
Research Article

High-level Programming and Symbolic Reasoning on
IoT Resource Constrained Devices
Sal vatore Gaglio 1,2 , Giuseppe Lo Re2 , Gloria Martorella 2 , Daniele Peri 2 ,∗

1ICAR CNR, Viale delle Scienze, Ed. 11, 90128 Palermo, Ital y
2DICGIM Univ ersity of Palermo,V iale delle Scienze, Ed. 6, 90128 Palermo, Ital y

Abstract

While the vision of Internet of Things (IoT) is rather inspiring, its practical implementation remains
challenging. Conventional programming approaches prove unsuitable to provide IoT resource constrained
devices with the distributed processing capabilities required to implement intelligent, autonomic, and
self-organizing behaviors. In our previous work, we had already proposed an alternative programming
methodology for such systems that is characterized by high-level programming and symbolic expressions
evaluation, and developed a lightweight middleware to support it. Our approach allows for interactive
programming of deployed nodes, and it is based on the simple but e
ective paradigm of executable code exchange among nodes. In this paper, we show how our methodology
can be used to provide IoT resource constrained devices with reasoning abilities by implementing a Fuzzy
Logic symbolic extension on deployed nodes at runtime.

Keywords: High-level programming, Resource constrained devices, Knowledge Representation, Fuzzy Logic.
Received on 22 December 2014; accepted on 10 March 2015; published on 28 May 2015
Copyright © 2015 D. Peri et al., licensed to ICST. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/cogcom.1.2.e6

1. Introduction
According to the Internet of Thing (IoT) vision [1],
all kinds of devices, al though computa tionall y limited,
might be used to inter act with people or to manag e
inf orma tion concerning the individ uals themsel ves [2].
Besides reactiv e responses on input chang es, the whole
netw ork may exhibit more adv anced beha viors resul t-
ing from reasoning processes carried out on the individ-
ual nodes or emerging from local inter actions. How ever,
nodes’ constr ain ts lea ve the system designers man y
challeng es to face, especiall y when distributed appli-
cations are considered [3]. Conventional progr amming
methodol ogies often prov e inappropria te on resource
constr ained IoT devices, especiall y when knowledg e
must be trea ted with a high lev el represen tation or
chang es of the applica tion goals may be required after
the netw ork has been depl oyed [4]. Moreov er, the
implemen tation of intellig ent mechanisms, as well as

∗Corresponding author . Email: daniele.peri@unipa.it

symbolic reasoning, through rigid layered architec-
tures, rev eals impracticable on resource constr ained
devices such as those commonl y used in Wireless Sen-
sor Netw orks (WSNs). Often this issue is faced through
the adoption of an intellig ent cen tralized system tha t
uses WSNs as sta tic sensory tools [5]. Indeed, integr a-
tion of WSN devices in the IoT seems quite natur al and
desir able, provided tha t the aforemen tioned issues be
addressed. In our previous work [6, 7], we introd uced
an al terna tiv e progr amming methodol ogy, along with a
lightw eight middlew are, based on high-lev el progr am-
ming and executable code exchang e among WSN nodes.
The contribution of this paper consists in the extension
of the methodol ogy to incl ude symbolic reasoning even
on IoT resource constr ained devices. The remainder
of the paper is organized as foll ows. In Section 2 we
describe the key concepts of our methodol ogy and the
symbolic model we adopted. In Section 3, we extend the
symbolic approach char acterizing our progr amming
environmen t with Fuzzy Logic, and in Section 4 we
show an applica tion to make the nodes reason about
their position with respect to thermal zones of the
depl oymen t area. Finall y, Section 5 discuss the adopted

1

EAI Endorsed Transactions
on Cognitive Communications

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e6

http://creativecommons.org/licenses/by/3.0/
http://doc.eai.eu/publications/transactions/latex/
http://doc.eai.eu/publications/transactions/latex/
mailto:<daniele.peri@unipa.it>

D. Peri et al.

solution in terms of efficiency , while 6 reports our
concl usions.

