
NovaPS: A Robust Publish/Subscribe Overlay for

Multimedia Communication

Yuanqiang Huang, Zhongzhi Luan, Depei Qian
Sino-German Joint Software Institute

Beihang University
Beijing, China

yuanqiang.huang@jsi.buaa.edu.cn

Abstract-The publish/subscribe communication paradigm is

becoming more and more popular in a large number of

applications. It provides flexibility in subscribing content of

interest without prior bindings. We believe that this technique is

valuable to multimedia communication which requires location

independence and asynchronous communication. In this paper,

we present NovaPS, a robust Publish/Subscribe overlay for

reliable communication between the publisher and subscriber

with high delivery ratio and fast notification/subscription

matching, while keeping relatively low false positives rate,

time/space overhead and communication cost. A detailed analysis

of keys is given in this paper. Experiment results show that our

NovaPS overlay can achieve the above features nicely in the

dynamic network environment.

Keywords-publishlsbuscribe;multimedia communication;robust

I. INTRODUCTION

Publish/Subscribe is a communication paradigm supporting
multiple loosely coupled message exchange among multiple
parties. It distinguishes two basic roles: publisher and
subscriber. The former is the sender of messages while the
latter is the receiver of messages. Subscribers usually don't
have prior knowledge about publishers, but only declare their
own interests, including topic of the notification, attributes and
so on. When any notification published by a publisher can
satisfY the subscribers' interests, it will be routed to them
automatically. A key feature in distributed Publish/Subscribe is
decoupling of publishers and subscribers both in both time and
space. Both parties involved get in touch with each other in the
interest-based information space without any previous bindings
between them. It leads to the exchange of messages not subject
to the existence of messages' sender or receiver. To complete
the task, publisher is only required to send messages to a
specific information space, and messages that satisfY interests
will be sent to corresponding subscribers later. Due to the great
prospect of asynchronous, anonymous and many-to- many
(N-to-N) communication, Publish/Subscribe continues to be a
hot research topic in distributed system.

Publish/Subscribe is very attractive to large-scale, highly
dynamic environment and has been applied successfully to
applications such as stock analysis[1], E-Commerce [2],
RSS[3], distributed coordination[4], Electronic Auction[5], and
online games[6], etc. We consider Publish/Subscribe can also
fit multimedia communication which usually adopt traditional

liali Du, Xiang Ni, Lan Gao
Sino-German Joint Software Institute

Beihang University
Beijing, China

lan.gao@jsi.buaa.edu.cn

client/server communication model. The using of
Publish/Subscribe paradigm, as depicted in Figure 1 is of the
following merits: i) It helps separation of application logic
from the underlying addressing mechanisms. Clients as
subscribers don't need to know the location (IP address and
port) of the multimedia server, and the multimedia server as the
publisher doesn't need to know the status of requesting clients
(including their addresses and the number of clients, etc)
neither. The location independence between server and clients
provides the flexibility to insert fault-tolerant mechanism such
as a smoothly switching to backup server without disturbing
clients when the current server fails. ii) Synchronization
between server and the requesting clients is not necessary. The
multimedia server can publish the data without knowing the
existence of requesting clients. Supported by some of the
buffering mechanism, the data can be buffered by the
communication middleware. Specific optimization mechanism
can be used to transfer the data to somewhere close to the
potential clients. Once the clients connect to the system, they
can get the required data immediately. The buffered data can be
removed when it is kept too long or no enough buffer space. iii)
It helps to mitigate the pressure to the server when having a lot
of requests from clients. The server only needs to send data
once, and the data will be delivered to all requesting clients
through some specific multicast technology. iv) It is easier to
evaluate and predict the performance of the multimedia service
accurately due to decoupling of the multimedia server and the
clients.

In this paper, we focus on the methods and mechanisms of
robust overlay to guarantee Publish/Subscribe quality for
multimedia communication. Our contributions to this topic
include:

Figure I. Multimedia communication using Pub/Sub paradigm

ziglio
Typewritten Text
CHINACOM 2010, August 25-27, Beijing, China
Copyright © 2011 ICST 973-963-9799-97-4
DOI 10.4108/chinacom.2010.99

• We introduce a simple but efficient neighbor node
maintenance method to construct and maintain an overlay
with a topology of k-regular random graph with low cost
and desirable properties.

• We propose an index-based content matching between
notification and subscription, which reduces the cost of
content matching in both time and space This mechanism
is especially suited to multimedia communication.

• We introduce a rendezvous-based dynamic routing
method in making tradeoff between communication
overhead and delivery performance. It can significantly
reduce the communication overhead with relatively small
compromise of the delivery performance.

