
EAI Endorsed Transactions on
Creative Technologies

01-10 2014 | Volume 1 | Issue 1 | e3

EAI Endorsed Transactions
on Creative Technologies Research Article

1

Varianish: Jamming with Pattern Repetition

Jort Band
1
, Mathias Funk

1,
*, Peter Peters

1
, Bart Hengeveld

1

1
Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

In music, patterns and pattern repetition are often regarded as a machine-like task, indeed often delegated to drum

Machines and sequencers. Nevertheless, human players add subtle differences and variations to repeated patterns that are

musically interesting and often unique. Especially when looking at minimal music, pattern repetitions create hypnotic

effects and the human mind blends out the actual pattern to focus on variation and tiny differences over time. Varianish is

a musical instrument that aims at turning this phenomenon into a new musical experience for musician and audience:

Musical pattern repetitions are found in live music and Varianish generates additional (musical) output accordingly that

adds substantially to the overall musical expression. Apart from the theory behind the pattern finding and matching and the

conceptual design, a demonstrator implementation of Varianish is presented and evaluated.

Keywords: Musical patterns, rhythm, pattern detection, micro-focus, improvisation.

Received on 15 May 2014, accepted on 11 September, published on 14 October 2014

Copyright © 2014 Jort Band et al., licensed to ICST. This is an open access article distributed under the terms of the Creative

Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/ct.1.1.e3

*Corresponding author. Email: m.funk@tue.nl

1. Introduction

Rhythmic patterns play a fundamental role in almost

all kinds of music. They structure a musical piece, give

texture to harmonics, and they induce effects on listeners

such as the feeling of energy and movement. Music with

pronounced (rhythmic) patterns is widely used for

dancing and marching – the synchronization of bodily

movements to these patterns allows for groups moving as

a whole, stimulating movements, emotions, and also joint

music play [11].

Music that consists solely of (too few) repeating

patterns, however, is often regarded as dull, mechanic,

and “technoid”, which can be the intention, but requires a

certain state of mind to enjoy thoroughly. For human

players, it is natural and unavoidable to introduce small

variations into repeated patterns. Minimal music pieces

that require the precise repetition of patterns over several

minutes by one or more musicians are often hard to

perform, but very interesting to listen to, which reveals a

particular quality of human hearing and musical

perception: automatically reducing redundancy in what is

perceived and attenuated focus towards the variations in

the stream of perceived information, which holds

naturally also for the other senses. When the information

is largely redundant as in a repeated musical pattern, this

results in a micro-focus on tiny variations in how the

human player slightly changes the pattern over time–

something that especially minimal music, but also many

electronic music styles effectively base on.

In this paper we introduce Varianish, a musical

instrument concept aiming at capitalizing on the

aforementioned phenomenon by enabling ad-hoc

improvisation with repetitive rhythmic patterns, to which

Varianish gradually adds more and more musical layers

autonomously–but only if the pattern is repeated strictly.

When reaching levels of multiple added layers, the

musician can start experimenting with slight variations of

the original pattern by removing layers and then adding

other layers by accurately repeating the new pattern for

some time. While the technical challenges in creating

Varianish have been tackled before, the most interesting

aspect about Varianish indeed emerges only when using

it: the system encourages and rewards repetition of

musical patterns, and leads the human player into an

exploration of tiny timing differences, imperfections of

human play and subsequently the experimentation with

timing and rhythmic patterns–in other words, a

http://creativecommons.org/licenses/by/3.0/

EAI Endorsed Transactions on
Creative Technologies

01-10 2014 | Volume 1 | Issue 1 | e3

Jort Band et al.

2

microscope for musical micro-structures. This might feel

counter-intuitive at first sight, in a musical culture, in

which variation is sought after. However, rhythmic

monotonicity and depth in repetition have their own

appeals and inspire even musical subcultures and

communities.

Varianish as a musical instrument allows for (solo)

improvisation as well as for group music play. While in

the first case the added layers can be broader and more

expressive in terms of harmonics, sound effects, and

added voices, in the second case, added layers need to

comply more with the overall intention of the piece or

performance, which can be influenced by choosing

appropriate instruments or effects for the Varianish layers.

Interactive composition is possible

The main challenge in designing Varianish was how to

create an instrument, which is able to recognize musical

patterns in real-time and which can respond to the

repetition of a pattern as a positive feedback loop by

adding one or more musical layers. This technical

challenge can be divided into two parts; the software

backbone encompassing pattern finding and matching

algorithms, and the implementation part using DAW

(digital audio workstation) software and input hardware to

create an instrument that is able to add musical layers.

