
EAI Endorsed Transactions 
on Cognitive Communications 

Switching Brains: Cloud-based Intelligent Resources 
Management for the Internet of Cognitive Things 
R. Francisco1 and A.M. Arsenio2,*

1YDreams Robotics and IST, Edificio A Moagem - Cidade do Engenho e da Artes, Largo da Estação, 6230-311 Fundão, 
Portugal 
2YDreams Robotics and Universidade da Beira Interior, Edificio A Moagem - Cidade do Engenho e da Artes, Largo da 
Estação, 6230-311 Fundão, Portugal 

Abstract 

Cognitive technologies can bring important benefits to our everyday life, enabling connected devices to do tasks that in the 
past only humans could do, leading to the Cognitive Internet of Things. Wireless Sensor and Actuator Networks (WSAN) 
are often employed for communication between Internet objects. However, WSAN face some problems, namely sensors’ 
energy and CPU load consumption, which are common to other networked devices, such as mobile devices or robotic 
platforms. Additionally, cognitive functionalities often require large processing power, for running machine learning 
algorithms, computer vision processing, or behavioral and emotional architectures. Cloud massive storage capacity, large 
processing speeds and elasticity are appropriate to address these problems. This paper proposes a middleware that transfers 
flows of execution between devices and the cloud for computationally demanding applications (such as those integrating a 
robotic brain), to efficiently manage devices’ resources. 
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1. Introduction

Internet changed the way we communicate. Currently, 
there is an explosive growth on the number of 
objects connected to the Internet (overpassing by 
large the number of connected people), giving birth to 
the Internet of Things (IoT), which refers to a 
multitude of uniquely identifiable objects (things) 
connected through the Internet [1]. New paradigms 
for the Internet of Things are crucial for migrating from 
nowadays sensor networks into networks of intelligent 
sensors enabled with actuation mechanisms and 
cognitive skills. Such future networks will consist of 
the ”Cognitive Internet of Things” (CIoT). This 
paradigm derives from the need to enable 

commonplace objects with the ability to comprehend their 
surroundings and to make decisions autonomously [2]. 

It is expect that in a few years our lives will become 
more dependent on internet objects connected by Wireless 
Sensor and Actuator Networks (WSAN) in areas such as 
environmental, medical, transportation, entertainment and 
city management. This WSAN consists of a set of nodes 
(sensors and actuators) that cooperate among them to 
achieve the goal of collecting data and make some 
decisions. Nowadays, sensor networks are becoming a 
reality, especially for remote monitoring of events in 
fields such as healthcare, military, forest integrity or 
prediction of seismic activity in volcanoes. Especially due 
to cost and energy issues, such sensors are usually simple, 
with low computational processing capabilities. However, 
new application requirements, such as energy savings and 
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operation autonomy, is pushing for the deployment of 
more intelligent sensors, or even mechanisms with 
actuators, such as forest sensors capable to move and act 
on the environment for energy harvesting. Although there 
has been important developments on the evolution of 
WSAN devices, these continue to have limited battery, 
limited computation power, etc. Due to these problems, 
the network node can crash due to lack of sufficient 
resources to perform, and jeopardize the smooth operation 
of the infrastructure. So, especially for demanding AI 
applications, Internet objects using sensors and actuators 
require specific middleware for integrated operation with 
networked resources [1].  

Cloud computing provides attractive solutions for these 
issues [3]. Indeed, it allows the reduction of the initial 
costs associated with the computational infrastructure. 
Another relevant aspect is that the cloud computing 
resources are easily and automatically adjustable 
according to the real infrastructure needs. This way, the 
computational resources are easily scalable following the 
growth of the infrastructure. In addition, the customer 
only pays for the cloud resources that she actually uses. 
But mostly important, cloud computing’ resources 
provide almost unlimited battery, storage, and computing 
power. So, we need an efficient solution that monitors 
WSAN nodes’ capability to execute operations, and 
communicates transparently with the cloud infrastructure. 

1.1 WSAN and Robotics: New Concepts for 
Robotic Brains and Bodies 

Robots are undergoing a similar revolution. Robotics 
has faced strong barriers in its evolution because there are 
inherent challenges that until recently technologies were 
unable to overcome. Researchers have been able to apply 
robotics to controlled environments because robots in 
factories have fixed behaviors and simple sensory systems 
for pre-defined stimulus. But for robotics to reach a level 
of pervasiveness in which robots are present in our daily 
lives, robots need to adapt themselves to environments 
that can change very frequently and need to be able to 
respond to unexpected events. Robots to reach this level 
of adaptation need to analyze their surroundings and to 
store information about it and to process this information 
[4]. Robots however usually do not have enough 
computational and battery power to process that 
information while still being mobile and with a small 
form factor size. 

On the other hand, a robot is no more a “metal box” 
with on-board processing (the brain) and sensors plus 
actuators. Robots are part of the WSAN nodes on the 
Cognitive Internet of Things. Their brains may be running 
on devices on their robotic body, on the cloud, or on both 
places. The notion of a robotic body is also changed, since 
a robot may dynamically access to sensors and actuators 
(or even processing capabilities) already present on the 
visited environment.  

1.2 Cloud Robotics 

Cloud Robotics is a new paradigm aiming to solve 
some of these current robotics issues. Cloud robotics is a 
combination of cloud computing and robotics. Robots 
operating from a cloud can be more portable, less 
expensive and have access to more intelligence than an 
ordinary robot [4]. These robots could also offload CPU-
heavy or energy demanding tasks to remote servers, 
relying on smaller and less power demeaning onboard 
computers [5]. 

