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Abstract

This paper provides a classification of calibration methods for cameras and projectors. From basic homography
to complex geometric calibration methods, this paper aims at simplifying the choice of the methods to perform
a calibration regarding the complexity of the setup.
The classical camera calibration methods are presented. A comparison gives the pros and cons for each
method.
For the projector calibration, the homography, the structured light methods and the geometric calibration are
presented. Every general approach for the projector calibration is studied and the limitations of each method
are given. Each approach is described through the main reference method. A classification of each projector
calibration approach is given.
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1. Introduction
Video projectors are initially designed to make simple
projections on smooth flat walls or screen surfaces.
However, a variety of applications need projections on
more and more complex surfaces which may also be in
movement. Thus projections on buildings (mappings),
on tables and complex objects, on moving objects and
even on people bring novel experiences and interfaces
into our lives.

Those applications need complex projections on
moving objects or complex surfaces and outdoor
or indoor setups. In addition, for most of the
applications a single video projector is not enough
and several projectors must be used together to
cover the whole projection area. Those new uses of
video projectors imply different projector calibration
techniques depending on the use case. In the last years,
number of new calibration methods were published
having different interesting features.

In this paper, we present a classification of the
state of the art of the calibration techniques. The goal
is to provide useful information for both specialists
and simple users (like people from industry or artists
who need those techniques for their applications
like mappings on buildings or novel HCIs). For that
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purpose, we focused on describing for each family of
methods the main reference without listing all the
references which propose slight modifications of those
methods.

In section 2, we present an overview of camera and 
projector calibration. In section 3, we present classical 
camera calibration methods. In section 4, we present a 
classification of the state-of-the-art approaches which is 
very useful to chose a method depending on the needed 
installation setup (in terms of difficulty or how much 
automatic it is) and depending on the features needed 
(projection on a plane or a complex surface, on a moving 
object or a static surface). In section 5, we discuss the 
validation of those methods and we finally conclude in 
section 6.

2. Camera/Projector model
The calibration process is an estimation of the
parameters of a model representing the camera or the
projector. In the case of camera or projector calibration,
the standard model is the so-called "pinhole model".
The pinhole model is described more in-depth in [1].
A video projector mathematically differs from a camera
only in the light ray direction[2], so the pinhole model
can describe (at a sign difference) both cameras or video
projectors. It is mathematically described by equation
1.
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x ∼ P Xworld = K[R|t]Xworld (1)

In this equation, x(u, v, 1) is the pixel position in
the projected 2D image and Xworld(X, Y , Z, 1) is a 3D
position where the pixel x lights up. The matrix K is
called the projector calibration matrix. It is defined by:

K =

 fu 0 u0
0 fv v0
0 0 1

 (2)

where fu ,fv are the focal lengths in the u and v
directions respectively and (u0, v0), the principal point
coordinates. The focal length is the distance between
between the image plane and the camera center. The
principal point is the intersection between the optical
axis (z axis) and the image plane. [R|t] is the "pose" of
the projector and represents the transformation (change
of coordinates frame) from the world to projector
coordinates. This transformation is composed of a
rotation R and a translation t. The pinhole model can
be extended to take into account the lens distortions.

3. Classical camera calibration methods
In this section, we will discuss the standard camera
calibration methods: DLT [1], Tsai [3], Heikkila [4] and
Zhang [5].

3.1. Direct Linear Transform (DLT)
Idea. The Direct Linear Transform is the straight for-
ward solution to the calibration problem. The algorithm
builds an equation system from the fundamental equa-
tions of the pinhole model (eq. 1). The system of the
form Ax = 0 is solved with a least squares method.

More details. A cross product of each term of equation
1 gives:

xi × PXi =


yiP

3TXi − wiP
2TXi

wiP
1TXi − xiP 3TXi

xiP
2TXi − yiP 1TXi

 = xi × xi = 0 (3)


0T −wiX

T
i yiX

T
i

wiX
T
i 0T −xiXT

i
−yiXT

i xiX
T
i 0T


 P 1

P 2

P 3

 = 0 (4)

In this equation, X is a 3D coordinate in the world
coordinate frame and x (x, y, w) is the coordinate of
its projection on the image plane. PiT is the ith
line of P and 0T is the null vector. P has twelve
parameters but only eleven are independent. Indeed,
the matrix P is homogeneous and only the ratio between
each value is important [1]. A set of correspondences
between 3D coordinates and their 2D projection gives
(BLUB) a system of equations that is solved with the
singular value decomposition (SVD). To retrieve the
correspondences, a 3D pattern is used.

