks, respectively. Matrices
have n = 7 rows (corresponding to the number of bones
in the Blender armature for the fish) and m = 17
columns (corresponding to the number of bones in the
human skeleton). A value in position i, j of the node-
edge similarity scores matrix represents the similarity
between bone i in the Blender armature and bone j
in the Kinect skeleton. The motion constraints score
matrix penalizes bones by a value that is proportional
to the difference between their degrees of freedom; for
instance, bone 2 in the fish armature cannot have the
same type of rotational movement of bone 1 in the
Kinect skeleton. Hence, the mapping of this pair of
bones is penalized by a factor −0.067. The left matrix of
Figure A.2 represents the length of paths scores, which

8 EAI Endorsed Transactions on
Creative Technologies

01-02 2015 | Volume 2 | Issue 2 | e6

Virtual Characters Animation

Figure A.1. The left matrix shows the node-edge similarity scores, whereas the right matrix holds the motion constraints scores.

Figure A.2. The left matrix contains the symmetries scores, whereas the right matrix hosts the length of paths scores.

Figure A.3. The resulting scores matrix (left) and the updated scores matrix (right) after the application of preferences.

add a bonus to bone pairs that share the same position
in a chain. The three matrices above are added together
and then multiplied by the symmetry scores matrix
(see the right matrix of Figure A.2). The symmetries
scores matrix avoids (values 0) the matching of bones
placed in armature parts with a different symmetry
and amplifies the values of bones in the correct
parts (values 2). The highlighted values in the final
scores matrix are those selected by the Hungarian
algorithm to produce the mapping (see the left matrix
of Figure A.3). In the last step, bones are matched
by also considering preferences. The remaining bones
are mapped by applying the Hungarian Algorithm
to an updated matrix. In fact, after the evaluation
of preferences, the final scores matrix is updated by
setting positions corresponding to mapped bones to a
negative value. Highlighted values are those selected
at the second application of the Hungarian Algorithm.
The right matrix of Figure A.3 shows the updated scores
matrix.

References

[1] Burtnyk, N. and Wein, M. (1971) Computer
generated key frame animation Journal of the Society
of Motion Picture and Television Engineers vol. 8,
no. 3, pp. 149-153.

[2] Burtnyk, N. and Wein, M. (1976) Interactive
skeleton techniques for enhancing motion dynamics in
key frame animation Communication of the ACM
vol. 19, no. 10, pp. 564-569.

[3] Menache, A. (2000) Understanding motion capture
for computer animation and video games Morgan
Kaufmann, New York.

[4] Gleicher, M. (1998) Retargeting motion to new
characters In Proceedings of the ACM Siggraph’98,
pp. 33-42.

[5] Sanna, A. and Lamberti, F. and Paravati, G.

and Domingues Rocha, F. (2013) A Kinect-based
Interface to Animate Virtual Characters International
Journal of Multimodal User Interfaces. vol. 7, pp.
269ï£¡279, DOI 10.1007/s12193-012-0113-9.

[6] The Bloop project, http://dm.tzi.de/research/hci/bloop
[7] The Brekelmans Jasper web site,

http://www.brekel.com
[8] Sanna, A. and Lamberti, F. and Paravati, G. and

Carlevaris, G. and Montuschi, P. (2013) Automat-
ically mapping human skeletons onto virtual charac-
ter armatures Proceedings of the 5th International
Conference on Intelligent Technologies for Interac-
tive Entertainment, 2013, pp. 80-89.

[9] The Blender project, http://www.blender.org
[10] The Kinect web site,

http://www.xbox.com/kinect/
[11] Tak, S. and Young Song, O. and Ko, H.S.

(2002) Spacetime sweeping: An interactive dynamic
constraints solver In Proceedings of the Computer
Animation, IEEE Computer Society, pp. 261.

[12] Shin, H.J. and Lee, J. and Shin S.Y. and Gleicher

M. (2001) Computer puppetry: An importance-based
approach ACM Trans. Graph. 20, 2:67ï£¡94.

[13] Monzani, J.S. and Baerlocher, P. and Boulic, R.

and Thalmann, D. (2000) Using an intermediate
skeleton and inverse kinematics for motion retargeting
Computer Graphics Forum 19, 3.

[14] Kulpa, R. and Multon, F. and Arnaldi, B. (2005)
Morphology-independent representation of motions
for interactive human-like animation In Computer
Graphics Forum, vol. 24, pp. 343ï£¡352.

[15] Chen, J. and Izadi, S. and Fitzgibbon, A. (2012)
KinÊtre: animating the world with the human body

9
EAI Endorsed Transactions on

Creative Technologies
01-02 2015 | Volume 2 | Issue 2 | e6

A. Sanna et al.

ACM SIGGRAPH 2012 Talks, pp. 39:1-39:1, DOI
10.1145/2343045.2343098.

[16] Sumner, R.W. and Schmid, J. and Paulty, M. (2007)
Embedded deformation for shape manipulation In
Proceedings of the ACM Siggraph’07.

[17] Seol, Y. and O’Sullivan, C. and Lee, J. (2013)
Creature Features: Online Motion Puppetry for
Non-human Characters Proceedings of the 12th
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 2013, pp. 213-221.

[18] Ishigaki, S. and White, T. and Zordan, V.B. and
Liu, C.K. (2009) Performance-based Control Interface
for Character Animation ACM Trans. on Graph. vol.
28, no. 3.

[19] Yamane, K. and Ariki, Y. and Hodgins, J.

(2010) Animating Non-humanoid Characters with
Human Motion Data Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 169-178.

[20] Zager, L. (2005) Graph Similarity and Matching
Department of Electrical Engineering and Com-
puter Science, Massachussets Institute of Technol-
ogy.

[21] Andràs, F. (2004) On Khun’s Hungarian method -
a tribute from Hungary. Egervàry research Group on
Combinatorial Optimization Technical report, TR-
2004-14. http://www.cs.elte.hu/egres/tr/egres-04-
14.pdf

10 EAI Endorsed Transactions on
Creative Technologies

01-02 2015 | Volume 2 | Issue 2 | e6