Robots in a cloud configuration can perform 
autonomous learning, obtain knowledge and share 
knowledge, and even evolve. Through the robotics cloud, 
robots can execute collaborative tasks and provide 
efficient services. Robots can upload and share their 
acquired knowledge on the servers, which are responsible 
for knowledge, storage and scheduling [4]. 

The cloud is thus promising for the future evolution of 
robotics, but it also has its short-comings. Robots rely on 
sensors’ feedback (often real-time data) to accomplish a 
task. This might not be accomplished on the cloud 
because cloud based applications can be slow or difficult 
to run due to Internet limitations [4]. Some real-time 
functions (robots usually have several closed feedback 
control loops between sensors and actuators demanding 
real-time action) of the robotic brain still need to run most 
of the time on the robot’s main platform, for which 
network latency is an important concern. 

So, in order for information (concerning task execution 
by components of the robot’s brain) to be able to travel 
over the Internet, it is needed a transparent solution that 
enables application programmers to specify conditions for 
switching the execution flow from a device to the cloud or 
other devices, and vice-versa, in real-time. To solve these 
issues efficiently it is necessary a mediator that efficiently 
manages the device resources on various platforms and 
communicates transparently with users. This paper 
proposes such mediator middleware: a software that 
assists an application to interact or communicate with 
other applications, networks, hardware, and/or operating 
systems. Thus the middleware manages the network 
nodes. If a node is unable to perform some operation due 
to measurements that trigger specified conditions (such as 
resources’ unavailability), the middleware communicates 
with the application on the device for suspending 
execution, and transfers the flow of execution to the 
application counterpart resting on the cloud or on other 
devices (or vice-versa). 

2. Related Work

This section presents and discusses some related work
to the Middleware for Wireless Sensor and Actuator 
Networks. It is necessary to have in mind that robots can 
be considered a WSAN with extended functionalities.  
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2.1 WSAN Middleware 

IoT technology, supported by wireless network 
solutions enabling automatic data acquisition, has been 
applied in Home automation and Ambient Intelligence 
environments to interconnect objects and materials. We 
will first give a brief overview of IoT Platforms that can 
be employed as a starting point for the Internet of 
Cognitive Things, presenting their comparative 
evaluation. One of these platforms, OpenHAB, was 
integrated into the proposed solution. 

There are platforms, like Xively (previously Cosm), 
that enable the creation of CIoT projects and extensions of 
these, such as Social Internet of Things and Robot as a 
Service projects, which lets sensors and other equipment 
post and read data to feeds – much like twitter works for 
people – which allows them to trade messages and take 
action. Other Home Automation platforms include 
openRemote and openHAB. These solutions allow users 
to connect virtually any device and have the platform take 
action when a command is given or when a pre-condition 
is met. Ninja Blocks provides a set of open source 
hardware parts for people to create their own custom 
devices that connect to the platform, whereas openHAB 
and openRemote use more standard hardware platforms. 

Platforms like IFTTT and SmartThings are platforms 
that are more oriented towards defining intelligent 
behavior from devices, like informing the thermostat that 
the users are close to their home, through the GPS in their 
smartphone, and thus turning on the Air Conditioning. 

Funf, developed at the MIT Media Lab, is another open 
source sensing and data processing framework, now a 
commercial product. Funf consists on software modules 
(Probes) that act as controllers and data collectors for each 
sensor’s data. It also allows intelligent processing of the 
personal captured data (e.g. monitoring a person’s 
physical activity by an activity monitor probe that already 
incorporates motion logic over the accelerometer sensor, 
and sharing such data on the network). It allows saving 
data on a remote backend (e.g. on a cloud).  

SenseWeb [6] is a large-scale ubiquitous sensing 
platform, aimed at the global indexing of sensor readings. 
Its open-source layered modular architecture allows to 
register sensors or sensor data repositories, using web-
based sensing middleware. Table 1 presents a 
comparative overview of these platforms. 

2.2 Robot Middleware 

2.2.1 ROS 
Robot operating System [7] is an open source 

middleware for developing robots. The philosophical 
goals of ROS are: Peer-to-Peer (P2P), Tools-based, Multi-
lingual, Thin and Free and open source. These 
philosophical goals influence the design and 
implementation of ROS, as described hereafter: 

Multi lingual: ROS supports four languages, namely 
C++, Python, Octave and LISP. 

Table 1. Comparative Analysis for Home Automation 
and Sensing Platforms. 

Peer to Peer: ROS system consists in a number of 
hosts connected at runtime in a P2P topology. P2P 
connectivity combined with buffering software modules is 
used to avoid unnecessary traffic flowing across the 
wireless link that occurs in central server. 

Tools-based: ROS has a microkernel instead of a 
monolithic development and runtime environment. In this 
microkernel a large number of small tools are used to 
build and run ROS components. 

Thin Most: drivers and algorithms could be used in 
other projects, but some code has become so entangled 
with the middleware that it is difficult to extract. To solve 
this problem ROS encourage all drivers and algorithm 
developers to write standalone libraries without 
dependencies on ROS. This is achieved by placing 
virtually all complexity in libraries and only creating 
small executable. 