From P to K[R t]. Two methods exist to decompose
P into K and [R t]. The first method uses directly the
result of the matrix product K[R t].

P =

 fxr1 + u0r3 fxtx + u0tz
fyr2 + v0r3 fyty + v0tz

r3 tz


r3 = p3
u0 = pt1p3

fx =
√
pT1 p1 − u2

0

tx = (p14 − u0tz)/fx
r1 = (p1 − u0r3)/fx

tz = p34
v0 = pt1p3

fy =
√
pT2 p2 − v2

0

ty = (p24 − v0tz)/fy
r2 = (p2 − v0r3)/fy

(5)
The second approach is based on the QR decomposi-

tion of P [1]. QR decomposition breaks a matrix into a
upper triangular matrix Q and a rotation matrix R. We
have

P = K[R|t] = [KR|Kt] = [M |Kt]

where M is the product of K, an upper triangular
matrix, and R, a rotation matrix. If we apply QR
decomposition on M, we retrieve K and R. The
translation vector is found from the last column of P .

t = K−1P4

Procedure. The calibration needs the combination of
pixel and 3D coordinates to be performed. Most of the
time, a 3D pattern, like a cube shown on figure 1, is used
to acquire the set of correspondences. While a single
capture give the calibration, more correspondences
from other points of view lead to a better accuracy.

3.2. Tsai and Heikila: two evolutions of the DLT
algorithm
The algorithm proposed by Tsai [3] is based on a
modification of the basic equations of the pinhole
model. Tsai introduces a term to model the distortion.
In order to maintain the linearity of the equations,
only the radial part of the distortion is modelled. A
Levenberg-Marquard non linear optimization is used
only for f, tz, k1 et k2.

Imposing the principal point as known simplifies the
calibration problem. We will discuss the impact of this
hypothesis on the projector geometrical calibration in
section 4.3.

This method offers a solution to the calibration based
on a set of coplanar points or non coplanar 3D points.
Both algorithms are slightly different and the next
section will focus on the general method.

The algorithm is decomposed in two steps. The first
estimates the matrix R, tx, ty and sx. The second retrieve
f , tz. Finally, a non linear optimization is applied to
refine the values of f, tz, k1 and k2, the initial value of
k1 and k2 being fixed to zero.
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Figure 1. Non planar pattern used to calibrate a camera with
Heikkila’s method (image credits [4])

Heikkila has improved the DLT by introducing a
global optimization and the estimation of the distortion
coefficients. It is decomposed into four steps:

DLT the linear solution to calibration problem pre-
sented in section 3.1.

Non linear optimization A Levenberg Marquardt
least-squares optimization method is applied to
reduce the reprojection error, the error between
the measured 2D points and the reprojected 3D
points using the estimated model.

Solution refinement The parameters are refined to
align the circle center of the pattern used to
retrieve 2D |3D correspondences.

Distortion the radial and tangential components of the
lens distortions are estimated.

The calibration method needs a non planar pattern to
perform (fig. 1). One view of the pattern is sufficient to
calibrate but the addition of views increases the results
accuracy.

3.3. Zhang’s method
Zhang’s algorithm is currently the most popular for the
camera calibration. The method uses a plane to achieve
the camera calibration. The standard pattern used is
a chess board. Indeed, the size of each square of the
chess board is easily measured and the the pattern itself
is easily automatically detected. Moreover, the method
gives good results and the calibration process is simple.

Zhang’s algorithm can be seen as a particular case
of the planar autocalibration problem [6, 7]. Triggs
[6] showed that without assuming the 3D coordinates
known, the inter-image homographies are sufficient to
perform the calibration.

Idea. A homography can be calculated between the
image plane and the pattern. This homography imposes
two constraints. To perform the intrinsic calibration,
six parameters have to be estimated. Nevertheless, the
matrix is homogeneous and only five parameters are
independent and need to be calculated. Hence, the
minimum number of pattern images is three. If the
skewness is set to zero (square pixel hypothesis), this

(a) (b)

Figure 2. Pattern corners detection

number is reduced to two. Nevertheless, in practice, a
good calibration is generally achieved with more than
five different views.

