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Abstract—A product Gaussian broadcast channel with three
receivers and degraded message sets is considered. A single-letter
characterization of the capacity region was obtained in a recent
work of Nair and El Gamal based on superposition coding and
indirect decoding. Through Lagrangian theory and an extremal

entropy inequality, the single-letter expression of Nair and El
Gamal is evaluated for the specific product Gaussian model,
which leads to an explicit characterization of the capacity region.

I. INTRODUCTION

Broadcast is a fundamental nature of wireless communi-

cation: any receiver within the transmission range can listen

to the source and potentially decode some of the messages.

With appropriate coding architecture, the broadcast nature

of wireless communication can be used to the advantage

of simultaneously transmitting to several receivers at high

rates. Understanding the limits and the appropriate coding

architectures that can harness the broadcast advantage of

wireless communication is an important subject of network

information theory [1].

Most of the previous work focused on one of the following

two scenarios:

1) to deliver the same messages to each of the receivers,

usually known as the multicast problem; and

2) to deliver completely distinct messages to different re-

ceivers, namely the private message problem.

Formally, the distinction between these two broadcast scenar-

ios can be identified by the configurations of the message

sets associated with each of the receivers. For the multicast

problem, the intended message sets for each of the receivers

are identical. For the private message problem, the intended

message sets for each of the receivers are mutually exclusive.

Clearly, the appropriate coding architecture depends on the

configurations of the message sets.

Between these two “extreme” broadcast scenarios, the mul-

ticast and the private message problems, there is a rich

collection of “intermediate” problems with message sets of

interesting configurations and significant engineering appeal.

A good example is the degraded message set problems first

considered in [2], which can be used to model broadcast

scenarios with a progressively encoded source and receivers

of different quality-of-service requirement.

Fig. 1. Broadcast channel with degraded message sets.

Fig. 1 illustrates a general discrete memoryless broadcast

channel with degraded message sets. The transmitter has a

total of K independent messages (M1, M2, . . . , MK). Each

of the K receivers demands a subset of messages from the

transmitter. The message set Sk intended for receiver k is given

by

Sk = {M1, M2, . . . , Mk}, k = 1, 2, . . . , K.

Clearly, we have

S1 ⊆ S2 ⊆ · · · ⊆ SK

and hence the name “degraded message sets”.

For the degraded message set problem, there is a natural

communication strategy based on superposition coding [3] and

direct decoding. With K independent messages at the trans-

mitter and K receivers, an K-layer superposition code can be

built with the kth layer from the bottom representing message

Mk. Receiver k decodes messages (W1, W2, . . . , Wk) by

directly decoding all the bottom layers up to the kth. For

K = 2, it was shown in [2] that this natural strategy is also

optimal in achieving the capacity region of the channel. For

K ≥ 3, however, finding the capacity region of the discrete

memoryless broadcast channel with degraded message sets

remains an open problem in network information theory.

In an excellent contribution [4], Nair and El Gamal con-

sidered a special three-receiver discrete memoryless broadcast

channel with degraded message sets and presented a precise

single-letter characterization of the capacity region. Specifi-

cally, in [4], it was assumed that:

1) receiver 2 is degraded with respect to receiver 1, i.e.,

X − Y1 − Y2 forms a Markov for any input distribution
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Fig. 2. Product Gaussian broadcast channel with degraded message sets.

p(x); and

2) the rate of message M2 is set to be zero so in defacto,

there are only two independent messages M1 and M3

at the transmitter.

Under these two assumptions, Nair and El Gamal [4] proved

a surprising result that the natural scheme that uses direct

decoding is, in general, suboptimal. Instead, a coding scheme

that uses indirect decoding [4] can always achieve the capacity

region of the channel.

Building on the result of [4], in this paper, we consider

a specific product Gaussian broadcast channel with degraded

message sets and provide an explicit characterization of the

capacity region. The main tools used in this characterization

are Lagrangian theory [5] and an extremal entropy inequality

of Liu and Viswanath [6]. It is worth mentioning that the

exact same product Gaussian model was also considered in

the original work of Nair and El Gamal [4], and characterizing

the capacity region was posted as an open problem.