The fundamental concepts of ROS implementation are: 
node, messages, topics, and services. Nodes are processes 
that perform computation. ROS is typically comprised of 
many nodes. The nodes communicate with each other by 
passing messages. A message is a typed data structure and 
can be composed of other messages. A node sends a 
message by publishing it to a given topic. A node that is 
interested in a specific topic will subscribe it. In general 
publishers and subscribers are not aware of each other. 
Publish-subscribe is a flexible communication paradigm, 
however not appropriate for synchronous transactions. To 
address this issue ROS uses services (a service is 
composed by its name and a pair of messages: one for the 
request and the other for the response). 

2.2.2 YARP 
Yet Another Robot Platform [8] is an open-source 

project to reduce the development effort of robotic 
software. YARP enables to execute processes that are 
location independent, and that can run on different 
machines without any changes in the code. This way it is 
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possible to move the process between machines that are in 
a cluster to redistribute the computational load and to 
recover from hardware failure. The application developer 
ensures this automatic allocation of processes. The 
addition of new components can interfere with the 
existing one in YARP infrastructures. But this problem is 
alleviated through the inclusion of more processors to the 
network. YARP also minimizes the dependencies between 
processes. If process is killed or dies does not require 
processes to which it connects to be restarted. 
Furthermore, communication channels between existing 
processes continue without process restart. For reducing 
dependencies with the operating system, Communication 
in YARP uses the Observer design pattern. The state of 
special Port object is delivered to any number of 
observers (in any processes). To manage these 
connections YARP insulates the observed from the 
observer and the observees from each other. In YARP a 
port is an active object managing multiple connections. 
Each connection has state that is changed by external 
commands. YARP uses many different communication 
protocols such as Transmission Control Protocol (TCP), 
User Datagram Protocol (UDP), multicast, etc. The ports 
can be connected programmatically or at runtime.  

2.2.3 PEIS Kernel 
Physically Embedded Intelligent Systems (PEIS) 

Kernel [9] is a middleware that employs the Ecology 
concept of Physically Embedded Intelligent Systems. 
PEIS Kernel provides a shared memory model, a simple 
dynamic model for self-configuration and introspection, 
and supports heterogeneous devices. The goal of this 
middleware is to provide a common communication and 
cooperation model that can be shared among multiple 
robotic devices. Any robot device that has a software 
control in the environment is considered a PEIS. 

A PEIS is a set of inter-connected software 
components developed to control sensors or actuators. All 
devices are connected in PEIS by an uniform 
communication layer. This layer allows not only the 
exchange of information between the PEIS devices, but 
also dynamic joining and leaving. Using a uniform 
cooperative model allows comparison between all of PEIS 
devices. Devices that participate in the cooperative model 
can use functionalities of other PEIS devices to complete 
their own functionalities. 

The organizational structure is divided into three 
layers: the communication layer, peer-to-peer network 
layer and Tuple layer. The communication layer at the 
lowermost abstraction is used to provide communication 
links and device detection for shared medias. This layer 
also provides services for initializations, calling 
functionalities, etc. This communication layer also serves 
as a bridge, translating message to a more compact 
protocol suitable over low-bandwidth networks. 

On top of the communication layer is the P2P network 
layer that uses P2P algorithms for optimizing connectivity 
and performing routing. Finally the Tuple layer is on top 
of the P2P network layer. Tuple-space is a decentralized 

version of the shared memory where a number of tuples 
containing a namespace, key, data as well as a number of 
meta attributes such as timestamps and expiration date, 
can be stored and retrieved by any participating process 
using an abstract tuple.  

The database implementation to store tuples assumes 
that each PEIS component can be used to store all 
relevant tuples. This database gives some special attention 
to an abstract tuple, a tuple in which one or more fields 
have been initialized to a wild-card value while the 
remaining fields have been given concrete values. This 
abstract tuple is used for three reasons. The first one is 
they are used whenever an application is accessing the 
database to query the current value of a tuple. 
Additionally, before a PEIS can access tuples at a remote 
location, a subscription to the corresponding tuples must 
be made. And finally abstract tuples are used by the event 
mechanism to setup callbacks when tuples changes value. 

2.2.4 Player/Stage 
Player/Stage system is a middleware platform for 

mobile robotics applications [10][11]. The main features 
of this middleware are the platform-programming 
language, transport protocol-independence, open source, 
and modularity. 

Main components of this middleware are the player 
and the stage. The component player is a device 
repository server where we can find robots’ sensors and 
actuators. Each one of these devices has an interface and a 
driver. The middleware client uses the interface to obtain 
information collect by the sensor to control the actuator. 
The algorithms implemented by the drivers can receive 
data from other devices, process the received data and 
send it back. Drivers can also create arbitrary data when 
needed. The other component (stage) is a graphical 
simulator that models devices in a user defined 
environment. 

This system has a three-tier architecture. In the first tier 
the clients are software developers for a specific robot 
application. The player, which provides common 
interfaces for different robots and devices, constitutes the 
second tier. Robots, sensors, and actuators form the third 
tier. Different programming languages like C, C++, Java, 
and Python are used to access services. Client side 
libraries are in form of proxy objects. Clients can connect 
to the Player platform to access data, send commands, or 
request configuration changes to an existing device in the 
repository. 