The intrinsic and extrinsic parameters are estimated
first. Then, the distortion coefficient are calculated.
Finally, all parameters are refined using a non linear
optimization.

Procedure. Zhang’s algorithm requires images of a
planar pattern form different point of view. Figure 2
shows two examples of the planar pattern capture and
its corners detection.

In practice, two images are sufficient to achieve
the calibration. Nevertheless, at least four views are
required to get a good accuracy.

3.4. Tools
Implementations of these methods are available. In
C++, the OpenCV library gives an implementation
of Zhang algorithm. In Matlab, Bouguet’s calibration
toolbox [8] provides a set of functions for camera
calibration and an easy-to-use calibration tool. Heikkila
provides a Matlab toolbox that can be integrated with
the Bouguet’s tool. Tsai’s implementations by [9] is no
more available. [10] proposes a Matlab implementation
but without the final non linear optimization.

3.5. Comparaison
Table 1 presents a comparison of the camera calibration
methods presented in previous sections. The robustness
represents how the methods behave with errors.
Accuracy is the overall accuracy of the method. The
simplicity of the intrinsic parameters and the pose
estimation is also evaluated. The simplicity measure is
based on the comparison of the procedures.

Robustness and accuracy of the methods have been
studied by [11]. They concluded that Zhang is more
robust to noise than other methods. Accuracy is difficult
to estimate on real data because of the lack of a precise
ground truth. While in theory, Tsai and Heikkila are
supposed to perform better than Zhang, Zhang gives
better results in practice, where measured points are
subject to noise.
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Robustness Accuracy Intrinsic Pose
Heikkila * ** *** ***

Tsai * ** *** ***
Zhang *** *** *** *

Table 1. Comparison of Heikkila, Tsai and Zhang methods in terms of robustness, accuracy and how easy the intrinsic and pose
calibration is performed

Indeed, Zhang imposes a planar constraint to the
measured points while Tsai and Heikkila process them
separately. In terms of use, Zhang estimates the pose
for every view of the calibration board. Hence, unless
one of the calibration board positions corresponds
to the world coordinate frame needed, the extrinsic
calibration have to be performed with the camera at
the right place after the intrinsic calibration is done.
Pose and intrinsic calibration with Tsai and Heikkila’s
methods can be done together but a 3D calibration
pattern or a 3D measurement tool is needed to perform
the calibration. Generally, Zhang’s method is the one
chosen to calibrate intrinsic parameters of a camera.
Pose calibration algorithms like PnP [12] are then used
to estimate a specific world to camera transform.

4. Projector calibration methods
A projector can be seen as a camera that projects light
instead of acquiring it. From a mathematical point of
view, the same relation and model can be applied on
it. Nevertheless, to correct a projection, the type of
surface and the presence of movement influence the
choice of the method. A full calibration like for the
cameras is not always needed. The goal of this section is
to give an overview of the methods available to correct a
projection from the linear relation to the complete scene
modeling. A practical guide gives some hints to simplify
the choice of the method according to the setup needed
in practice.

4.1. Homography: a linear correction
An homography (eq. ??) is a relation that maps
coordinates from two planes. In the projection, it is used
to warp the image to rectify its position and orientation
to fit to some constraints like complex shapes. x′1

x′2
x′3

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33


 x1
x2
x3

 (6)

As the relation is linear, the image deformation is
correct only on a given plane. The mapping of complex
images on complex surfaces is difficult to achieve
without heavy manual fine-tuning.

Figure 3 shows the effect of an homography (linear
mapping) on an image.

(a) (b)

Figure 3. Homography results. (a) Original image. (b) Deformed
image

4.2. Structured light: a pixel by pixel correction
The structured light method needs a camera to
generalize the mapping to complex surfaces. Structured
light retrieves the correspondences between the pixel
of the projector and the camera. It is calculated pixel
by pixel and the result is an (u,v) map that identifies
the position of the projector pixel on the camera view,
regardless the shape of the surface. In this case, the
correction will always be perfect in the camera point of
view.

The method encodes the position of each projector
pixel in a set of images (called patterns). The number of
images depends on the coding method and the projector
resolution. The patterns are projected and an image of
each projected pattern is acquired by the camera. To
calculate the (u,v) map, the images are decoded.