This requires the software to be able to cope with input

given in real-time, which is a challenge in itself and

should be a consideration in both the software backbone

as well as the implementation part.

In the following, related work is presented, after which

the conceptual design of Varianish is shown, followed by

an implementation and a showcase of the final prototype.

The paper concludes with a short evaluation and a

discussion of future steps.

2. Related Work

Analysing the rhythmic structure of music, either from

score, but more so in real-time is a well-researched topic,

framed as real-time pattern recognition or beat-tracking

[5, 9]. The use of such derived information as input for

generative purposes is not a new concept. For example,

research can be found dating back to the 1980s when

pattern recognition was used in real-time music

generation by using predefined accompaniment sequences

and patterns [4]. Later applications focus, for instance, on

beat-tracking [19], interactive composition [15, 21] and

the use of Bayesian Belief networks [18] to improve the

synthesis of more open and richer accompaniments.

Varianish differs from these approaches in the intention

and purpose of generated musical layers: while most

generative applications focus on enriching and varying a

musical experience, Varianish aims at positive feedback

loops for repetition leading towards deeper focus on

micro-timing and the actual beauty of human inaccuracies

in playing rhythmic patterns.

Other research areas focus on real-time pattern

recognition for interacting with a computer system [8],

although this is a limited scope and applies to predefined

input patterns only. Related research can also be found on

onset detection algorithms [20] and transcribing music

through MIDI input data, by using pattern matching [2]

and through Monte Carlo methods [22], often using a

static tempo, which is either pre-determined or pre-set [2,

20, 22]. A related research area is the use of pattern

recognition software to identify music genre [6] and the

use of pattern recognition software to identify specific

musical pieces (songs) from a database [3, 7], which are

usually based on artificial neural networks [23].

Repetitive musical structure are also analysed and used

for music visualisation [17].

We are not aware of any other expressive musical

instrument concept that focuses at leveraging pattern

repetition for rhythmic micro-focus. Varianish aims at

giving human players a different kind of control over the

generated layers of music, and is this sense, this approach

is similar to other approaches to control music and sound

with rather abstract representations (see for instance,

[13]).

3. Varianish

Varianish
†
 is a musical instrument that will encourage

the musician to invent first, and then consequently repeat

a rhythmic and, given a pitched instrument, also melodic

pattern. The instrument will analyse the live input and at

some point – after a sufficiently stable repetition phase –

gradually start adding layers to the overall sound. If the

pattern is varied, layers will again disappear before

coming back after the new pattern stabilized. These

additional layers can be diverse, and depend very much

on the type of music that is intended, for instance, drones,

harmonics, noise, and other additional elements are

possible. Varianish can also be used to control effect

processors that shape the incoming sound in a creative

way, such as sound-based effects like distortion and

filtering, sample-based like stuttering and pitching, or

delay-based effect like Chorus or Flanger. In the

remaining sections, the core concept of Varianish is

presented together with a demonstrator implementation

for a drum machine with additional effects and harmonics.

†
 The name “Varianish” is a straightforward mash-up of

“variation” and “to vanish”.

EAI Endorsed Transactions on
Creative Technologies

01-10 2014 | Volume 1 | Issue 1 | e3

Varianish: Jamming with Pattern Repetition

3

3.1. Technical Concept

At the technical level, Varianish processes timed

events: it (1) finds patterns in a stream of events, and after

“tuning” into a certain pattern; (2) checks the stream for

repetitions of this pattern. The amount, consistency and

accuracy of such pattern repetitions are then used to

determine how additional layers can be added to the

overall sound output. Varianish accepts input of rhythmic

patterns of one or more (pitched) trigger events, called

notes in the following, and, in the case of multiple of such

notes (differing for instance in pitch), Varianish performs

the pattern processing for these notes in parallel. In this

way, music based on complex polyrhythmic or melodic

patterns can be fed through Varianish and can be enriched

by it. In the following, this brief outline of the Varianish

concept shall be unfolded:

3.1.1. Pre-processing
Enrichment through Varianish starts with pre-

processing: Raw timed notes generated by a human

player, are usually not quantized, i.e., timing-wise noisy,

which would lead to problems when looking for patterns

and their repetitions [2, 20]. Therefore a first pre-

processing step is needed, in which incoming events are

quantized into a grid of notes that can be better processed

subsequently. This quantization step removes slight

variations in timing from the stream and yield events with

corrected timing that is according to a global metric such

as 1/4 or 1/16 of a bar.