2. Key Concepts of the Development Methodology
Mainstream praxis to progr am embedded devices
consists in cross-com pila tion of specialized applica tion
code together with a gener al purpose oper ating system.
The resul ting object code is then upl oaded to the on-
board permanen t stor age. Instead, our methodol ogy
is based on high-lev el executable code exchang e
betw een nodes. This mechanism, while abstr acted, is
implemen ted at a very low lev el avoiding the burden
of a complex and thick softw are layer betw een the
hardw are and the applica tion code. Indeed, a Forth
environmen t runs on the hardw are providing the core
functionalities of an oper ating system, incl uding a
command line interf ace (CLI). This also all ows for
inter activ e dev elopmen t, which is a peculiar feature of
our methodol ogy tha t can be used even to reprogr am
depl oyed nodes. This way, nodes can be made expand
their capabilities by exchanging pieces of code among
themsel ves in real time. The CLI is accessible through
either a microcon troller’ s Univ ersal Asynchronous
Receiv er-Transmitter (UART) or the on-board radio [6].
The Forth environmen t is inheren tly provided with an
interpreter and a compiler . Both can be easil y extended
by definin new words stored in the dictionary. Being
Forth a stack -based languag e, words use the stack for
par ameters passing. A command, or an entire progr am,
is thus just a sequence words.

The acquisition of sensory data is already supported
as we have previousl y extended the dictionary with
the words to manag e the sensor -MicroC ontroller Unit
(MCU) interf ace, to enable the Anal og to Digital
Converter (ADC) and to lea ve the sensory reading on
the stack. For instance, the progr am to measure the
tem per ature is just the word temperature, whereas
sensing the ambien t light is achiev ed by executing the
single word luminosity. Although the code is concise
but expressiv e, the execution of these words involves
the reading from the ADC and the return of the raw
data on the stack. The description of a task in natur al
languag e and its implemen tation can be thus made very
similar .

Our progr amming environmen t is composed of some
nodes wirelessl y depl oyed and a wired node tha t
beha ves as a bridg e to send user inputs to the netw ork.
In previous work [7], we introd uced the syn tactic
construct tha t implemen ts executable code exchang e
among nodes:

tell: 〈code〉 :tell

in which 〈code〉 is a sequence of words, sen t as char acter
strings, to be remotel y interpreted by the receiv er node.
The address of the destina tion node is left on the top

temperature

Bridge node

A301 tell: temperature :tell

Node address: A301

Figure 1. Executable code exchange to make a node sense
the temperature quantity. To tell a node to locally perform
temperature measurements, the user can interact with the bridge
node interpreter by typing on its shell the sequence of words to
exchange symbolic programs. The destination node address –the
hexadecimal value A301 in the example– is expressed as a 16-bit
value according to the IEEE802.15.4 short addressing mode. The
word temperature is the symbolic program that is copied in the
outgoing frame payload, sent as character string to be remotely
interpreted.

of the stack. A numeric as well as a string value, can be
taken at run time from the top of the stack and inserted
in the outg oing packet when special mar kers, such as ∼
for numbers and ∼s for strings are encoun tered.

Theref ore, the exchang e of code promotes distributed
computa tions since a node tha t is not equipped
with tem per ature and light sensors can tell another
to measure the tem per ature or ambien t light just
by executing the construct tell: 〈code〉 :tell and
incl uding the symbolic progr am for the measuremen t
as foll ows:

tell: temperature :tell

or it can be typed at the CLI of the bridg e node, as in
Figure 1.

Due to their internal limita tions, sensor nodes are
mostl y confine to perceiv e environmen tal conditions
in WSN applica tions. This is not expected to chang e
in the IoT context , yet in the foll owing section we
show how using a suitable progr amming approach even
small sensors can be provided with symbolic reasoning
abilities.