2.2.5 Mobile and Autonomous Robotics 
Integration Environment (MARIE) 

Mobile and Autonomous Robotics Integration 
Environment is a middleware that was made for 
developing and integrating new and legacy robotic 
software [12]. MARIE is a flexible middleware, which 
allows integration of different robotic software. The main 
characteristics of MARIE are interoperability and 
reusability of robotic application components. Flexibility 
is another important aspects of this middleware, which 
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provides services that allow the adaptation of different 
communication protocols and applications. 

The architecture of the MARIE middleware is divided 
in three layers: Core, Component and Application. The 
core layer contains communication services, low-level 
operating functions and the distributed computing 
functions. The component layer is used to add 
components that are going to be constantly used by 
services. The application layer has services and tools 
useful for building and managing the integrated 
application.  

MARIE uses the Adaptive Communication 
Environment (ACE) communication framework. This 
framework allows a variety of software components to 
connect to MARIE using a centralized component. There 
are also four functional components: application adapters, 
communication adapters, communication managers, and 
application managers. The application adapter behaves as 
a proxy between the central component and the 
application. Communication adapters translate the data 
exchange between application adapters. Connections are 
created and managed by communication managers. 
Application managers instantiate and manage components 
locally or across distributed processing nodes. MARIE 
also provides mediator interoperability layers among 
adapters and managers. 

2.2.6 RoboEarth Cloud Engine (Rapyuta) 
Rapyuta is cloud robotic platform for robots that 

implements a platform as a Service (PaaS) open source 
framework [13]. This framework is built upon a clone 
based model, which provides a secured customizable 
computing environment (clone) in the cloud. This way the 
robots can use extra resources for heavy computation. The 
robots connect to the Rapyuta and can start the computing 
environment by their own initiative. It allows to launch 
any computational node as uploaded by the developer, 
and to communicate with the launched nodes using the 
WebSockets protocol. The use of WebSockets protocol 
provides a full duplex communication channel between 
the robot and the cloud with predefined messages. The 
computing environments that are started by the robots 
have high bandwidth connection to the RoboEarth 
repository. Thus, the robots are allowed to process their 
data inside the computational environment in the cloud 
without the downloading and local processing. Another 
aspect of this platform is that the computing environments 
are interconnected with each other. 

The architecture of Rapyuta consists mainly of four 
elements: the computing environment, the communication 
protocols, the core tasks and the command data structure. 
The computing environments are built with Linux 
Containers. These containers provide isolation of 
processes and system resources within a single host, and 
they allow the applications to run at native speed because 
they do not emulate hardware. Linux containers allow 
easy configuration of disk, memory limits, I/O rate limits 
and Central processing unit (CPU) quotas. Thus it is 
possible to enable one environment to be scaled up to fit 

the biggest machine instance of the IaaS provider or 
scaled down to just relay data to the backend. 

All processes within a single environment 
communicate with each other using ROS interprocess 
communication. The communication protocols of Rapyuta 
are divided in three parts: internal communication 
protocol, external communication protocol, and the 
communication between Rapyuta and applications 
running inside the Linux container. The internal 
communication protocol is the protocol that covers all the 
communication between the processes of Rapyuta. The 
external module has the goal to define the data sent 
between the physical robot and the cloud. The container 
offers the functionalities required to start/stop the 
computing environment. 

Rapyuta is organized in a centralized command data 
structure with four components. The network is the most 
complex of the four. These components are used to 
organize the communication protocols and to provide 
abstraction to all platforms. The user is another 
component, representing the group of humans that have 
one or more robots to be connected to the cloud. The 
loadBalancer manages the load from robots running in the 
computing environment. Finally the distributor has the 
functionality to distribute incoming connections from 
robots over the available robots. 

2.2.7 Discussion 
The related work previously described does not satisfy 

completely our requirements. They solve indeed problems 
also addressed on this paper such as: software flexibility 
(MARIE), code reuse and modularity (ROS), and even 
information sharing with other devices (player/stage). 
However, these middleware are still constrained by the 
limited capacity of the devices (actuators, sensors, or 
robots) where they are executed. Indeed, the player/Stage 
middleware will transfer the execution for another device 
even if the later has no available capacity. Contrary to 
other solutions, Rapyuta middleware can solve the 
problem inherent to the limitations of the hardware by 
running some algorithms on the cloud platform. But still 
this middleware does not have the intelligence to decide 
whether it is necessary to run some code on the cloud or 
on a device. Francisco et al. [14] presented such solution, 
which is further detailed in this paper. 

3. Smart Middleware Architecture

The overall system consists of devices running
applications (egg clients: cell phones, tablets, and 
computers, as shown in Figure 1) and the cloud that 
performs data processing and storage. The communication 
protocols employed are TCP, UDP, SSH and HTTP Rest, 
and a publish/ subscribe model for internal 
communications on the device. Devices run applications 
developed by programmers, having constraints such as 
limited memory and battery (contrary to the cloud). These 
applications will run the management and cloud client 
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side modules for programmers to use our middleware. 
The middleware manager monitors hardware components, 
and communicates to the cloud client whenever a 
component reaches a critical condition. The cloud client 
interchanges application’s control messages and data to 
the cloud server module. 

Figure 1. System Architecture and its Components. 

3.1 Middleware Requirements 

The Middleware runs inside the user developed 
application, and can be considered as an extension of the 
operating system, which provides a transparent 
communication layer between the hardware and the 
applications. The objective of this middleware is to solve 
some problems of a modular design, such as 
interoperability and communication configuration. To 
achieve these objectives the proposed middleware needs 
the following resources: 

Simplifying the development process: application 
development is not easy for the robotic environment 
because each robot manufacturer has its own API. 
Middleware should simplify the development process by 
providing higher-level abstractions with simplified 
interfaces that can be used by developers. 