II. CHANNEL MODEL

As shown in Fig. 2, consider a discrete-time memoryless

product Gaussian broadcast channel with three receivers. At

each time sample, the received signals at receivers 1, 2 and 3

are given by Y1 = (Y11, Y12), Y2 = (Y21, Y22) and Y3 = Y31,

respectively, where

Y31 = X1 + Z1, Y11 = Y31 + Z2, Y21 = Y11 + Z3

Y12 = X2 + Z4, Y22 = Y12 + Z5.
(1)

Here, X = (X1, X2) is the channel input, and Zi, i =
1, 2, 3, 4, 5, are Gaussian noise with zero means with co-

variance Ni, respectively, and are assumed to be mutually

independent of each other. We consider two different types

of power constraints on the channel input X : an average total

power constraint

E[X2
1 + X2

2 ] ≤ P (2)

and an individual per-subchannel power constraint

E[X2
i ] ≤ Pi, i = 1, 2. (3)

The transmitter has two independent messages M0 and

M1, where M0 is a common message intended for all three

receivers and M1 is a private message intended only for

receiver 1. The capacity region C(P ) is given by the set of

nonnegative rate pairs (R0, R1) that can be achieved by any

coding scheme under the average total power constraint (2).

Likewise, the capacity region C(P1, P2) is given by the set

of nonnegative rate pairs (R0, R1) that can be achieved by

any coding scheme under the individual per-subchannel power

constraint (3).

From the channel model (1), it is clear that X − Y1 − Y2

forms a Markov for any distribution on the channel input X .

In this case, a single-letter characterization of the capacity

region was obtained in [4, Prop. 2] and is given by the set of

nonnegative rate tuples (R0, R1) such that

R0 ≤ I(U1; Y21) + I(U2; Y22)
R0 ≤ I(V1; Y31)
R1 ≤ I(X1; Y11|U1) + I(X2; Y12|U2)

R0 + R1 ≤ I(V1; Y31) + I(X1; Y11|V1) + I(X2; Y12|U2)
(4)

for some joint distributions on (U1, V1, X1) and (U2, X2) such

that U1−V1−X1 forms a Markov chain. The main goal of this

paper is to evaluate the rate region (4) for the specific product

Gaussian model (1) under both average total and individual

per-subchannel power constraints.

III. MAIN RESULTS

The main result of the paper is an explicit characterization of

the capacity region of the product Gaussian broadcast channel

(1) under the individual per-subchannel power constraint (3),

summarized in the following theorem.

Theorem 1: The capacity region C(P1, P2) of the three-

receiver product Gaussian broadcast channel (1) under the

individual per-subchannel power constraint (3) is given by the

set of nonnegative rate tuple (R0, R1) such that

R0 ≤ C
(

P1−Q1

Q1+N1+N2+N3

)

+ C
(

P2−Q2

Q2+N4+N5

)

R0 ≤ C
(

P1

N1

)

R1 ≤ C
(

Q1

N1+N2

)

+ C
(

Q2

N4

)

R0 + R1 ≤ C
(

P1

N1

)

+ C
(

Q2

N4

)

(5)

for some 0 ≤ Q1 ≤ P1 and 0 ≤ Q2 ≤ P2, where C(x) :=
1

2
log(1 + x).
As a corollary, we have the following characterization of

the capacity region of the product Gaussian broadcast channel

(1) under the average total power constraint (2).

Corollary 1: The capacity region C(P ) of the three-receiver

product Gaussian broadcast channel (1) under the average total

power constraint (2) is given by the set of nonnegative rate

tuple (R0, R1) such that

R0 ≤ C
(

Q3

Q1+N1+N2+N3

)

+ C
(

Q4

Q2+N4+N5

)

R0 ≤ C
(

Q1+Q3

N1

)

R1 ≤ C
(

Q1

N1+N2

)

+ C
(

Q2

N4

)

R0 + R1 ≤ C
(

Q1+Q3

N1

)

+ C
(

Q2

N4

)

(6)

for some Qi ≥ 0, i = 1, 2, 3, 4, and Q1 +Q2 +Q3 +Q4 ≤ P .



Proof: This is a simple consequence of Theorem 1 and

the well-known fact that

C(P ) =
⋃

P1+P2≤P

C(P1, P2).

The rest of the paper is devoted to the proof of Theorem 1.

IV. PROOF OF THEOREM 1

The achievability of the rate region (5) follows from that

of (4) by setting Xi = Ui + Wi for i = 1, 2 and V1 = X1,

where Ui and Wi are two independent Gaussian variables with

zero means and variances Pi −Qi and Qi, respectively. (Note

that for such a choice of (U1, V1, X1), U1 − V1 − X1 forms

a trivial Markov chain.) We therefore concentrate on proving

the converse part of the theorem.