3. Distributed Processing and Symbolic Reasoning
In our progr amming environmen t, purel y reactiv e
beha viors can be easil y implemen ted on the remote
nodes by sending them the sequence of words to be
executed if certain conditions are met. Let us consider
the foll owing command giv en through the CLI of the
bridg e node:

bcst tell: close-to-window? [if]

red led on [then] :tell

2EAI
European Alliance
for Innovation

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e6

High Level Progr. and Distr. Sym. Reas. on IoT Res. Constr. Dev.

This command broadcasts –the word bcst lea ves the
reserv ed address for the purpose on the stack – the code
betw een the tell: and :tell words. Once receiv ed,
each node executes the word close-to-window? to
evalua te if it is close to the window and, if so turns
the red LED on. The word close-to-window?, already
in the dictionary , perf orms tem per ature and luminosity
measuremen ts and checks if both sensory readings are
abov e a predefine threshol d. As it can be noticed,
the code is quite understandable, al though all the
words oper ate just abov e the hardw are lev el by setting
ports or enabling the ADCs to read tem per ature and
light exposure. This code, as well as those in the
rest of the paper , has been used on Iris Mote nodes
equipped with the MTS400 sensor board to acquire
data about tem per ature and light exposure. For the
sake of showing how it is possible to incorpor ate in
our middlew are new abstr actions to support intellig ent
applica tions here we introd uce a Fuzzy Logic extension.
Fuzzy Logic has the peculiarity to be appropria te to
implemen t approxima te reasoning in sev eral contexts
as well as for machine learning purposes [8]. We
adopted a classic Forth Fuzzy Logic implemen tation [9]
tha t we modifie to make it run on the Harv ard
architecture AVR microcon troller used in the Iris
Mote pla tform. Finall y, we also enriched the original
implemen tation with the possibility to exchang e fuzzy
definition and evalua tion among nodes.

The wordset to enable high-lev el fuzzy reasoning on
IoT resource constr ained devices is provided in Table 1
and all ows for the crea tion of fuzzy input/output
variables, for the definitio of the rela ted membership
functions, for fuzzific tion, for rule evalua tion and for
defuzzific tion processes.

Differen tly from [9], to crea te a new fuzzy variable
we incl uded the word fvar to be used according to the
foll owing syn tax:

<min_val> <max_val> fvar <name>

where <min_val> and <max_val> represen t the defini
tion domain of the fuzzy variable and <name> is the
name associa ted with the new variable. Differen tly from
<min_val> and <max_val> values tha t are expected
to be on the stack, the variable name is provided at
run time. When this construct is executed by the node
interpreter , a new entry named <name> is crea ted in the
dictionary , which is located in Flash memory , while a
fi e cells structure is all ocated in RAM. As ill ustr ated
in Figure 2, a fuzzy variable can be thought of as a
sequence of fie ds. The Forth code to crea te this struc-
ture is self -explana tory:

begin-structure fv

field: fv.crisp

field: fv.link

field: fv.low

Table 1. Words defined in the dictionary to implement fuzzy
reasoning according to [9].

Word Description

slope Compute the slope given two points of
a side

set-slope Set the left and right slope in the
appropriate membership fields

& Fuzzy AND
| Fuzzy OR
∼ Fuzzy NOT
=> Fuzzy implication
fuzzify Given a crisp value and a membership,

assign a membership value for it
apply Apply the crisp input to the specified

fuzzy input variable
output Create an output fuzzy variable
singleton Define a singleton output function
rules Evaluate rules
conclude Defuzzify and leave the crisp output

on top of the stack

field: fv.high

field: xt

end-structure

Once the word fvar is executed, a generic fv

structure is instan tia ted and <min_val> and <max_val>
values are stored in the fv.low and fv.high fie ds.
The firs fie d stores the crisp input value, and it is
foll owed by a link fie d, i.e. the membership function
list associa ted with tha t fuzzy variable. The foll owing
tw o fie ds contain the validity rang e, i.e. the minim um
value and the maxim um value all owed for the crisp
input. Finall y, as we want to all ow the nodes to reason
about sensory data, the last fie d contains the address of
the word to perf orm the measuremen t of the physical
quan tity associa ted with tha t variable.