II. THE Nov APS OVERLAY

A. Content space model

In the multimedia communication, different clients may
subscribe to the same set of media frames, for example users
may choose to watch the same online video, so every client as
the subscriber will issue subscriptions for related video
attributes like media_type, media_source, support _ codec, and
frame resolution, etc. These attributes are usually assigned a
unique value. Moreover, it is possible that subscription to
attribute value in the form of a range instead of a single point.
For example, in video image processing applications, different
client may subscribe to different data blocks of a frame at the
same time for compressing or repairing purpose. In addition, in
applications with layered video codec feature[17][7], clients
may choose to receive only some of the layers to achieve an
acceptable video quality under their specific network condition,
so they also may specifY the IDs of the video streaming layer.

Due to these requirements in multimedia communication,
we defme the content space in Publish/Subscribe mode as
{topic, (at I, at2, . . . atrJ,payload). Here topic indicates the
topic-relate information that publisher and subscriber are
interested in. It can also be considered as a unique
identification of an interest group, ati stands for attributes of the
topic, which indicate detailed schema of the topic. The value
ranges of these attributes constitute a comprehensive space of
the interest in the corresponding topic. The payload is the
actual load processed by receivers, such as frame data which is
in binary bytes transparent to the communication middleware.
In fact topic itself is a special unique attribute. Although
different topics may have the same attributes definitions,
subscribers with same attributes but different topics will not be
considered as members of the same interest group. However
subscribers in the same interest group could declare filtering
constraints on these attributes to indicate their real interests. A
filtering constraint is defmed as: FC=(fCJ/C2, . . . ,fcrJ. Following
the definition of subscription in [9], filtering constraints FC is
actually an expression of a set of predicates, that is FC=p I/lP2
/I ... /I Pn. Each Pi is a predicate about the attribute ati,
consisting of attribute name (an) and constraint on this attribute
(ac). The constraint ac consists of operator and the boundary
value for attribute av, that is p={an,{operator,av}}. For
example, members in the interest group may issue filter
constraints {JO<X<20, Y=ABC} to declare that they are
interested in the notifications in which the value of attribute X

is greater than 10 and less than 20, while the value of attribute
Y is "ABC".

B. Constructing and maintaining the overlay

Our overlay relies on a membership management service to
assign system local view to each node [8] so that every node
can use its local view to setup neighbor relationship with other
nodes.

In this paper we first cluster the nodes by interest topics.
Nodes with the same topic form an overlay having the topology
of K-regular random graph. Notifications with the same topic
can be broadcast in this overlay. Since the possibility that a
node changing its interest topic is small, the overlay topology is
relatively stable and the K-regular random graph could
guarantee that message can be reliably and accurately delivered
to every node in the overlay. It should be noticed that even
though broadcasting in the topic overlay network brings much
bandwidth redundancy for transferring messages, it increases
the success ratio of message delivery in case of faults. Through
message bundle we can further mitigate the pressure on the
network bandwidth caused by redundancy.

Overlay topology

Unlike other random graph, the degree of each vertex in
K-regular random graph is fixed to K. When the degree of node
k>= 3, K-regular random graph has some attractive properties:
i) When randomly removing linear subset of its vertexes or
edges, the remaining vertexes are still connected (with a very
high probability to keep all connected) [10], this feature makes
network with K-regular random graph topology fault tolerant,
which can ensure message delivery to the remaining nodes
even if many nodes or links are failed; ii) The diameter of the
graph grows logarithmically with the total number of vertexes
in the graph. This feature indicates the number of hops for
routing a message to any other node will increase very slowly
with the incense of total number of nodes; iii) Any two
vertexes in the graph usually have K disjoint paths, which is
called K-connected. [11] has proved that the probability that
K-regular random graph is not K-connected is O(N2-K),
showing that the greater value of K is, the less possibility that
the K-regular random graph is not K-connected. And when the
system size is large enough (N is much larger than I), the
probability that K-regular random graph is not K-connected is
very small (probability of non-k-regular is lIN) even if K is set
to 3. For overlay network based on K-regular random graph,
each node needs only to interconnect with constant (k) number
of neighbor nodes to guarantee that the properties of K -regular
graph become effective. Here, we do not distinguish publisher
or subscriber, because we assume every node can either be
publisher or subscriber. The high symmetry of the K-regular
random graph gives every node capability of being either a
publisher or a subscriber. So the publish-subscribe overlay
network based on K-regular random graph can easily
implement a common n-to-n pub-sub paradigm.

The neighbor node maintenance

If a node is allowed to issue many subscriptions for
different topic, it may be clustered into different interest groups,
resulting in maintenance overhead since neighbor links
increase linearly with the number of groups it joins. To reduce

the overhead on nodes, we utilize the fact that multiple nodes
could have subscribed to the same topic to squeeze the node's
degree. We consider that a node should choose the neighbor
nodes that share more common topics with it. With this
strategy various interest groups may share the most common
node interconnections, and the maintenance overhead can be
reduced naturally. But blindly choosing neighbors with the
most common interest topics will also lead to a situation that a
few nodes will form isolated clique, which destructs the
connectivity of the whole group. Moreover randomly choosing
a neighbor node can guarantee small probability of forming the
cliques, thus the overlay has better connectivity. Based on the
above consideration, we define our strategy for choosing and
updating neighbor nodes as the follows: Each node periodically
chooses a neighbor based on its local knowledge and checks
whether its current degree (number of neighbor nodes) has
exceeded the maximum degree. When the degree exceeds the
limit, the node should reduce its neighbors until its degree is
below the maximum limit, meanwhile the node will try to
maintain the maximum of the average interest overlap with all
its neighbors.