Support communications and interoperability: The 
robotic and WSAN modules are designed and 
implemented by different manufacturers. The middleware 
must provide functions that help to have an efficient 
communication and simple interoperability mechanisms 
between these modules. 

Provide efficient utilization of available resources: 
The device (single sensor, single actuator, mobile device, 
robot) may have single or multiple microprocessors, one 
or more interconnection networks, and it may need to 
execute intensive tasks in real time. Therefore efficient 
resource utilization is required. Middleware supports 
applications in efficiently using these resources [15][16]. 

Providing heterogeneity abstraction: The 
communication and cooperation between hardware and 
software is very important. To hide complexity at the 
communication level, as well as heterogeneity of the 
underlying modules, the middleware is used as a 
collaborative software layer. 

Supporting integration with other systems: Devices 
often need to interact with other devices for achieving 
their goals in real time. Therefore the middleware should 
provide real time interaction services with other systems. 

Supporting low resources devices: Devices may have 
several limitations such as limited power, small memory, 
limited connectivity, and so the middleware needs to have 
adequate functionalities to manage these resources. 

Providing automatic resource discovery: The 
devices are dynamic systems due to their mobility. 
Therefore automatic and dynamic resource discovery and 
configuration are needed in the middleware. 

To provide the abovementioned functionalities the 
middleware is divided in three layers (see Figure 2): the 
communication layer, the peer-to-peer network layer and 
the device manager layer. The communication layer 
provides communication links with multiple platforms 
such as the cloud or a mobile device, and it also provides 
device detection for shared information. This layer 
provides an heterogeneity abstraction for supporting 
communications and interoperability. The layer also 
provides services for system initialization. 

Figure 2. Detailed Architecture. 

On top of the communication layer is the peer-to-peer 
network layer, enabling integration with other systems 
and automatic device discovery. This layer is responsible 
the connectivity with routing algorithms.  

The manage device layer runs a monitoring algorithm 
to detect problems, such as if the device is lacking battery 
power or if the load of CPU is too high. This it way it is 
possible to support low resource devices and provide an 
efficient utilization of available resources. 

3.2 Applications 

Applications will be running on smartphones, tablet, 
WSAN nodes or in robots, with different operating 
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systems. The programmer deploying the middleware is 
not typically the one who develop the applications. 
Instead, application programmers should integrate the 
middleware functionalities at development time. The 
application can have different types of actions: 

• Presenting a textual or graphical representation of the
information acquired by the device, which may be
stored in the device or in the cloud platform.

• Processing information received from the device.
• Performing operations according to the results of

information processing.
• Performing specific operations on the device.

The middleware will be integrated with the application 
thereby ensuring that the application receives information 
about the status of the hardware components that the 
middleware is monitoring. Thus the integration between 
application and the middleware can help to avoid critical 
situations (for instance excess CPU usage) and prevent 
device shutdown (for instance due to lack of battery). 

3.3 Cloud Platform Services 

The cloud-based platform will be in charge of two 
relevant functions: data processing and data storage. 
Cloud computing resources can be easily and 
automatically adjusted according to new application 
demands or the growth of application’s requirements. 

Data Processing: The Data Processing component is 
in charge of processing the data transmitted by the 
devices. This component executes the heavy work, not 
possible to be carried out by the device due to lack of 
resources (such as lack of energy or computational 
resources to process the collected data). Hence this 
component allows the device not to crash by executing the 
work that the device could not do, sending back the 
processing result to the device. 

Data Storage: This component is in charge of storing 
persistently the collected data from each WSAN node. If 
devices do not have space to store the collected data 
because the device memory is full (or above a given 
threshold), such data can be transmitted to the cloud 
platform using the middleware, so that data is not lost. 

3.4 Manager Module 

The management module aims to determine hardware 
components state (battery, CPU and memory), as well as 
the wireless connection state. The programmer defines 
each component’s critical state on a configuration file, 
before the middleware starts to be used. Whenever one of 
these components achieves a value above a critical value 
(and wireless signal is strong) a certain execution will no 
longer be run on the device, being transferred to the 
cloud. Figure 3 shows the management model’s state 
machine. 

The management model is initialized in the 
”Middleware” state when the ”Application” state sends an 
initialization command. The “Middleware” state contains 
the monitored component conditions, which are updated 
by the ”Monitoring” state through a shared queue between 
the two states. The ”Middleware” state is always checking 
the conditions of the wireless signal (Wi-Fi was employed 
on the scope of this paper) quality and the conditions of 
the battery, CPU and memory, through calls to device 
hardware that runs the middleware. The values obtained 
are compared with the critical values stipulated by the 
application programmer. The load CPU analysis is a bit 
different from the other checks, because a notification is 
only sent if the read values are superior to the critical 
value for three times in a row (to avoid reactions to 
sporadic peaks). If the signal quality of the wireless 
network is below the critical value stipulated by the 
programmer the remaining monitoring tests will not be 
performed. After each monitoring cycle of the hardware 
components, the ”Monitoring” state goes into sleep mode 
for an interval of time (one minute). 

Figure 3. Management and Cloud state machines. 