The pre-processing step deals with timed sound

signals, which can be transients in a stream of audio data

[20], but which are more likely input in the form of notes

such as implemented and delivered by the MIDI protocol.

This MIDI data has to be converted to MIDI onset timing

data, which contains the MIDI note and time at which the

note had its onset, but no duration and other optional note

attributes.

To compare the incoming MIDI data, the data has to

be processed and quantized into a timing grid. Without

quantization, calculation time would increase and data

required for calculation would be much larger. For this

application, a relative quantization method is chosen, i.e.,

the coarseness of the quantization is determined by the

MIDI timing data–in contrast to quantization methods

based on a set tempo or pre-determined tempo.

To relatively quantize the note onsets, the smallest

inter-onset interval should be found. For this purpose, a

dataset is created that contains only the onset timing data

from the MIDI onset timing data of all MIDI notes

(making it a list with timing events), we will call this

dataset x(x1, x2, ….., xn). The dataset x is ordered in

chronological order.

This data is converted to an inter-onset interval

dataset, i.e., a data set containing the intervals between

each consecutive note: y (y1, y2,…., yn), which is

calculated by:

yz-1 = xz - xz-1, z being an arbitrary number in the range

of 2 to n). Due to the inaccuracy in human play we can

expect an slight onset difference in polyphonic music

between two notes played at the “same” time, which

represents a second source for onset difference. To

compensate for both kinds of onset differences we

introduce the threshold ov, which is the maximum timing

difference two note onsets can have, in which they are

considered having been played simultaneous, ov ranging

between 5ms and 50ms (an optimum for this value should

still be found). To account for this in the data set, a new

data set is created, called i (i1, i2, …, in). Basically, i is y

with the onsets yz removed that comply with yz – yz-1<ov,

z being an arbitrary number in the range of 2 to n). From

data set i, the smallest interval will be selected, which will

be referred to as Si in the following.

To compensate for the player’s note onset inaccuracy

both in terms of tempo and beat matching, a dataset,

which we shall name sc (s1, s2, ..., sn), is made with the

values from i, that range between Si and Si+ Si · f, where f

is a pre-defined fault tolerance constant. In the practical

application of the Varianish a constant of 1.4 was used for

f. With the data set of sc, the mean is calculated, which we

will name d (cf. Equation 1). To allow for dotted notes

(1.5 times a normal note), the final divider D, which will

be used for quantization, will be determined by Equation

2. Without dotted note compensation, D is equal to d.

Equation 1

Equation 2

The reason why D is not divided by two if it is smaller

than ov 2 is to prevent the divider coming into the range of

ov, which would result in erroneous quantization. D will

be used to quantize the notes by selecting the earliest

onset time from the onset timing data, which will be

named ts. Now the relative position (pr) of a MIDI note

(tm) from the received MIDI data can be calculated in

reference to ts and by means of D, with a fault tolerance

given by fc (in the practical application of Varianish, a

constant of 0.7 was used for fc), given by Equation 3.

EAI Endorsed Transactions on
Creative Technologies

01-10 2014 | Volume 1 | Issue 1 | e3

Jort Band et al.

4

Equation 3

Converting the MIDI onset timing data set from point

ts up to an arbitrary point will give a new grid position

data set which will be called P for now.

Before this data will be used in pattern finding or pattern

matching, another conversion is necessary: the conversion

from position data to a bit array grid. For example: we

have Pn, with Pn being an arbitrary position data set for a

specific note, Pn contains the data (1,5,9), so the total grid

size will be 9. This will be converted to a bit array

(figuratively reading from left to right) which will contain

the following data: 10001000 1, as you can see having an

onset on the first fifth and ninth position.

3.1.2. Pattern finding
After a first step of quantization, the processed stream

of events is ready for the subsequent pattern finding step:

For pattern finding we use the quantized data and

compare it to itself. This is done by means of a comb-

filter. This comb-filter calculates a pattern on a note

sequence (bit array for one note) by note sequence basis.

For the comb-filter to give a positive result the minimum

requirement is that a pattern should at least repeat itself

three times within the entire sequence of incoming notes

and that no noise is present (the bit array should only

contain the pattern repetition).