We assume that the maximum degree, that is, the total
number of neighbors of a node is MAXneighb, the number of
neighbor nodes maintained in each interest group is K. Our
neighbor node maintenance procedure is depicted in Figure 2:

Revoking the neighbor relationship with the neighbor who
violates the MAXneighb limit and shares the smallest number of
common interest topics will help both sides to reduce degree.
Redirecting a node means that node A revokes the neighbor
relationship with some neighbor and then redirects that node to
another neighbor with which it has the smallest number of
common topics. This will has the least affect on the average
overlap. If node A's degree is still below the maximum limit, it
randomly chooses a node and determines the current common
topics between them. If any common topic has not been
K-coveraged, node A will setup a neighbor relationship with
that node. The establishment and revocation of the neighbor
relationship can refer to the methods and protocols in [13]. In
addition, we noticed that each node needs to obtain information
such as the current number of neighbor nodes and interest
topics from its neighbors to complete the neighbor updating
procedure, so neighbors need to exchange status with each

On every nodeIA):

If A's degree is greater than MAXnechb
selecting a neighbor who also violates its own limit (MAXcwchb) and share the least common

interest topics with A;

If such neighbor exists

A revokes the neighbor relationship with this node;

If such neighbor doesn't exist

select neighbor B who has the least neighbors;

select another node C which share the least common interest topics with A;

redirect C to 8;
if A's degree is less than the limit MAXnechb

randomly choose node D who is not A's neighbor yet from the local view provided by

membership service;

calculate the common interest topics of A and D, denoted as tconvn;
for each topic t in 1:mnm

if A has less than K neighbors being interested in topic t

A establish neighbor relationship with 0;
Ex" the loop;

sleep for a fixed period;

Figure 2. Neighbor node maintenance procedure on every node

other in real time. The practical method is to push the relevant
information to its neighbor nodes when a node changes its
status. Since the message may be lost in real environment, each
node should send periodic heartbeat to its neighbor nodes to
determine whether they have received the previous message
and res end the message if it was lost.

e. Content Matching

As we mentioned before, filtering constraints is the
conjunctive expression of multiple predicates. Each predicate is
a constraint logic for a specific attribute. The most commonly
used predicate is to determine wether the value of an attribute
is within the valid range or precisely equal to a specific number
or string. In this paper we assume that subscription predicates
are range-predicate or equal-predicate. To accelerate matching
speed, we should first index every notification and subscription,
and then confIrm match through comparing indices of
notification and subscription.

A method with combination of the hash-based dimension
reduction and the Bloom Filter is proposed for indexing
notifIcation and subscription. Since each notification and
subscription filter is a multi-dimensional description about
attributes, we fIrstly turn this multi-dimensional description
into a unique one-dimensional value, which we called
dimension reduction. The dimension reduction for subscription
is most complicated. Since filtering constraints consist of
range-predicates and equal-predicates, we assume that the
predicts in FC=(fc 1, fC2, . . . fcm, . . . , fcr) are arranged in a certain
order,fc; (1<=i<=m) are range-predicate andfc;(m+ 1<=j<=n)

RRRRR
8'8'8'8'8'

Figure 3. A example of hashing for numerical range

are equal-predicates. Equal-predicate actually declares a point
in the space, and the value of the point is a constant which is on
the right side of equal-sign, so we can directly hash this
constant value and generate a unique hash value. However, for
range-predicate, it declares a range in space, so we cannot map
it to a unique point by hash function directly. We divide the
value space of each attribute into R disjoint but continuous
unit-ranges. Any value located in same unit-range will be
hashed to same value. We name this hash value as the ID of
corresponding unit-range and different range has its own
different ID. As we can see from the Figure 3 below, numerical
values ranged from 1 to 11 are evenly divided to five ranges,
and values in each range will have the same hash value, the ID
of the range. Here value ranging from 1 to 11 is eventually
hashed into 5 discrete points. As we can see any range declared
by range-predicate will have overlap with some continuous
unit-ranges. We assume the number of unit-ranges which have
overlap with the range of some scope-predicate is r;{i= 1,2 . . . ,m),
so the FC will be eventually hashed to n�l ri n-dimensional
Cartesian products (the number of overlap with unit-ranges will

always be I to any equal-predicate, so it will have no effects on
the size of result set). N is the number of attributes associated
with the indexed subscription. Each dimension of the Cartesian
product corresponds to a unit-range ID for an attribute. Finally
every Cartesian product will be hashed again and result in
I1�1 ri hash values in the end. Obviously I1�1 ri is
determined by the range declared by each range-predicate.
When I1�1 ri is larger, we need to do more hash operations
and use more space to save the hash values.