Multiple methods of coding exists. [13] and [14]
present a review of structured light methods. In the
next section, we will describe briefly two classical
methods, the Gray code and the three phase shift.
We will also present other approaches that give better
results.

Gray coded patterns. Each pixel is coded in a unique
binary code that has only one bit different with each
neighbor. Every bit of this code is used to create a binary
image. The encoding gives a set of horizontal (vertical)
patterns that encodes the vertical (horizontal) position
of the pixel. An example of patterns created using the
Gray code is shown on fig. 4.

Three phase shift. The pixel coordinate influences the
phase of a sinusoidal function [15]. Instead of a binary
set of images, the patterns obtained are in gray level (fig.
5).

Other methods. Gray coded pattern are simple but
are not robust enough to reflection and it doesn’t
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Figure 4. A set of Gray coded patterns

Figure 5. A set of three phase shift patterns

give sub pixel precision. For this reasons, Gray coded
and three phase shift methods are combined [16].
Recently, Couture et al. [17] proposed a new approach
to unstructured light. Unstructured light pattern does
not encode directly the position of the projector pixels.
The correspondences are obtained through a matching
method like in stereoscopy. The proposed pattern has
particular properties that gives better results.

4.3. Geometric calibration: a correction through the
scene model
Homography is widely used in the case of a planar
surface. To project on complex surfaces, structured light
is used to map pixel by pixel the image on the surface.
When the complex surfaces are moving, both methods
fail to correct the projection without re-calibrating the
system. In this case, the solution is to model the scene.
The projection is the result of the real-time rendering
of a model of the scene. The projector is modeled by a
virtual camera that observes the model of the projection
surface from the projector point of view. Geometric
calibration gives the parameters of the projector model.
The scene model can be acquired in real-time with a
depth camera. If a 3D model of the scene is available,
the model has to be adapted in real-time using tracking
techniques.

Zhang-based method. Audet and Okotumi’s algorithm
[18] is based on Zhang calibration method. It uses a
planar pattern to calibrate the projector. Nevertheless,
instead of a standard chess board, the black and white
square are replaced by BCH markers of ArToolKit [19].
In addition, only half of the markers are printed on the
plane. The rest of the pattern is projected.

The proposed algorithm is based on Zhang’s method.
Hence, the projected pattern has to be aligned with the
printed one so that the position of the projector pixels

(a) Printed pattern (b) Projected pattern

Figure 6. Both parts of the pattern (image credits [18])

(here the markers corners) and their 3D coordinates can
be calculated.

An homography Hpanc is calculated between the
camera and the calibration pattern. This homography is
estimated thanks to the printed markers. Eq.7 shows the
relation between a point xpan on the calibration board
and xc, the corresponding point on the image plane.

xpan = Hpancxc (7)

Hpanc is the same homography as in eq. ?? for Zhang’s
calibration. In the same way, an homography connects
the pixels of the projector yp and the points on the
calibration board ypan (eq. 8).

ypan = HpancHcpyp (8)

As we have no a priori knowledge on the projected
pixels position on the calibration board, the projection
has to be aligned with the printed pattern on the board.
An homography Hp corrects the points position (eq. 9).

y′pan = HpancHcpy
′
p avec y′p = Hpyp (9)

Figure 7 gives the calibration procedure.

• Project a part of the pattern

• Align the projected pattern with the one on the
calibration board using an homograhy

• Refine the estimated homography

• If the error is smaller than a threshold, the points
can be used as entries to the Zhang’s calibration
algorithm.

General planar autocalibration. Drareni et al. [20] pro-
posed a calibration method based on the camera planar
autocalibration described by Triggs [6]. Triggs showed
in that even if the structure of the scene is not
known as in the Zhang’s case, the inter-image homo-
graphies are sufficient to achieve the calibration. The
inter-projector homographies are derived from the the
camera-projector homographies (eq. 10).

Hpi→pj = Hw→pjH
−1
w→pi

= Hc→pjHw→c(Hc→pjHw→c)−1

= Hc→pjH
−1
c→pi

(10)
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Figure 7. Diagram of the calibration procedure (image credits
[18])

In this equation, Hc→ w is the homography used
to calibrate a camera with Zhang’s approach but since
there is no chessboard or pattern, this homography is
unknown. As usual, a numerical optimization is used
to solve the calibration problem. The optimization is
initialized in the same way as Zhang or Triggs, ie.
solving a system of equations built from two constraints
using the image of the absolute conic.