Let us defin tw o fuzzy variables, temp and lightexp.
The last fie d of temp stores the address of the
word temperature, while the address of the word
luminosity is the last fie d of lightexp. The words
luminosity and temperature have been already
introd uced in the previous section.

Similar ly, to crea te a membership function, the word
member expects on the stack four control poin ts which
determine the shape of the membership function and its
name is provided at run time according to the foll owing
syn tax:

<bottom-left> <top-left> <top-right> <bottom-right>
member <name>

As a fuzzy variable, also a membership function is a
generic structure composed of sev eral fie ds:

begin-structure membership

field: fval

3EAI
European Alliance
for Innovation

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e6

fv.crisp

fv.link

Jfv.low

fv.high

xt

fuzzy variable name

Figure 2. The definition of a fuzzy variable include a new entry
in the Flash memory word dictionary and allocates five contiguous
cells in RAM as a sequence of fields. The first cell stores the crisp
input value, while the link field contains the address of the first
defined membership function related to the fuzzy variable. The
following two cells store the validity range, while the last one
stores the execution token (xt), i.e. the address of the word to
sense the physical quantity associated with the fuzzy variable.
Once the fuzzy variable name is used, the address of the first
field is fetched on top of stack.

field: link

field: lm

field: lt

field: rt

field: rm

field: ls

field: rs

end-structure

The firs fie d contains the truth value resul ting
after the fuzzific tion process, while the second fie d
stores the address of the next membership function.
Essen tiall y, a fuzzy variable and its membership
functions are implemen ted as linked list. Membership
functions are trapezoidal and theref ore four control
poin ts are stored in the appropria te four successiv e
fie ds, left -most (lm), left -top (lt), right -top (rt), and
right -most (rm). Finall y, tw o further memory cells are
required to store the left slope (ls) and the right slope
(rs) of both sides. When the firs membership function is
defined the fuzzy variable link fie d stores the address
of the newl y crea ted membership function. As the
word member is executed, the four control poin ts on
top of stack are stored in the appropria te fie ds of
the membership structure along with the left and right
slopes. Figure 4 shows the code to defin the fuzzy
variable rela ted to light exposure named lightexp

and the rela ted membership functions according to the
words described previousl y.

Moving on with the initial exam ple in which a node
evalua tes its proximity to a window , in place of tw o
crisp variables, the fuzzy variables temp and lightexp

0 1200 fvar lightexp

Bridge node

A301 tell: 0 1200

fvar lightexp :tell

Node address: A301

Figure 3. Similarly to Figure 1, the executable code exchange
mechanism allows to define fuzzy variables and their related
membership functions on already deployed nodes. To remotely
define the fuzzy variable lightexp, the code to be remotely
executed must be enclosed between tell: and :tell and typed
at the CLI of the bridge node that sends the executable code to
the destination node. The remote node receives the sequence of
words 0 1200 fvar lightexp and locally interprets it.

0 50 100 150 200 650 700 750 800 1200 Light Exposure

0 1200 fvar lightexp

0 0 50 150 member lightexp.low

100 200 650 750 member lightexp.medium

700 800 1200 1200 member lightexp.high

lightexp.low lightexp.medium lightexp.high

Figure 4. Fuzzy sets associated with the fuzzy variable
lightexp. On the right side, the code to define the fuzzy
variable lightexp and its membership functions. The definition
domain, corresponding to the raw readings values interval
[0,1200], is given before the word fvar, while the word member

defines each of the three trapezoidal membership functions by
using four control points (bottom-left, top-left, top-right, and
bottom-right).

can be easil y define on depl oyed nodes provided tha t
the symbolic progr am is placed betw een tell: and
:tell as indica ted in Figure 3.