Notification will be treated as a subscription in which
predicates are all equal ones. If the notification matches a
subscription, it is within the range declared by this subscription,
and its hash value will be equal to some IDs generated by this
subscription. So we could determine some notification matches
a subscription by checking set inclusion of hash results. We
noticed that the range declared by a range-predicate would
partially cover at most two unit-ranges. Assuming the range of

a range-predicate is li, and the sum of the overlapped
unit-range is l� (l� ;?: li).On the premise of values of attribute
distributing uniformly, the false positives rate for one attribute
is 1 - li/ l�. Since we have m range-predicates, so the
aggregated false positives rate is 1 - I1�1 Cli/lD. So the
granularity of partition of value-space and the rate of false
positives compete with each other. If we could learn in advance
or predict the distribution of attribute value at publisher side,
false positives rate can be reduced further by implementing
fine-grained unit-partition at dense-distributing part and
coarse-grained one at sparse-distributing part.

After we decompose a subscription to several hash values,
we use Bloom filter (BF) to integrate these values into binary
vector index. BF is a highly space-efficient random data
structure. It can store n elements into a bit array of m bits. BF
will use d different hash functions to operate on the same
element to obtain d hash values (d<m) that correspond to d
positions in the bit array and then set the bits at these d
positions to 1. When we need to determine whether one
element is saved in the bit array, we use the same hash
functions on this element to get d hash values and search
whether the corresponding d positions are all 1. If so, this
element has been stored, otherwise not. The hash values of
subscription are inserted into an empty Bloom filter one by one
(the elements number n equals to the size of the hash results of
subscription). When we want to know whether a notification
matches a subscription or not, we just need to determine if the
index (hash value) of the notification can be found in the
subscription's bloom filter. If so, the event notification matches
the current subscription.

As stated before, the rate of false positive for hash-based
dimension reduction procedure is P1 = 1 - I1�1 Cli/lD. The
BF procedure also introduces false positive which is depended
on the size of bit array (m), the number of element stored (n)
and the number of hash functions used (d). The rate of false

positives for BF is: Pz = (1 - (1 - l/m)dn)d � (1 -
e-dn/m)d. The final rate of false positives for the whole
indexing procedure is P = 1 - (1 - P1)(1 - Pz) .

D. Dynamic routing of notification and subscription

Although indexing notification and subscription can
accelerate matching speed and eliminate false negative,
topic-based publish-subscribe above still can't distinguish
subscribers with different filter constraints in the same interest
group. To implement content-based routing, we proposed a
dynamic routing method for notification and subscription.
Intrinsically it belongs to rendezvous-based methods. Different
from routing-table based methods [9][14][15][16],
rendezvous-based method guides notifications and
subscriptions to "meet" at the intermediate node in charge of
the keys that both are mapped to. As mentioned above, the
Bloom Filter is a bit array of m bits, we use it to represent the
key. For comparing, we assign an ID with m bits for every node.
So we propose the steps below to identity rendezvous nodes for
notification and subscription:

(1) Choose the nodes having the most common 1 's with the
notification/subscription key. The number of common 1 's
is the number of l' in a bits array which is the result of
node ID "AND" notification/subscription key.

(2) Choose the nodes which have the most 1 's among the
ones from step 1.

It should be noticed, even ifE�S, E and S may still have no
common rendezvous. So it is required to minimize this
possibility.

Lemma: Assuming all the nodes in the system are reachable
and the number of 1 's of their IDs is same, the less the number
of 1 's in the node ID, the higher possibility that the notification
and matched subscription have the same rendezvous.

Proof: Assuming node N j is a rendezvous for notification E,
the number of common 1 's between Nj and E, denoted by KJ,
is maximum. As E � S, the number of common 1 's between E
and S, denoted by YJ, is greater than or equal to KJ, Yj>=Kj. If
Nj isn't a rendezvous for S, then there must be a rendezvous Nz
which has the greater number of common 1 's with S, denoted
by Yz. Since the number of 1 's in any node ID, denoted by X,
is fixed, so we can have Yj<Yz<=X. Besides, the number of
common 1 's between Nz and E, denoted by Kz, should not be
great or equal than KJ, otherwise Nz will fit better to be a
rendezvous for E than N 1, which is contradict to the fact that N j
is a rendezvous for E. Since Kz>=O, Kj>Kz, Yj>=KJ,
Yj<Yz<=X, so finally we have 1<=Yj<Y2<=X (Yll Y2, X
should be integers). Assuming X=n (n>=l) and <Yj,Yz> is
the combination of Y j and Y z that satisty the constraint above.
When Yz=n, Yj=l, 2, ... , n-l. So there are n-l valid
combinations. Similarly, when Yz=n-l, there are n-2 valid
combinations, and so on. So we have 1+2+ ... +n-l= n*(n-l)/2
combinations that satisty the constraint. Because we have nZ

combinations of <Yj,Yz> altogether when X=n, it can be
inferred that the probabili� that <Y 1, Y z> satisfies the
constraint is: P= (n*(n-l)/2)/n =1/2-l/(2n). As shown in Figure
4, in case of X=4, the number of valid <YJ,Yz> combinations is
6, the probability that satisfies the constraint is evaluated to 3/8.
Now we can get the conclusion that when n get smaller, the
probability that satisty the constraint (1 <= Y j <Y z<= X) is
smaller as well, which means a higher probability that
notifications can match subscriptions. 0