The comb-filter works by comparing the bit array with

itself. This is done by comparing the beginning and the

end of the bit Array to itself. For example it starts to

compare the beginning and the end of the bit array to each

other (1 bit); in the next iteration it compares the two bits

at the beginning and the two bits at the end and so on (see

figure 1).

Figure 1. Example of two iterations of a comb-filter

To prevent false positives, i.e. finding patterns where

the player does not actually repeat anything recognizable,

the comparison process is not started at the first bit and

last bit, but started at slightly less than a third of the bit

array size and stops at a maximum of the bit array size -1.

To find a second pattern exact matches have to be found.

The reason for this is that with two matches the exact size

of a pattern can be found and also to prevent false

positives (for example a pattern which has an inner

repetition).

After a pattern for each note sequence is found (note

sequences without input are skipped) the total pattern size

will be the least common multiple (LCM) between the

individual pattern lengths. The individual note patterns

will then be repeated to fit within the total pattern size and

stored in the final pattern data set, which contains the

entire repeated individual note pattern of all the notes. For

example: an individual note sequence has a pattern size of

2; and another, second note sequence has an individual

pattern size of 4. The first note sequence will be repeated

twice and the second note sequence will be stored as is in

the final pattern data set. That way, polyrhythmic patterns

of different notes will be compatible in terms of sequence

length.

3.1.3. Pattern matching
Pattern matching occurs when a known pattern is

compared to incoming data. The incoming data is

compared after it has been quantized. The data can then

be compared in chunks that are equal in size with the

known pattern’s size. These data chunks will be compared

on a note-by-note basis to their pattern counter parts by

means of a basic Levenshtein comparison algorithm [10],

which will output a Levenshtein distance for each

individual note.

3.2. Implementation

The implementation of the project consisted of using a

MIDI pad controller (a Novation Launchpad [14]) as

input device, the Processing programming environment

[16] for the processing of the MIDI input/output and for

the pattern matching and finding. Ableton Live [1] was

used to convert the MIDI to sound by means of sample

triggering.

3.2.1. Input
For this project MIDI (Musical Instrument Digital

Interface) [12] is chosen, as it is a widely implemented

and supported protocol, which is used in musical

instruments and software. MIDI input has the advantage

over “normal” audio input that it directly provides events

and not a continuous audio wave that first needs to be

converted into discrete events, which is often processing

intensive and prone to errors [20].

EAI Endorsed Transactions on
Creative Technologies

01-10 2014 | Volume 1 | Issue 1 | e3

Varianish: Jamming with Pattern Repetition

5

Figure 2. A flow chart depicting the system-level
view on the Varianish core system.

3.2.2. Software
An overview of the software is shown in Figure 2. The

path from MIDI to sound is kept relatively short;

Varianish is simply chained into the MIDI connection

between input and DAW output, with the possibility to

analyze incoming MIDI notes at real-time and, if needed,

add more MIDI data, before sending everything to the

DAW (digital audio workstation), which in this case is,

Ableton Live. The DAW will output MIDI notes it

receives from the Varianish as sounds, based on a

predefined set of sounds samples. The MIDI output of the

Varianish software consists of MIDI note-on events and

of messages output on different MIDI channels, where

each MIDI channel represents a new musical layer.

For the actual pattern processing the incoming MIDI

data has to be stored in an input buffer. Depending if a

pre-existing pattern is present the program will try to find

a pattern or try to match the pre-existing pattern to the

input data. When a pattern has to be found, the data is

quantized and then comb-filtered. To account for input

“noise”, meaning that the beginning input might not

contain any pattern, the comb-filter is run several times

where each time it is run, a smaller piece of the input

buffer is selected for comb-filtering. If no pattern is

found, the program will wait for more input. If a pattern is

found the program will calculate the pattern size and store

the pattern. The amount of repetitions of the pattern is

then counted and the note counter (counts the amount of

pattern repetitions for each individual note) is

incremented accordingly. Finally, the input data is

removed from the input buffer. When a pre-existing

pattern is present, the program will try to match the input

data to this pre-existing pattern. First the program checks

if the amount of data in the input buffer is sufficient to

have the pattern present in it; if not, it will wait for more

input; if so, it will quantize the data and use bitwise

comparison to see if the data matches exactly. The reason

to check for an exact match first is that this is much faster

than doing a Levenshtein distance comparison and can

thus save in calculation time. If an exact match is found

the note counter is incremented accordingly and the input

buffer is cleared.