The ”Application” state sends requests to the 
”Middleware” state on the conditions of a component 
(e.g. battery). If the reply is ”False” (transition between 
the ”Application” and ”Function” states), it means no 
action is needed, since the state of the component is below 
the critical status (and hence running with enough 
resources on the device). This way the programmer’s 
application can continue to run without any changes, and 
no event is initiated. In case of a “True” response sent by 
the ”Application” state, the machine transits to the ”Do 
Something” state, meaning the component exceeds the 
critical value. In this case the programmer chooses the 
actions to take after receiving the message. One possible 
option is to use cloud platform provided services for 
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performing certain actions. This way it is removed some 
load on the device that is running the application, 
releasing resources (e.g. memory). 

3.5 Cloud (Client) Module 

The communication between the application and the 
cloud is initialized when the programmer application 
makes an initialization call to the middleware. The first 
step is for the client to boot the server in the cloud via an 
SSH command and to create TCP and UDP sockets. The 
access settings of Post and Get commands of HTTP Rest 
protocol are also configured, so that whenever the 
programmer intends an application to perform an upload 
or download of information in the cloud, it is sent a Post 
or Get command to the cloud.  

The middleware in the cloud responds (transitions 
between ”Application”, ”Upload / Download” and 
”Cloud”) states either: i) with a confirmation that the 
information was successfully saved; or (ii) there was an 
error while performing the storage operation; or (iii) the 
information as requested by the get command; or (iv) 
error due to failure on getting the requested information.  

In a blocking call connection, a message is sent to the 
cloud with the following information: the function ID and 
its arguments. After the message is sent the state 
”Synchronous transmission” enters in a blocking state and 
waits for the result of the function that is going to be 
executed in the cloud, delivered by the state ”Reading 
Socket”. In the non-blocking case, the state is not blocked 
after the message is sent (the program continues to run). 
Once the cloud returns the response, this is saved in the 
device memory until the program needs to access it. The 
state ”Reading Socket” after being initialized enters in 
block mode waiting for new entries in the socket that 
arrive from the state ”Cloud”. A new message on the 
socket will be processed differently depending on the 
information of one message field. If the message is from a 
blocking function, the result is sent to the state 
”Synchronous transmission”, otherwise the function ID 
and its result will be stored in the device memory until the 
program needs the result. 

3.6 Cloud (Server) Module 

The Cloud Server side module (see Figure 3) is 
initialized at the application server once it receives an 
SSH connection with the start command, locking the 
”Cloud” state, and waiting to receive messages from the 
client. Upon receipt of the message and its decoding, it is 
possible to identify the function ID that is intended to be 
performed and its arguments (going from state ”Cloud” to 
”Function” state). The ”Function” state consists of the 
execution of the functions that were chosen by the 
programmer to run in the cloud. At the end of the 
execution of a function a message is sent to the client 
(state ”Reading Socket) with the function ID and its 
result. It is also sent a small packet to identify if the 

response is to the blocking (synchronous) or the non-
blocking (asynchronous) function. 

3.7 Transparent Implementation 

A key factor in the development methodology was the 
exploitation of existing frameworks and libraries in the 
proposed solution implementation process, harnessing the 
potential of currently available tools. 

For a flexible and transparent implementation of the 
middleware, IKVM (Open Source software that allows to 
directly run compiled Java code in C#) and jython (an 
implementation of the Python programming language in 
Java) were employed, which allow the JAVA core of the 
middleware to be executed on C# and Python, 
respectively. Communication interfaces employ 
JavaScript Object Notation (JSON), since it ensures 
greater efficiency on message delivery between clients 
and the cloud. Communications between applications and 
the Microsoft cloud, when it comes to data storage and 
downloading of information from the cloud, is ensured by 
the Microsoft cloud API that uses the Hypertext Transfer 
Protocol (HTTP) REST protocol. 

Aiming to ensure that the configuration of certain 
points of the middleware is conforming to each 
application needs, and to set certain aspects of the cloud 
(such as the login to the machine that was obtained in the 
cloud), configuration files were used, employing the INI 
file format (ini4j.jar). These simple files have a pretty 
basic structure organized in sections and properties. 
Furthermore this format is quite often used for drivers’ 
settings and Linux/Unix systems for system configuration. 

OpenHAB, a home automation middleware, was 
integrated into the solution to enable support not only for 
robot devices and middleware, but also the transparent 
integration of home automation devices. 

4. Experimental Evaluation

The objective of result assessment is the implementation 
validation, and the determination of adequate system 
improvements. This section is divided into areas of 
analysis consisting of sets of testing experiments that 
cover different analysis aspects. Results are gathered 
through the execution of a number of experiments that 
were defined for each area. These results are stored, 
taking into account the expected value and standard 
deviation for the set of samples of the targeted metrics. 
The general assessment methodology focuses on testing, 
and if possible validating, the different parts of the system 
individually, and then progressively integrating more 
complexity. The detailed experimental methodology is 
described under each test area subsection. 

4.1 Metrics and Experimental Setup 
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The following metrics were used to evaluate potential 
solution gains: Energy consumed, Time that takes to 
perform a function, Delay times and CPU load. Two 
experimental setups were implemented: 

(i) The baseline: application running stand-alone in the
device (no middleware, the application that
detects/tracks the human face is the only running on
the Android OS).

(ii) Middleware integration with the application using
cloud resources: the same application solely sends
messages containing image frames, getting these
from the camera, and sending these to the cloud,
being the frames’ analysis made in the cloud.