Y2

<1,1> I <1,2>

<2,1> <2,2>

<3,1> <3,2>

<4,1> <4,2>

YI

<1,3> <1,4>

I <2,3> <2,4>

<3,3> <3,4>

<4,3> <4,4>

Figure 4. The valid combinations of <Y"Y2> in case ofX=4

From the analysis above, we can see if X=l, the probability
that notifications and the matched subscriptions have the same
rendezvous is 100%, which means every pair of notification
and subscription can have a common rendezvous. However, it
implies that most of nodes in the system will be chosen as
rendezvous for each notification and subscription, which turns
the routing procedure into broadcast again. As a result, it is
necessary to make a balance between accuracy of routing and
the message overhead in real application.

Obviously, both the publishers and subscribers need to
make their own notification and subscription disseminated to
the possible rendezvous by routing. In order to guide the
routing on intermediate nodes, forwarding messages is required
to bring with some information. The common message data
structure for notification and subscription is shown in Figure 5
(a). KeYBF represents the Bloom Filter key for notification or
subscription. To avoid messages passing through some node
repeatedly, Route stores the nodes that messages have already
reached. MReplica and MHop are used to prevent message
explosion during routing. MReplica indicates the allowed
maximum number of replicas for a subscription in system, and
MHop denotes the allowed hop counts for a message routing.
Both MReplica and MHop are statistical optimum values.
Source stores the source address of message. Thus, when there
is a match at the intermediate nodes, message can be sent
directly to the destination.

Data Structure, denoted as RM:

KeYsF: the Bloom Fitter key for notification/subscription

Route: the nodes that have been through

MReplica: the maximum number of copies allowed (only for subscription)

MHop: the maximum hop count allowed

Source: the address of subscribing nodes

(a) The general data structure for routing message

On every node (A):

1. RM.MHop··;

2. RM.Route.add (A);

3. Find the most possible rendezvous Set,n from neighbor nodes and itself.

4. if Set" include se�

5. RM.MReplica··;

6. save RM locally;

7. If RM.MReplica!= 0 && RM.Hop ! = 0
8. Nodes = Set,,· RM.Route;

9. If Nodes. 0
10. Nodes = {neighbors}· RM.Route;

11. for node n in Nodes

12. copy route message RM and replace MReplica wrth (MReplica/ Nodes.size)

13. forward this new RM message to n.
(b) The routing algorrthm for subscribing message

Figure 5. Dynamic routing of subscription

Figure 5 (b) shows the routing algorithm for subscription.
On every node, subscriptions may be forwarded from its
neighbor nodes or generated by itself. MHop will be reduced
by 1 and the current node ID added to Route when a
subscription message coming in, which means the current node
has been gone through. Then current node will check itself and
its neighbor nodes to [md some nodes which are most possible
to be rendezvous. If current node is the only one most possible
rendezvous compared to its neighbor nodes, MReplica will be
reduced by 1, and a copy of subscription message will be
stored in it (From line 1 to line 6).The message is allowed to be
sent out if neither MHop nor MReplica has been reduced to 0,
which means there is a need to find more rendezvous. Firstly,
the algorithm will remove the nodes recorded in Route. It
should be noticed that there exists a probability that the
message may have traversed all the candidate nodes. In this
case, we choose those nodes that haven't be traversed before
from neighbor nodes. At last, in order to ensure that sum of
MReplica in message copies would not be greater than the
original one, MReplica in each forwarded copy is averaged by
the number of forwarding branches (From line 7 to line 13). As
average value of MReplica may not be an integer in practical
situation, we use round-robin manner in which node distribute
the residue one by one in round-robin fashion.

The routing process of notification is basically the same
with subscription. When a notification arrives at a node, in
order to find matched subscription, it will match all the stored
subscription information on that node. Besides, MReplica will
not be considered when routing a notification, so the
propagation distance of the notification message is subject only
to value ofMHop.

Ill. EVALUATION

A. Experiment Environment

We have implemented the prototype of NovaPS in Java and
simulated it on an experimental platform with ten physical
nodes connected by 1 G bps LAN in our lab. Eight of the nodes
are equipped with 2GHz Intel Xeon 8 processor, 4GB RAM
running Red Hat with Linux kernel 2.4.21, the others are
equipped with 2GHz Intel Xeon 4 processor, 7GB RAM
running Red Hat with Linux kernel 2.6.18. For each simulation,
1GB memory is allocated for NM of SUN jdk1.6.0_12.