The represen tation of a fuzzy variable and its
membership functions in memory is provided in
Figure 5.

A node can be made measure light exposure, and
fuzzify it with the code:

lightexp measure apply

The word measure fetches the xt fie d of the fuzzy
variable tha t precedes it and executes the associa ted

4EAI
European Alliance
for Innovation

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e6

D. Peri et al.

High Level Progr. and Distr. Sym. Reas. on IoT Res. Constr. Dev.

fval

0

0

50

fv.crisp

0

1200

Address of

the word

luminosity

lightexp

150

0

655

lightexp.low

Address of

lightexp.low fval

100

200

650

750

655

655

lightexp.medium

Address of

lightexp.medium

fval

700

800

1200

1200

655

0

lightexp.high

Address of

lightexp.high 0

Figure 5. Memory representation of the fuzzy variable
lightexp and its related membership functions after the code
shown in Figure 4 is executed. The implementation refers to linked
structures. Each link field stores the address of the next defined
membership function. A link field that is equal to zero indicates
the last membership function concerning that variable. It is worth
noticing that the slope values are “scaled" to 65535 since this is
the maximum number that can be expressed with 16-bits.

code. In detail, when the word measure is interpreted,
the word address, which is stored in the xt fie d, is
executed. Then, the word luminosity is executed and
the sensory reading is left on top of the stack. This
value is trea ted as crisp input by the word apply. As its
name sug gests, the word apply applies the crisp input
to all the membership functions ref erring to lightexp

and stores the fuzzy truth value in the corresponden t
fval fie d. Basicall y this word scans the linked list
and fuzzifie the sensory reading for each membership
function.

To access the truth value resul ting from the
fuzzific tion process the code:

lightexp.low @

pushes onto the stack the truth value by using the buil t-
in word @ (fetch). Rather than through a threshol ding
process, a device can establish if it is close to the
window through the evalua tion of fuzzy rules in the
form:

temp.high @ lightexp.high @ & => close-to-window

where temp.high and lightexp.high are membership
functions of the fuzzy input variable temp and
lightexp respectiv ely, and close-to-window is one of
the linguistic labels associa ted to the output variable.
Similar ly to the case of the threshol ding process, if both
the tem per ature and the light exposure lev els are high
a node can inf er to be under sunlight , and thus close to
the window .

temp.low

temp.medium

temp.high

Figure 6. The execution of temp lightexp 2

classification thermal-zone creates the word
thermal-zone that is bound to the two fuzzy variables.
A 9 cells sized memory area is allocated as temp and
lightexp have both three linguistic variables associated.
In essence, each of these cells identifies a thermal-zone, a
membership class according to which the node classifies itself.
This area stores all the possible combinations for the rule
evaluation process and aggregation.

4. Inferring the Node Distribution according to
Thermal Zones
Let us suppose we intend to make the depl oyed nodes
able to discov er their distribution with respect to
thermal zones of an environmen t lighted by some
windows exposed to direct sunlight , and lam ps. Each
node assesses in turn the thermal zone it bel ongs to, and
makes the others aware of this inf orma tion. We define
the syn tactic construct classification to make the
nodes able to classify according to an arbitr ary number
of fuzzy variables. With the previousl y define input
variables temp and lightexp the code:

temp lightexp 2 classification thermal-zone

crea tes the new word thermal-zone, which is bound
to the tw o fuzzy variables temp and lightexp as
ill ustr ated in Figure 6.