In practice, the algorithm requires multiples images
of a projected chess pattern from different projector
positions.

Epipolar geometry based method. The approach proposed
by Yamazaki et al. [21] is based on the epipolar
geometry. The algorithm combines accurate projector to
camera correspondences acquired with structured light
and the epipolar geometry to achieve the calibration.
As Tsai’s camera calibration algorithm, the method
supposes the principal point as known. The projector
model is slightly simplified by setting fx = fy = f .

Epipolar geometry gives an equation, the epipolar
constraint, that links two vision devices.

(u1, v1, 1)F(u2, v2, 1)T = 0 (11)

In this equation, (un, vn, 1) are the pixel coordinate
of a 3D point observed by the nth device. F is 3x3
matrix called the fundamental matrix. If the radial and
tangential distortions are introduced, eq. 11 becomes:

(u2
1 + v2

1 , u1, v1, 1)R(u2
2 + v2

2 , u2, v2, 1)T = 0 (12)

In this equation, R is a 4x4 matrix called the
radial fundamental matrix. The R matrix is determined
with 15 correspondences. If the center of distortion is
supposed known (equal to the principal point), R can
be decomposed to retrieve F. Eq. 13 [22] gives the focal
lengths from F and the principal points pc and pp.

Figure 8. Diagram of the calibration procedure (image credits
[23])

f 2
p = −pTc [ec]x Î3FT ppp

T
c Fpc

pTc [ec]x Î3FT Î3Fpc

f 2
c = −pTp [ep]x Î3FT pcp

T
p Fpp

pTp [ep]x Î3FT Î3Fpp

(13)

As F and K are known, the essential matrix E gives
the extrinsic parameters.

E = [t]xR
= Kp

−T FKc
−1 (14)

In practice, this direct solution is not used because
eq. 13 is sensitive to errors. The solution is found using
a non linear optimization method. The initial guess is
estimated as follows:

• Set initial value to the principal points and focal
lengths. The focal lengths are set to the diagonal
length of projector and camera images.

• Estimate R by running RANSAC on the structured
light correspondences.

• Decompose R to F and E. The correction of E (set
two singular values to 1 and the last to 0 [1]) gives
a better guess of F.

The calibration is performed automatically but up to
a global scale.

DLT-based calibration method. Ben Madhkour et al. [23]
proposed a method combining a RGBD camera and
structured light accurate correspondences. Figure 8
gives the process of the calibration.

Structured light projection gives accurate projector
to camera pixel correspondences. At each pattern
projected, a depth map is acquired. When the pattern
projection is done, the depth maps are averaged to
reduce the error. The combination of the projector
to camera pixel correspondences and the depth map
allows to perform the calibration with the direct linear
transform. The result is refined with a non linear
least square optimization. The calibration is performed
automatically and with no a priori knowledge.
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4.4. Comparaison
Table 2 shows the comparison of Audet et al. [18],
Yamazaki et al. [21], Ben Madhkour et al. [23] and
Draréni et al.[20]. The categories are the same as in table
1.

Audet and Draréni methods perform better than
the other methods. By imposing a planar constraint,
this methods are more robust and accurate. In
practice, in the case of Draréni, the use of a general
planar surface without any printed pattern simplifies
the calibration process. Nevertheless, Yamazaki [21]
and Ben Madhkour [23] automatize the process of
calibration. [21] automation is achieved with the
model simplification and the principal point a priori
knowledge. [21] does the calibration up to a global scale
and the size of an object or the distance of a point is
needed to determine the scale factor. Ben Madhkour et
al. [23] fully automatize the process by using a RGBD
camera instead of a 2D camera. The pose is determined
at the same time as the intrinsic parameters. In terms of
simplicity of use, Ben Madhkour et al. [23] doesn’t need
any human intervention or a priori knowledge.

This section aims at giving some hints on how
to choose the right method to perform a complex
projection given user’s constraints (projection surface
type, easy-to-use, accurate, ...).

Projection surface type. The type of surface influences
the choice of the method to correct a projection. A
projection on a set of planar surfaces can be performed
well enough with a simple homography correction.
More complex surfaces require more powerful methods.
The choice of the method to be used depends on the fact
that the surface is static or dynamic (the object where
the projection is done moves).