B. Experiment Configuration and Results Analysis

Regarding multimedia communication, range-predicates
may be used to restrict the area (horizontal and vertical range)
of the frame block in audio or video processing applications.
Generally the resolution of unit block is 16*16, and the
resolution of video is 320*240, like video on Youtube[20] and
Y ouku[21], so the maximum horizontal range is 20 and the
maximum vertical range is 15. The number of hash values from
a subscription is 300. For the Scaled Video Coding applications,
the range-predicates are used to restrict the layers needed for
video coding, and the number of layers is no more than lO in
general. So we will get 10 hash results at most. Besides, we can
see the values of the attributes (horizontal, vertical and layer,
etc) are aligned with respect to the boundary of the unit range.
The false positives introduced by hash-based dimension
reduction method would be zero, which means that the rate of

false positives of notification-subscription matching depends
only on the configuration of Bloom filter. Now we can see, for
multimedia communication, our matching introduces neither
heavy time/space overhead, nor higher rate of false positives
during dimension-reduction.

We run simulations with the number of subscription topics
ranging from 1 to 10, and the number of nodes ranging from
1000 to 10000. Every subscription topic is attached with 3
attributes, each of which has an integer value ranging from -5
to 5. Besides, in our experiments, we use three subscription
distributions: i) uniform distribution; ii) exponential
distribution with mean of 14, which means the 10% of the most
popular items account for 51 % of the total [18]; iii) Zipf
distribution with a exponent setting to 1 [19], for choosing topic
and range of attributes respectively.

Reliability of the overlay

In this section, we examine the reliability problem in our
pub-sub overlay with K-regular random graph topology. As
Figure 6 (a) shows, with average number of subscriptions per
node from 1 to 5 and 3 regular neighbors per topic, the average
node degree is less than 11 with three different subscription
distributions, which means each node could build approximate
3-coverage for each subscription topic with 11 neighbor links
on average. We also can learn two inferences: i) the average
node degree would decrease when the system size is getting
large; ii) the average node degree would decrease with the
subscription distribution skewed, as iJlustrated in Table 1. For
the first inferring, we think that caused by the fact that nodes
have more chances to find the counterparts of common
interests when the scale of the system becoming larger and
more nodes being assigned interests within a limited content
space. Similarly for the second inferring, nodes tend to have
more common interests while the number of different
subscription topics becomes smaJler (optional interests
shrinking). Moreover, Figure 6(b) and 6(c) present to what
degree our NovaPS overlay topology approximates the
K-regular random graph. We can see from Figure 6(b) that
experimental diameter of the overlay is at most one hop more
than the theoretical diameter of the K-regular random graph,
which means the worst latency (in hops) between any two
nodes is very close to that of the K-regular random graph. The
number of disjointed paths in our overlay is also very close to
that of the K-regular random graph with k=3, which means on

10

+---- -+- Uniform

_____ +
-x- Zip(

14 -+-theorydiameter
-x- experimental diameter

average every node can receive complete messages even if
losing connections with its k-l neighbors. Besides, the results
of average distance teJl us the average latency between two
nodes is almost half of the worst one. (c) gives us a snapshot
about the ability of overlay fault-tolerance. The percentage of
lived nodes which are not isolated can be greater than 80%
even if half of the nodes are removed randomly from the
overlay. The isolated nodes increase sharply when more than
50% nodes are removed. It is because the node removal has
caused many nodes to lose aJl their neighbors and
reconstruction takes too long time to complete.

TABLE!.

#nodes
Unifrom's

Zipf's
Exponential's

NUMBER OF DIFFERENT SUBSCRIPTION TOPICS WITH THREE
DISTRIBUTIONS

1000 3000 5000 7000 10000
96 100 100 100 100
50 69 75 74 81
27 30 37 44 45

False positives of Matching

Since we have restricted the maximum size of the result set
by subscription dimension reduction (n) to 1000, it's
reasonable to set the size of the bits array in Bloom Filter (m)
to be double of n. Here we set m to 2048. Firstly, we let n be
equal to a randomly generated number, say 343, and adjust the
number of hash functions used in Bloom Filter (d) to obtain the
curve of the rate of false positives (RFP) when matching
1,000,000 notifications with some subscription using our
method. We can see from Figure 7 (a) that the actual RFP is
even lower than the theoretical false positive rate value of the
Bloom Filter. We consider this is because the sample space is
limited in our experiments, even if we have issued 1,000,000
notifications whose attribute values are distributed uniformly in
their value space. But an the theoretical RFP and the RFP in
our experiments shows the same pattern: when d is smaJl at
beginning, it is unlikely that two different notifications wiJl
mapped to the same index; but when d increases continuaJly, it
wiJl cause more mapping conflicts and raise RFP after some
threshold point. In our case, the threshold point is d=4. Figure 7
(b) shows another phenomenon.When d is fixed to 5, we find
that RFP doesn't always increase while n increasing. ActuaJly
RFP begins to decrease at the point of n=600, which may
contradict with analytical result of the Bloom Filter. We

� percentage of nodes covered

0.' x________. � • &""oeoti.,

��
)I(experimental average distance

--- experimental average paths 0.8

number of nodes
('1

--x

2000 4000 6000

number of nodes

(til

8000 10000

0.7

0.6
05

0 ..