When the new word thermal-zone is executed, it
measures the tem per ature and luminosity , fuzzifie the
crisp inputs and evalua tes the rules by storing the
firin strength for each rule, indica ting the degree to
which the rule matches the inputs. The rule gener ation
process considers all the possible combina tions of all
the membership functions, -i.e. in this case, the set of
all ordered pairs (a,b) where a and b are linguistic
terms associa ted respectiv ely with temp and lightexp.
When handling few variables, this does not cause
excessiv e memory occupa tion. It offers instead the
adv antag e of considering a fine-g ained classific tion
based on all the n-tuples, tha t in this case, are all
valid. How ever, optimiza tion methods for the red uction

5EAI
European Alliance
for Innovation

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e6

temp.low @

lightexp.low

@ &

temp.mediu

m @

lightexp.low

@ &

temp.high @

lightexp.low

@ &

temp.low @

lightexp.med

ium @ &

temp.mediu

m @

lightexp.med

ium @ &

temp.high @

lightexp.med

ium@ &

temp.low @

lightexp.high

@ &

temp.mediu

m @

lightexp.high

@ &

temp.high @

lightexp.high

@ &

temp.low

temp.medium

temp.high

Figure 7. The rule generation involves the evaluation of all the
possible combinations of the truth values of each membership
function. Finally, the rule aggregation process consists in
scanning the table to return the cell index storing the rule with
the maximum strength. This index represents the class the node
belongs to.

of a larg e scale rule base may be required in real-
time fuzzy systems [10 –12]. When needed, the table
is traversed to compute the membership grade of the
output by aggreg ating all rules. The rule with the
maxim um strength is taken as the output membership
class (Figure 7). This way, each node is able to classify
itself into one of the thermal zones. To support more
sophistica ted beha viors, it is possible to expl oit the
mechanism of code exchang e among nodes to trig ger
the process of neighbor discov ery in order to keep track
of their classific tion into thermal-zones.

For this purpose, it is necessary to defin the
table nodes-distribution to contain the number of
nodes for each thermal zone (Figure r̃effig:thermal
classific tion). To trig ger the whole classific tion pro-
cess, the word classification-start can be sen t
to already depl oyed nodes through the executable
code exchang e par adigm. For instance, each device
starts the timer and can transmit once, after wait-
ing (word on-timer) for a time tha t is function of
its unique ID. When its time is elapsed, the word
classification-spread is executed, the node classi-
fie itself into a thermal zone and then broadcasts the
class it bel ongs to, together with the code to make the
others upda te the whole distribution. The Forth code
required for the entire process is the foll owing:

: local-update

nodes-distribution update ;

: spread

dup local-update

bcst [tell:] ~ local-update [:tell] ;

: classification-spread

thermal-zone spread ;

Sensing Fuzzification

temp.low

@

lightexp.l

ow @ &

temp.med

ium@

lightexp.l

ow @ &

temp.high

@

lightexp.l

ow @ &

temp.low

@

lightexp.

medium

@ &

temp.med

ium@

lightexp.

medium

@ &

temp.high

@

lightexp.

medium

@ &

temp.low

@

lightexp.h

igh @ &

temp.med

ium@

lightexp.h

igh @ &

temp.high

@

lightexp.h

igh @ &

temp.low

temp.medium

temp.high

max output class

1 0 0 4 3 0 0 0 1

nodes-distribution

u
p
d
a
te

Figure 8. The word “thermal-zones” operates by sensing the
temperature and light. Both sensory readings are treated as
crisp input and fuzzified according to the membership functions
of lightexp and temp. The rule generation considers all the
pairs of truth values related to linguistic variables bound to
different fuzzy variables. This is justified by the fact that each
combination represents a different thermal zone identified by
distinct temperature and light conditions. Indeed, the index of
the cell storing the maximum value represents the thermal zone
the node belongs to. The cell correspondent to the output class
is incremented in nodes-distribution in order to allow each node
to assess the distribution of the others.

: classification-start

start-timer

on-timer [’] classification-spread ;

in which the word spread crea tes a messag e with the
code to make the other devices upda te locall y the
nodes-distribution. At the end of the update process,
each node hol ds the curren t nodes distribution in terms
of thermal zones, as such:

Class 1 2 3 4 5 6 7 8 9

5 1 0 0 0 0 0 1 1

Five nodes bel ongs to class 1, one node to class 2 and
so on. Each node knows the number of nodes in the
netw ork and their position, without any cen tralized
computa tion. Once some nodes are mov ed from their
position to another , and the process is trig gered again,
each node is able to detect the new distribution.