Dynamic or static surface. The projection on a static
complex surface can be achieved using structured light.
There are several methods of structured light to achieve
pixel to pixel mapping. One of the best is Couture et al.
[17]. If the surface is moving, the geometric calibration
of the projector is needed. Planar calibration gives the
best accuracy. The geometric calibration will correct the
projection via a 3D rendering of the modeled surface.
Since a 3D model and projector model are required, the
use of a RGBD camera gives the 3D model and highly
simplifies the procedure like in Ben Madhkour et al.
[23].

Easy to use. The choice of the method must be
determined by the complexity of the setup. Indeed,
while structured light or geometric calibration allows
the projection on planar surfaces, the use of the
homography is way simpler in this case. The tools
are simple and no camera is required. In the case
of complex surfaces, we propose to avoid "Gray
coded patterns" because of its poor robustness against

reflections. Combinations of "Gray coded patterns"’ and
"three phase shift" [16] achieve better results. If the
surface is moving, Ben Madhkour et al. [23] method
simplifies the calibration process by combining the
structured light and the RGBD camera.

Accuracy. Accuracy can be influenced by multiple
parameters:

• algorithm

• quality of the tools

• user

The homography is an accurate method in the case of
linear correction. Errors can be introduced by the user
that selects wrong destination points.

The structured light accuracy is influenced by the
choice of the pattern and the complexity of the
projection surface. Recent work from Couture et al. [17]
proposed a versatile method that is less influenced by
reflection than other methods.

The geometric projector calibration accuracy is
mostly influenced by the algorithm and the tools. Audet
et al. [18] and Draréni[20] are the most accurate method
in the case of intrinsic calibration.

5. Projector calibration methods validation
Structured light and geometric calibration are objec-
tively compared with the ground truth using the root
mean square error (RMSE) or the reprojection RMSE.

For structured light method, the validation is based
on a known surface. In [14], a planar surface is used.
The 3D reconstruction obtained with the calibrated
couple of projector and camera is compared with the
plane. In the case of Martin [24], the reference is
acquired with a 3D laser scanner.

When comparing geometric calibration, the methods
evaluation is performed with the data used to calibrate.
The RMSE is used to compare data from reprojected
with the estimated model and the original data. Audet
et al. gives a table RMSE for different methods [18].
Draréni et al. [20] obtained error values similar to
Audet. Yamzaki [21] does not provide values of RMSE
but uses [18] as ground truth. Ben Madhkour et al.
reached a higher RMSE value that is explained by the
use of Gray coded structured light, the precision from
a RGBD camera (like the Microsoft Kinect sensor) and
the DLT.

6. Conclusion
In this paper, we have described classical methods
for camera calibration and video projector correction.
Four algorithms have been presented: the direct linear
algorithm, the Heikkila [4] and Tsai [3] modifications
and Zhang [5]. These methods have been compared and
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Robustness Accuracy Intrinsic Pose
Audet [18] *** *** *** *

Yamazaki [21] *** ** ** **
Ben Madhkour [23] ** * ** ***

Drareni [20] *** *** *** *
Table 2. Comparison of projector calibration methods in terms of robustness, accuracy, simplicity of intrinsic and pose calibration

a classification regarding their robustness, accuracy and
the simplicity of intrinsic and pose calibration has been
proposed.

For the projector, popular methods for video
projection correction have been described. Three
approaches have been presented: the homography, the
structured light and the geometric calibration. In the
case of the structured light, we described the Gray
code and the three phase shift and presented more
advanced methods. For the geometric calibration, four
methods to achieve the modeling of the projector have
been described. Finally, a comparison of the methods
through their performance and the practical point of
view has been given. We gave an overview of the
methods and the best methods to choose regarding the
type of projection surface, the presence of movement in
the scene and how easy to use the method is.

Finally we described two validation measures for
structured light and geometric method and discussed
the geometric methods validation.

The number of potential applications of adaptative
projection is growing and more and more HCI will
use those techniques in indoor conditions (homes,
museums, ...). The future of these applications is a
method which is simple (easy to install and with
automatic setup) and which works for complex and
moving surfaces. While the accuracy of the method is
important, subjective measures are the key of a well
accepted application which does not sacrifice simplicity
to gain in accuracy which is not even perceived by
the users. The main challenge for future projector
calibration methods is to find the optimal balance
between perceived accuracy for a given application and
setup simplicity.
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