0.3

0.2

0.1

0.0

0.1

Figure 6. Reliability of NovaPS overlay with 5000 nodes

percentage of nodes removed

(el

0.9 1.0

consider the reason for this phenomenon is the value space of
the attributes in our experiments is limited. When n becomes
larger, the ranges of the attributes in subscription are close to
the maximum, the possibility of a notification falling outside a
subscribed space IS smaller. So the RFP decreases
correspondingly.

According to theoretical analysis of the Bloom Filter, we
can get, for a given m and n, the number of hash functions that

minimizes RFP is d = � ln2, as proved in Figure 7 (a). So n
taking the optimal d, the expected RFP p and fixed n, we have

optimal m = - (nlnp�
[12]. Assuming the RFP of BF expected ln2)

is 1%, optimal m=9.5n. So while obtaining the most popular
value of n in some hotspot subscriptions, we can control RFP
by adjusting m.

Efficiency of dynamic routing

In this section, we focused on verity if our dynamic routing
method can help to achieve the balance between message cost
and coverage of subscription in an interest group. In all
experiments, we set maximal hops for routing message (MHop)
and maximal number of copies of subscriptions (MReplica) to
10g(N), which N is the total number of nodes in this group. As
illustrated in Figure 8 (a), the cumulative percentage of
notifications is the percentage of notifications that meet less
than b percent of matched subscriptions during routing. Here b
is called notification coverage, which implies the ability of our
dynamic routing method to deliver a notification to its matched
subscriptions. From the figure we can see the cumulative

Figure 7.

0.16 -0- rate of false positives by experiment

0.14

0.12
� f 0.10 �-'."�."-" , � � � 0.06

0.06

0.04

number of hash functions used in Bloom Filter
(a)

0.7 ,-------------------,
-0- rate of false positives by experiments

0.6 -.- rate of false positives by theory

0.5

0.4

0.3

0.2

0.1

0.0

number of nodes
(b)

Comparison for RFP with experiments and theory analysis

percentage of notifications will decrease with the decreasement
of number of l's in node ID (nbJ) when considering same
value of notification coverage. This verified the theory analysis
above which has declared that the possibility of notification
meet a matched subscription during routing will increases with
the decreasement of nbJ• We also can infer most of
notifications (>=80% when nbJ <=3) can achieve the coverage
of more than 50%. Figure 8 (b), (c) confirm our inferring. In
Figure 8 (b), the coverage averaged by 200,000 notifications
gets very close to 50% even nbJ is set to 10. And Figure 8 (c)
gives us the reason of choosing relatively big value of nb J even
it's known for sure that bigger nbl would deteriorate the
notification coverage. It verifies the analysis above again that
bigger nb J can make the possibility of notification meeting
matched subscription lower with the reward that routing
message cost is reduced as well. So it gives us a way to balance
bandwidth overhead and delivery performance in real
applications.

IV. CONCLUSION AND FUTURE WORKS

We have presented NovaPS, a robust overlay for
multimedia communication in dynamic environment. As
shown in our evaluation, NovaPS can scale well when
subscription distribution is skewed and system size is big. It
can deliver notifications to all matched subscribers with high
reliability even half of the nodes happened an error. Due to the
content matching is crucial for improving multimedia
performance in Publish/Subscribe, we adopt a index-based
method to speed matching between notification and
subscription, and obtain a controllable false positives rate
through compromising a little space overhead. Dynamic
routing in NovaPS gives us another chance to find the tradeoff
between communication overhead and delivery performance
when considering bandwidth cost. We can also see from the
evaluation above, a relatively small compromising of delivery
performance can lead to big reduction of communication
overhead. In multimedia communication applications which
have requirement of 100% delivery ratio, we could use the
strategy that firstly each node can deliver messages in the way
of dynamic routing whenever a notification or subscription
comes, then it can bundle a number of received notifications in
a broadcasting message, and broadcasting this message in a
relative big period, which can mitigate the bandwidth pressure
and guarantee 100% delivery ratio meanwhile.

As we said before, building NovaPS relies on the
membership management to find neighbors with similar
interests. Membership management should consider the
clustering of interests (subscription) when allocating local
membership views for each node. How to measure the
similarity of interests is a key problem. In the future, we
consider using network delay between nodes, the overlap of
interests between nodes and the history behavior of the nodes
jointly to measure proximity relationship between two nodes.
We think node i should choose j as neighbor when they have
smaller communication latency. Similarly, when the j's
interests are more similar to i and j is tested to be harmless, i
should choose j as neighbor.

notification scoverage
I'i

nb,
Ibi

nb,
loi

Figure 8. Efficiency of dynamic routing with 200,000 notifications issued totally

ACKNOWLEDGMENT

We would like to thank Dr. Chengjian Wen for his hearty
helps on theoretical working in this paper. The NovaPS
project is funded by the National High Technology
Development Program (863 Program) under Grand No.
2009AAOIZ144, No. 2006AAOIA106, No. 2009AAOIA131.