Moreov er, the anal ysis of the nodes distribution may
lead a node to classify itself as an outlier , to trig ger self -
diagnosis oper ations, and even to take specifi actions,
by reasoning about the whole netw ork configu ation
and its membership thermal zone. The inter activity
granted by our approach permits the progr ammer to
comm unica te with the netw ork through the serial shell
of the bridg e node. For instance, the progr ammer can
tell the nodes bel onging to class 8 to turn their red LED
on:

6EAI
European Alliance
for Innovation

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e6

D. Peri et al.

High Level Progr. and Distr. Sym. Reas. on IoT Res. Constr. Dev.

bcst tell: thermal-zone 8 class? [if]

red led on [then] :tell ;

5. Experimental Results
Beca use of the limita tions in terms of available
resources, the implemen tation of symbolic reasoning
on resource constr ained devices must be particular ly
efficien t. Our approach makes IoT applica tions to be
dev eloped on real devices provided with an environ-
men t running at close contact with the hardw are.
This prev ents the presence of further intermedia te lay-
ers betw een the hardw are and softw are applica tions,
increasing efficiency . Moreov er, as already widel y dis-
cussed, al though running on the hardw are, the sym-
bolic computa tion all ows to trea t knowledg e with a
high degree of expressiv eness. Differen tly from main-
stream approaches, distributed computa tion is made
inexpensiv e due to the fact tha t both high and low lev el
executable code can be exchang ed. The incl usion of
reasoning mechanisms on resource constr ained devices
is particular ly efficien t as it occupies only 6 bytes of
RAM and 863 bytes of Flash memory . The fuzzy word-
set consists of 31 words. The applica tion all owing the
classific tion into thermal zones is quite compact since
it consists of only 20 words and occupies 560 bytes of
RAM and 825 bytes of Flash memory .

6. Conclusions
In this paper , we show ed how distributed symbolic
reasoning can be implemen ted on resource constr ained
IoT devices by expl oiting executable code exchang e.
Our contribution aims to fil the lack in the absence
of progr amming par adigms enabling a vast adoption
of IoT in everyda y lif e. The possibility to exchang e
executable code makes the system adaptiv e and
autonomous, since each node can evolve on the
basis of real time inputs, in terms of both data
and executable code, from other nodes and from
the user . We show ed how abstr actions and symbolic
expression evalua tion can be efficien tly incorpor ated
into a progr amming model for such netw orks by
expl oiting both interpreta tion and compila tion of code.
As an exam ple, we described the syn tactic constructs
tha t can be define to make the nodes aware of
their position with respect to a subdivision of the
environmen t into thermal zones. Our methodol ogy
rev eals suitable for implemen ting more adv anced
beha viors on IoT devices since symbolic reasoning
is perf ormed even on inexpensiv e, and resource
constr ained microcon trollers.

References
[1] Atzori, L., Iera, A. and Morabito, G.

(2010) The Internet of Things: A Surv ey.

Computer Networks 54(15): 2787 – 2805.
doi: http://dx.doi.org/10.1016/j.comnet.2010.05.010 .

[2] Guo, B., Zhang, D., Yu, Z., Liang, Y., Wang, Z.

and Zhou, X. (2013) From the Internet of Things to
Embedded Intellig ence. World Wide Web 16(4): 399–420.
doi: 10.1007/s11280-012-0188- y.

[3] Martorella, G., Peri, D. and Toscano, E. (2014) Hard-
ware and Softw are Pla tforms for Distributed Com-
puting on Resource Constr ained Devices. In Gaglio,

S. and Lo Re, G. [eds.] Advances onto the Internet
of Things (Spring er Interna tional Publishing), Advances
in Intelligent Systems and Computing 260, 121–133.
doi: 10.1007/978-3-319-03992-3_9 .