If no exact match is found, the Levenshtein distance

for each individual note is calculated, and depending on

the distance, the note sequence counter will be

incremented or decremented. When too few successful

repetitions have occurred, i.e. the note counter is

decremented more than a tolerance maximum since an

exact match is found, the pre-existing pattern is removed

and the note counter is reset.

3.2.3. Tolerance
The tolerances added in the software have been largely

discussed in the theory section of this paper; a short

overview of these fault tolerances are given below.

The first is onset tolerance, notes that are played at the

same time always have some onset variance between

them; the tolerance for this is added during the

quantization process. The second is tempo variance

tolerance; the user will always drift in tempo. To

compensate for this a new divider is calculate each time

data is quantized, meaning that the data will always be

quantized in comparison to its own tempo. The third

tolerance is the allowance of inaccuracies or non- pattern

data (data which does not contain a pattern) in both the

pattern finding stage as well as in the pattern matching

stage. During the pattern finding stage the input buffer is

compared to itself several times, each iteration taking a

smaller piece of the input buffer (by removing the oldest

inputs). During the matching stage only the newest chunk

of input data with the same size as the pattern is compared

exactly and by means of Levenshtein comparison. The

Levenshtein comparison is able to give a relative fault

distance, thus being inaccurate “friendly”.

3.2.4. Processing performance
Because the software had to be able to run real-time,

processing performance had to be taken into account.

Some considerations have been mentioned briefly

throughout this paper. A small overview of these

considerations is given below.

EAI Endorsed Transactions on
Creative Technologies

01-10 2014 | Volume 1 | Issue 1 | e3

Jort Band et al.

6

1. It was really important that the basic comparison

algorithms were fast and lightweight. To achieve

this, the data is quantized into a bit array. The

advantage of using a bit array is that bitwise

operations can be performed; these operations are

primitive and directly supported by the processor,

which means they are fast.

2. For performance the choice was made to “favor” an

exact match when the input data and a pre-existing

pattern are compared. What is meant by this is that

it first checks for an exact match, instead of doing a

Levenshtein comparison first (which is also able to

determine an exact match), because the Levenshtein

comparison is much more processing intensive.

3. Another consideration was the maximum size of the

input buffer. To keep the software real-time it can

only process a limited amount of input data.

Therefore, a maximum input buffer size is set. This

has as a result that the maximum size of the pattern

is limited.

3.2.5. Instrument
As final result for this project we aimed for an

instrument/device, which was able to find and match

patterns and to convert this to something musical. It had

to be able to add musical layers to a player’s performance

by using pattern matching and finding. This can be best

compared to the way organs add more richness to their

sound: organs add layers of sound by activating registers

or voices resulting in a bigger soundscape. This principle

was transferred to enable the instrument to add samples

on samples the more a specific note was repeated within a

pattern; resulting in a bigger soundscape the more a

pattern is repeated.

The resulting instrument used a Novation Launchpad

(a MIDI pad controller) as interface. With this controller

MIDI notes were generated as input for the software. It

also provided feedback to the player, trough lighting the

pads . The player plays the instrument the same as a MIDI

pad controller would normally be played. The goal is to

repeat a pattern over and over again to create a bigger and

bigger soundscape. More samples per note are added the

more a player repeats a pattern. These samples are added

by sending the same note on different MIDI channels the

more the note is correctly repeated in a pattern the more

MIDI channels are used. On each of these MIDI channels

a different complementary sample is present for each

note. Feedback to the player is two-fold. One is visual

status indication, where the color of the pad indicates a

certain level and the brightness of the pad indicates the

inter-level progress an illustration of which can be found

in figure 3. The level and inter-level feedback, is there to

provide visual feedback about the amount of layers added

on each individual note. Feedback was also given when

the pattern was found by flashing all the pads once.

Figure 3. A graphic representation of the level
progress given by the instrument.

The other is auditory feedback: adding sound layers to

notes can be heard. Besides this, timed delays based on

the original divider can be added to intrinsically motivate

the user to stay in the original tempo.

Figure 4. System overview

4. EVALUATION

The system was informally evaluated during

development and in an open exhibition-like setting with

musicians and non-musicians. The setup (see Figure 4)

was as described, using a Novation Launchpad as the

controller and Ableton Live as the sound generator.