REFERENCES

[I] K.Betz, "A scalable stock web service." In:Proc.of the 2000
International Conference on Parallel Processing,Workshop on Scalable
Web Services.

[2] LM.Arntzen and D.Johansen, "A stateful and open publish-subscribe
structure for online rnarketplalces." In:J.Dingel and RStrorn
editors,Proc.of the 4th International Workshop on Distributed
Event-Based Systems(DEBS'05).

[3] Hongzhou Liu and Ernin Gun Sirer, "A measurement study of RSS,A
publish-subscribe system for web micronews." In:Proc.of Internet
Measurement Conference(IMC).2005 .New Orleans,Louisiana.

[4] Viktor S. Wold Eide , Frank Eliassen , Ole-Christoffer Granmo , Olav
Lysne, "Scalable Independent Multi-level Distribution in Multimedia
Content Analysis," in Proceedings of the Joint International Workshops
on Interactive Distributed Multimedia Systems and Protocols for
Multimedia Systems: Protocols and Systems for Interactive Distributed
Multimedia, p.37-48, November 26-29, 2002 .

[5] C.Bornhovd,M.Cilia,C.Liebig,et al, "An infrastructure for
meta-auctions." In:Proc.of Second International Workshop on Advance
Issues of E-Commerce and Web-based Information
Systems(WECWIS'00).2000.San Jose,

[6] ARBharambe, S.Rao and S.Seshan, "Mercury:A scalable
publish-subscribe system for Internet games." In:Proc.of the 1st
Workshop on Network and System Support for
Games[C).2002.Braunschweig,Germany:ACM Press.p.3-9.

[7] D.-P. Wu, Y.T. Hou and Y.-Q. Zhang, "Scalable video coding and
transport over broadband wireless networks." In Proceedings of IEEE
89(1) (2001).

[8] A Ganesh, A-M. Kermarrec, and 1. Massoulie, "Scamp: Peer-to-Peer
Lightweight Membership Service for Large-Scale Group
Communication," in Proc. Third Int'l Workshop Networked Group
Comm., Nov. 2001.

[9] A Carzaniga, D. S. Rosenblum, and A 1.Wolf, "Design and evaluation
of a wide-area event notification service." ACM Transactions on
Computer Systems, 2001.

[10] R Melamed, L Keidar, "Araneola: A scalable reliable multicast system
for dynamic environments." in: Third IEEE International Symposium on
Network Computing and Applications (IEEE NCA), 2004.

[11] N. c. Wormald, "Models of random regular graphs." surveys in
Combinatorics, 1999 (LMS Lecture Note Series 267, Eds J.D.Lamb and
DAPreece), 239-298.

[12] Chazelle. Bernard, Kilian. Joe, Rubinfeld.Ronitt, Tal. Ayellet, "The
Bloomier filter: an efficient data structure for static support lookup
tables." In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 30-39 ,2004.

[13] Gregory Chockler , Roie Melamed , Yoav Tock , Roman Vitenberg,
"SpiderCast: a scalable interest-aware overlay for topic-based pub/sub
communication." In Proceedings of the 2007 inaugural international
conference on Distributed event-based systems, June 20-22, 2007,
Toronto, Ontario, Canada

[14] G. Cugola, E. Di Nitto, and A Fuggetta, "The JEDI event-based
infrastructure and its application to the development of the OPSS
WFMS." IEEE Trans. Softw. Eng., 27(9):827-850, 2001.

[15] G. M·uhl, 1. Fiege, F. C. G··artner, and A Buchmann. "Evaluating
advanced routing algorithms for content-based publish/subscribe
systems." In MASCOTS '02: Proc. 10th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS'02), page 167, Washington,
DC, USA, 2002. IEEE Computer Society.

[16] P. Pietzuch and J. Bacon, "Hermes: A Distributed Event-Based
Middleware Architecture." In 1st International Workshop on Distributed
Event-Based Systems (DEBS'02), July 2002.

[17] S. McCanne, M. Vetterli, and V. Jacobson, "Low-complexity video
coding for receiver-driven layered multicast," IEEE J. Select. Areas
Commun., vol. 16, pp. 983-1001, Aug. 1997.

[18] Y. Tock, N. Naaman, A Harpaz, and G. Gershinsky, "Hierarchical
clustering of message flows in a multicast data dissemination system."
In 17th lASTED Int'l Conf. Parallel and Distributed Computing and
Systems, 2005.

[19] H. Liu, V. Ramasubramanian, and E. G. Sirer. "Client behavior and feed
characteristics of rss, a publish-subscribe system for web micronews." In
IMC, 2005.

[20] YouTube. http://www.youtube.com!.

[21] YouKu. http://www.youku.com!.