The hardware setup consists of one BQ tablet with 
Android OS, and one virtual machine with one core and 
1,75GB of RAM). The application uses the Computer 
Vision Library (OpenCV) to do face detection, as well as 
face tracking after detection. As this application makes 
significant image processing, it turns out to be a fairly 
heavy application in terms of CPU processing power, 
battery consumption and generated network traffic. Thus, 
the device performance gets worse over time. With these 
tests it is intended to check the percentage of battery 
discharged, and CPU load, during the application 
execution. The second experimental setup consists at the 
integration of the middleware developed with an Android 
application, using Microsoft Azure platform as the cloud 
computing infrastructure. 

4.2 Energy Consumption 

The application was tested on the two aforementioned 
scenarios to check percentage values for the battery 
energy spent. These experiments lasted 40 minutes and 
were repeated 5 times. As shown in Table 2 and Figure 4, 
there is no evidence of gains by transferring some 
application execution flows to the cloud. Results are even 
slightly better when the middleware was not used 
(difference never exceeded 8%).  

Table 2. Energy Consumption (as percentage of the 
battery full charge). 

Experimental setup Without Cloud With Cloud 
 

Average working battery 
charge (at the end) 73,6% 66,4% 

Standard Deviation 2,70 3,04 
Average  of b
spent by the five tests 25,2% 32,6% 

Standard Deviation 3,11 3,04 

This similarity may be due to excessive use of the 
video camera, which consumes a lot of battery power, 
although this component is also used extensively without 
the middleware. The constant access to the wireless 

network should be the largest impact on the results, since 
the higher transmission rate implies higher energy 
spending [17]. 

Figure 4. Energy Consumed, with and without cloud. 

4.3 CPU Load 

To check potential middleware advantages in relation 
to CPU load, the ”Face Detect/Tracking” application was 
subjected to tests lasting 20 minutes and repeated five 
times. In Table 3 and Figure 5, there is a significant gain 
with the migration of the detection and tracking 
algorithms to the cloud. This gain is due to the heavier 
work done now in the cloud, which alleviates the 
processing needs of the device’s CPU running the 
application (the device just grabs image frames on the 
device and sends them).  

By reducing the CPU load, the lifetime of the battery 
should increase. As previously explained, this was not the 
case due to other factors, such as more battery energy 
required for wireless communications. 

Table 3. CPU Load with and without cloud support. 

Experimental setup Without Cloud With Cloud 
 

Average CPU Load 68,98% 45,84% 
Standard Deviation 3,53 1,15 

4.4 CPU Load – Heavy Processing 

However, in situations where applications compete for 
CPU time in processing constrained devices, this solution 
can bring very interesting benefits. The image processing 
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algorithms require a lot of CPU load to be executed, 
which may prevent simultaneously other applications to 
run properly. The same also happens with the image 
processing application that ceases to have the CPU just 
for itself, competing for resources such as CPU 
processing time, and this competition may create 
difficulties to its execution, such as a smaller frame rate, 
getting this way less frames per second. 

Figure 5. CPU Load with and without cloud. 

To check if the middleware solution can solve this 
competition problem for limited resources, the following 
test scenarios were performed: checking the CPU status 
whenever an exhaustive analysis of 100 frames needs to 
be made, and checking the time consumed for both 
processing these set of images in the tablet or in the cloud. 

According to Table 4 and Figure 6, the CPU load 
reaches saturation values (100%) for single tablet 
processing. But usage of cloud processing originates a 
significantly lower CPU load at the tablet (~25% in 
average). Hence the integration of the middleware may be 
beneficial to run reliably multiple applications on a device 
of limited resources, because by transferring the execution 
flows to the cloud, much of the processing will be done 
outside the device, thus freeing some of the CPU 
resources (decreasing CPU load), so that other device 
applications can also be executed. 

Table 4. CPU Comparative load in exhaustive case. 

Without Cloud With Cloud 
 

CPU Load average (%) 98,69 25,53 
CPU Load standard deviation (%) 1,20 2,28 
Average (execution time)(ms) 1292 1100 
Standard deviation (ms) 5,60 4,80 

Figure 6. CPU Load in exhaustive case, with and 
without cloud support. 

4.5 Network and Processing Delays 

The proposed solution exploits networked cloud services, 
and so it is of relevance to test time delays associated to 
performing certain execution flows in the cloud. 
As expected the integration of the middleware brought 
some delay to the execution of the application (see 
experimental results in Table 5), and this delay may 
increase whenever the message size increases. 

Experimental tests evidenced there is a significant 
delay comparing with processing time for the baseline 
test, corresponding to executing the algorithm in the 
device. This long delay is explained by network 
conditions, since this network has some restrictions due to 
its large number of users. But the factor that most impacts 
this delay is the usage of TCP communications at the 
transport layer between the application and the cloud. 
Although TCP is a quite reliable transport protocol, since 
guarantees message delivery, it can also bring large 
delays, since network problems result in lost message 
segments being retransmitted until message reaches its 
destination, thereby translating into an extra delay when 
sending the message. Even with the implementation of a 
mechanism to discard messages, these are only discarded 
when the message is fully received (the use of UDP 
communication was not feasible to test in this case due to 
Microsoft Azure platform limitations).  

Table 5. Time delays for face detection and tracking. 