[4] Kortuem, G., Kawsar, F., Fitton, D. and Sundramoor-

thy, V. (2010) Smart Objects as Buil ding Blocks for the
Internet of Things. Internet Computing, IEEE 14(1): 44–
51. doi: 10.1109/MIC.2009.143 .

[5] De Paola, A., Ortolani, M., Lo Re, G., Anastasi, G.

and Das, S.K. (2014) Intellig ent Manag emen t Systems for
Energy Efficiency in Buil dings: A Surv ey. ACM Comput.
Surv. 47(1): 13:1–13:38.

[6] Gaglio, S., Lo Re, G., Martorella, G. and Peri, D. (2014)
A Fast and Inter activ e Approach to Applica tion Dev el-
opmen t on Wireless Sensor and Actua tor Netw orks.
In Emerging Technology and Factory Automation (ETFA),
2014 IEEE: 1–8. doi: 10.1109/ETF A.2014.7005179 .

[7] Gaglio, S., Re, G.L., Martorella, G. and Peri,

D. (2014) A Lightw eight Middlew are Pla tform
for Distributed Computing on Wireless Sensor
Netw orks. Procedia Computer Science 32(0): 908 – 913.
doi: http://dx.doi.org/10.1016/j.procs.2014.05.510 , URL
http://www.sciencedirect.com/science/article/

pii/S1877050914007108. The 5th Interna tional
Conference on Ambien t Systems, Netw orks and
Technol ogies (ANT-2014), the 4th Interna tional
Conference on Sustainable Energy Inf orma tion
Technol ogy (SEIT-2014).

[8] Navara, M. and Peri, D. (2004) Automa tic Gener ation of
Fuzzy Rules and its Applica tions in Medical Diagnosis.
In Proc. 10th Int. Conf. Information Processing and
Management of Uncertainty, Perugia, Italy, 1: 657–663.

[9] VanNorman, R. (1997) Fuzzy Forth. Forth Dimensions 18:
6–13.

[10] De Paola, A., Lo Re, G. and Pellegrino, A. (2014) A
Fuzzy Adaptiv e Controller for an Ambien t Intellig ence
Scenario. In Gaglio, S. and Lo Re, G. [eds.] Advances onto
the Internet of Things (Spring er Interna tional Publishing),
Advances in Intelligent Systems and Computing 260, 47–
59.

[11] Jin, Y. (2000) Fuzzy Modeling of High-dimensional
Systems: Complexity Red uction and Interpretability
Improv emen t. Fuzzy Systems, IEEE Transactions on 8(2):
212–221. doi: 10.1109/91.842154 .

[12] Yam, Y., Baranyi, P. and Yang, C.T. (1999) Red uction
of Fuzzy Rule Base via Singular Value Decom position.
Fuzzy Systems, IEEE Transactions on 7(2): 120–132.
doi: 10.1109/91.755394 .

7EAI
European Alliance
for Innovation

EAI Endorsed Transactions on
Cognitive Communications

01-05 2015 | Volume 01 | Issue 2 | e6

http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1007/s11280-012-0188-y
http://dx.doi.org/10.1007/978-3-319-03992-3_9
http://dx.doi.org/10.1109/MIC.2009.143
http://dx.doi.org/10.1109/ETFA.2014.7005179
http://dx.doi.org/http://dx.doi.org/10.1016/j.procs.2014.05.510
http://www.sciencedirect.com/science/article/pii/S1877050914007108
http://www.sciencedirect.com/science/article/pii/S1877050914007108
http://dx.doi.org/10.1109/91.842154
http://dx.doi.org/10.1109/91.755394

	1 Introduction
	2 Key Concepts of the Development Methodology
	3 Distributed Processing and Symbolic Reasoning
	4 Inferring the Node Distribution according to Thermal Zones
	5 Experimental Results
	6 Conclusions