Varianish was chained in-between to capture all events

from the Launchpad, analyse them, and, in the case of

successful pattern repetitions, trigger additional musical

layers in Live as well as control LEDs on the Launchpad

to visually indicate progress.

EAI Endorsed Transactions on
Creative Technologies

01-10 2014 | Volume 1 | Issue 1 | e3

Varianish: Jamming with Pattern Repetition

7

In the following, evaluation findings are presented

divided into technical and usage aspects.

4.1. Technical Evaluation

During the evaluation it became clear that a large,

almost full input buffer significantly increased the

calculation time and thus imposed a lag on the rest of the

system (in cases when the processing of the incoming

notes takes longer than the interval between notes).

Giving the input buffer a maximum size reduced this

problem.

It also became apparent that not only the buffer size

was of importance for the calculation time, but also the

data input into the buffer. The calculation time is often

within the maximum allowed range, but setting a

maximum buffer size is not a sufficient means to ensure

that the calculation time is within an acceptable range. To

counter this, optimization has to be used and a way of

dynamically changing the input buffer size. The

calculation time also influences the maximum pattern size

that can be recognized, which has as a result that the

pattern can only have a limited size and that the system is

only able to process relatively small patterns, an estimate

would be a pattern consisting of 12 to 30 note onsets, this

estimate is rather wide and further evaluation and

optimization with the system has to be done to get a more

accurate estimate, which were still large enough for most

musicians that tried the system.

In future versions, a dynamically changing input buffer

size would be advisable, by means of monitoring the

calculation time and adjusting the buffer size accordingly.

This would prevent the software from exceeding the

maximum allowed calculation time. It also became clear

that the system had difficulty with recognizing shuffle

patterns. The difficulty of picking up shuffle patterns will

probably be fixed by compensating for dotted notes as

discussed in the theory, which was not yet implemented

fully during the evaluation. Another point was the

optimization of the algorithm in favour of perfect pattern

repetitions, resulting often in looking for an exact match

and not finding it, after which the Levenshtein algorithm

is still run. These points will be further investigated and

optimized in a future version of Varianish, given more

extensive input from follow-up user evaluations.

4.2. User Evaluation

During the exhibition setting participants were

instructed to play with the device and repeat a pattern

over and over. The players often started by exploring the

initial sounds available to them and only then tried to

invent and repeat a pattern. A significant amount of the

participants gave up repeating a pattern after a few times

or were not able to repeat even a simple pattern. For many

participants it was indeed a difficult task to repeat the

same pattern several times accurately. The level of focus

and the occurrence of rhythmic inaccuracies have a very

direct relation, however, fine motoric skills play a role as

well. Reducing the complexity of the pattern has a

positive effect, however, this did not naturally occur to

many participants.

The visual feedback that is given when the system

recognized a pattern was startling for some users, which

often resulted in them stopping the pattern repetition. The

participants were all able to hear layers being added to the

notes they played, which meant that the auditory feedback

was chosen well and that the layers of sound are clearly

distinguishable. So, while the auditory feedback was

clear, the visual feedback of the system (when it

recognizes a pattern) should be revised in a future version.

5. CONCLUSION

This paper introduces Varianish, a musical instrument

concept based on repetition of musical rhythmic patterns

that result in the generation of additional sound layers to

be added to the overall sound. Our findings suggest that

Varianish is able to perform its core basic task:

recognizing musical patterns in real-time and triggering

both visual output to the player as well as generating

additional musical layers. This works in real-time with

interchangeable sample or sound sets resulting in the

desired micro-focus experience.

An interesting aspect of the Varianish concept is that

patterns can both be very simple and very complex–the

instrument works the same, and thus allows in principle

for similar experiences for novice and expert players

alike. The evaluation, however, showed that the current

implementation is not yet robust enough for beginners and

better suited for slightly more advanced novice or expert

players who can rely on their fine motor skills to

consistently repeat a pattern.

The pattern recognition core itself has also potential to

be used as a method of interaction in itself, which, to our

knowledge, is a new way of interacting with a system that

potentially has no musical context. An open-source

release of the processing core is planned in a future

release.

References

[1] Ableton Live, http://ableton.com

[2] Blostein, D., and Haken, L. Template Matching for Rhythmic

Analysis of Music Keyboard Input, In Proc. of the 10th

International Conference on Pattern Recognition, 1990.