Experiment Face Detection / 
Track Algorithms 

Average 
(ms) 

Standard 
Deviation (ms) 

Baseline (no 
cloud) 

Detect 195,06 5,56 
Track 56,95 0,93 

Cloud-based (not Detect 157,19 4,79 
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accounting 
transmission time) Track 25,29 9,51 

Cloud-based 
(including 

transmission time) 

Detect 575,56 28,18 

Track 423,16 0,934 

Observation of Table 5 also reveals the occurrence of 
high standard deviation values. This is due to image 
variations in terms of complexity, since image complexity 
can cause the increase or decrease of the algorithm 
execution time. Another important factor contributing to 
these high values is the quality of Internet connection, 
which varies over time due to several factors such as 
network congestion. Thus the end-to-end execution times 
of the algorithm may vary significantly. 

4.6 Cloud Storage for Wireless Sensors 

A second test scenario was prepared consisting of the 
integration of the middleware with the Android 
application of BIOPLUX. This Android application 
connects via Bluetooth to a Plux@ motion bracelet 
(shown in Figure 7) that contains a motion sensor. This 
sensor is continuously sending inertial coordinates to the 
Android application running on a BQ tablet (that saves the 
coordinates in a file). As the Android device has reduced 
memory resources it is very likely that the Android 
memory will eventually be fully allocated after some 
time. The middleware integration with the Android 
application solves this issue, since whenever the used 
memory reaches a certain value the data will be sent to the 
cloud (using Windows Azure Blob Storage and the cloud 
storage service). This way the application will not block, 
and data will not be lost. With this test, whenever the 
memory arrives to values equal or superior to 50% 
occupancy and the Internet connection is good (according 
to the definition of “good” given by the application 
programmer), a group of files is sent to the cloud. This 
test scenario will evaluate if after the uploading of the 
files, the state of the memory will drop below 50% 
occupancy. And finally it will be checked if the files that 
were sent to the cloud were successfully saved. 

Figure 7. BIOPLUX motion bracelet. 

Therefore, this experiment will evaluate whether the 
hardware management mechanism avoids an application 
entering a blocking state, or even crashing due to lack of 
resources. Once the memory of the Android reaches half 

its capacity, an application sends all files at a specific 
folder to the cloud and erases them from Android device 
memory, freeing the memory so that the application can 
continue to run reliably. After running the experiment, all 
the files that were in the folder were successfully stored in 
the cloud, showing that the management mechanism is 
reacting when the memory reaches is a critical point 
(Figure 8 shows the upload of one such file on the cloud). 

Figure 8. Azure Interface (showing that a file was 
uploaded to the cloud at specific time instant). 

More recently [18], we have successfully integrated the 
proposed middleware with a WSAN platform, OpenHAB, 
for smart home automation (see Figure 9). Data storage is 
transferred between the OpenHAB server device and the 
cloud according to the monitored conditions. 

Figure 9. Experimental setup consists of several 
sensors and actuators connected to a RaspberryPI 
running OpenHAB. It is also presented a user 
interface image showing sensor values in real-time. 

4.7 Discussion 

The inclusion of this middleware in applications to be 
deployed on devices with limited hardware resources (e.g. 
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battery, CPU) brings some advantages for the lifetime of 
an application and it avoids the application entering in a 
locking status because of lack of resources. However, in 
certain applications it is impossible to make gains on all 
hardware components as seen in aforementioned 
experimental tests. This is the case for applications that 
make excessive use of certain hardware components that 
require a lot of battery. Although the middleware also 
consumes some device’s energy due to higher 
communication transmissions, this overhead is often small 
when compared with the energy consumption by one 
application, or a multitude of them (as it is often the case 
for complex robotic brains [19]) that has quite high CPU 
processing needs. The downside of this middleware 
concerns high transmission times for sending and 
receiving messages to/from the cloud. However this 
limitation can be overcome with the implementation of 
other transport protocols (if the cloud platform allows so). 
Even with these restrictions the developed middleware 
proves that it can solve some problems that exists in 
devices that are limited in terms of resources. 

5. Conclusions

Recent technological advances leveraged the introduction 
of new concepts applied to the various economic sectors 
of our society. WSAN and cloud robotics are emerging 
concepts in areas of growing interest. Indeed, the idea of 
monitoring several types of parameters in various 
environments has motivated significant research works in 
these areas. Cloud Computing platforms are a prominent 
element that can respond in a more efficient and powerful 
way to current challenges.  

This paper proposed a state machine based middleware 
to manage the transferring of execution flows between 
terminal devices and the cloud. The main goal was, using 
cloud technology, to address the problem of a device’s 
lack of resources such as limited memory and battery. On 
a larger scope, the goal was to address the development of 
a middleware supporting the flexible, and dynamic, 
transferring of execution flows on a cognitive robotic 
brain between on-board devices and the cloud. 
Experimental evaluation showed that offloading the 
execution flows into the cloud does not necessarily 
reduces energy consumption (or increases battery 
lifetime), because more battery energy may be required 
for wireless communications. Experiments indicate 
however that using the cloud to solve the lack of device 
resources is quite advantageous, due to CPU load 
reduction. This may lead to battery with extended 
autonomy. But most importantly, it avoids applications 
entering in blocking states due to lack of memory. It also 
allows running more applications in a simple device that 
otherwise would exceed the available resources. The 
decision whether to run an application locally or remotely 
is done dynamically, according to the status of available 
resources, as checked through active monitoring.  

This middleware will be most beneficial for 
programmers who want to make the most of the available 
hardware resources on the devices. 
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