[3] Chen, J.C.C., and Chen, A.L.P. Query by rhythm: an approach

for song retrieval in music databases. In Proc. of the Eighth

International Workshop on Research Issues In Data

Engineering: Continuous-Media Databases and Applications,

Orlando, Florida, 1997, 139–146.

http://ableton.com/

EAI Endorsed Transactions on
Creative Technologies

01-10 2014 | Volume 1 | Issue 1 | e3

Jort Band et al.

8

[4] Dannenberg R. B. An On-Line Algorithm for Real-Time

Accompaniment. In Proc. of the 1984 International Computer

Music Conference, International Computer Music Association,

1984, 193-198.

[5] Davies, M. E. P., and Plumbley, M. D. Beat tracking with a two

state model [music applications]. In Proceedings. (ICASSP ’05).

IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2005. (Vol. 3, p. iii/241–iii/244 Vol. 3).

IEEE, 2005.

[6] Dixon, S., Gouyon, F., and Widmer, G. Towards

Characterisation of Music via Rhythmic Patterns. In Proc. of the

5th International Conference on Music Information Retrieval,

2004.

[7] Eikvil, L., and Huseby, R. B. Pattern Recognition in Music,

2002.

[8] Ghomi, E., Faure, G., Huot, S., Chapuis, O., and Beaudaouin-

Lafon, M., Using Rhythmic Patterns as an Input Method. In

"CHI '12: Proceedings of the SIGCHI Conference on Human

Factors and Computing Systems,” Austin, United States, 2012.

[9] Goto, M. An Audio-based Real-time Beat Tracking System for

Music With or Without Drum-sounds. Journal of New Music

Research, 30(2), 2001, 159–171.

 . Левенштейн (1965). "Дво чные ко ы с

 сп в ен е вып ен й, вст вок з ещен й с во ов"

[Binary codes capable of correcting deletions, insertions, and

reversals]. Док ы Ак е й Н ук СCCP (in Russian) 163

(4): 845–8. Appeared in English as: Levenshtein, Vladimir I.

(February 1966). "Binary codes capable of correcting deletions,

insertions, and reversals". Soviet Physics Doklady 10 (8): 707–

710.

[10] Juslin, P. N., and Madison, G. The Role of Timing Patterns in

Recognition of Emotional Expression from Musical

Performance. Music Perception, Vol. 17, No. 2, 1999, 197-221.

[11] MIDI, The MIDI Manufacturers Association, MIDI 1.0

Detailed Specification, 1995.

[12] Momeni, A., and Wessel, D. Characterizing and controlling

musical material intuitively with geometric models, 2003, 54–

62.

[13] Novation Launchpad, http://global.novationmusic.com/midi-

controllers-digital-dj/launchpad-s

[14] Pachet, F. The Continuator: Musical Interaction With Style.

Journal of New Music Research, 32(3), 2003, 333–341.

[15] Processing, http://processing.org

[16] Puzoń, B., and Kosugi, N. Extraction and visualization of the

repetitive structure of music in acoustic data. In Proceedings of

the 13th International Conference on Information Integration

and Web-based Applications and Services - iiWAS ’11 (p. 152).

New York, New York, USA: ACM Press, 2011.

[17] Raphael, C. Synthesizing Musical Accompaniments With

Bayesian belief networks. Journal of New Music Research,

30(1), 2001, 59–67.

[18] Robertson, A., and Plumbley, M. B-Keeper: a beat-tracker for

live performance, 2007, 234–237.

[19] Schrader, J. E., and Vogten, L. L. M. Detecting and interpreting

musical note onsets in polyphonic music, 2003.

[20] Spasov, M. Music Composition as an Act of Cognition:

ENACTIV – interactive multi-modal composing system.

Organised Sound, 16(01), 2011, 69–86.

[21] Taylan Cemgil, A., and Kappen, B., Monte Carlo Methods for

Tempo Tracking and Rhythm Quantization. Journal of Artificial

Intelligence Research 18, 2003, 45-81.

[22] Weyde, T., and Dalinghaus, K. Recognition of musical rhythm

patterns based on a neuro-fuzzy-system. Smart Engineering

System Design: Neural Networks, Fuzzy Logic, Evolutionary

Programming, Data Mining and Complex Systems 11, 2001,

679-684.

http://global.novationmusic.com/midi-controllers-digital-dj/launchpad-s
http://global.novationmusic.com/midi-controllers-digital-dj/launchpad-s
http://processing.org/