To prove the converse part of the theorem, we shall need

the following extremal entropy inequality which first appeared

in [6, Th. 8].

Lemma 1 ( [6]): Let P and µ be two nonnegative real

numbers, and let Z1, Z2 be two Gaussian variables with zero

means and variances N1 and N2, respectively. Assume that

0 < N1 ≤ N2. If there exists a nonnegative real number P ∗

satisfying

(P ∗ + N1)
−1 + M1 = µ(P ∗ + N2)

−1 + M2

M1P
∗ = 0

M2(P − P ∗) = 0

for some nonnegative real numbers M1 and M2, then

h(X + Z1|U) − µh(X + Z2|U)

≤
1

2
log 2πe(P ∗ + N1) −

µ

2
log 2πe(P ∗ + N2)

for any (X, U) independent of (Z1, Z2) and such that

E[X2] ≤ P .

We are now ready to prove the converse part of the

theorem. Consider proof by contradiction. Let (Ro
0, R

o
1) be

an achievable rate pair that lies outside the rate region (5).

From [7], we have Ro
0 ≤ Rmax

0 where

Rmax
0 := min

{

C
(

P1

N1+N2+N3

)

+ C
(

P2

N4+N5

)

, C
(

P1

N1

)}

.

Note that when Ro
1 = 0, Rmax

0 can be achieved by letting

Q1 = Q2 = 0 in (5). Thus, we may assume that Ro
1 > 0 and

write Ro
1 = R∗

1 + δ for some δ > 0, where R∗
1 is given by

max R1

s.t. Ro
0 ≤ C

(

P1−Q1

Q1+N1+N2+N3

)

+ C
(

P2−Q2

Q2+N4+N5

)

R1 ≤ C
(

Q1

N1+N2

)

+ C
(

Q2

N4

)

Ro
0 + R1 ≤ C

(

P1

N1

)

+ C
(

Q2

N4

)

Q1 ≤ P1

Q2 ≤ P2

−Q1 ≤ 0
−Q2 ≤ 0.

Let (R∗
1, Q

∗
1, R

∗
2) be an optimal solution to the above

optimization problem. Then, (R∗
1 , Q

∗
1, R

∗
2) must satisfy the

Karush-Kuhn-Tucker (KKT) conditions [5] as shown in the top

of next page, where Ti, i = 1, 2, 3, 4, and Mi, i = 1, 2, 3, 4, are

nonnegative Lagrangian multipliers. From the KKT conditions

(9)–(12), we have

(T1 + T3)R
o
0 + Ro

1

= (T1 + T3)R
o
0 + R∗

1 + δ

= (T1 + T3)R
o
0 + (T2 + T3)R

∗
1 + δ

= T1R
o
0 + T2R

∗
1 + T3(R

o
0 + R∗

1) + δ

= T1

[

C

(

P1 − Q∗
1

Q∗
1 + N1 + N2 + N3

)

+

C

(

P2 − Q∗
2

Q∗
2 + N4 + N5

)]

+ T2

[

C

(

Q∗
1

N1 + N2

)

+

C

(

Q∗
2

N4

)]

+ T3

[

C

(

P1

N1

)

+ C

(

Q∗
2

N4

)]

+ δ

= T1

[

C

(

P1 − Q∗
1

Q∗
1 + N1 + N2 + N3

)

+

C

(

P2 − Q∗
2

Q∗
2 + N4 + N5

)]

+ T2C

(

Q∗
1

N1 + N2

)

+

T3C

(

P1

N1

)

+ C

(

Q∗
2

N4

)

+ δ. (17)

On the other hand, by the KKT condition (9) and the

assumption that (Ro
0, R

o
1) is achievable, we have

(T1 + T3)R
o
0 + Ro

1

= (T1 + T3)R
o
0 + Ro

1

= (T1 + T3)R
o
0 + (T2 + T3)R

o
1

= T1R
o
0 + T2R

∗
1 + T3(R

o
0 + Ro

1)

≤ T1 [I(U1; Y21) + I(U2; Y22)] +

T2 [I(X1; Y11|U1) + I(X2; Y12|U2)] +

T3 [I(V1; Y31) + I(X1; Y11|V1) + I(X2; Y12|U2)]

= T1h(Y21) + T1h(Y22) + T3h(Y31) −

[h(Y11|X1) + h(Y12|X2)] +

[T2h(Y11|U1) − T1h(Y21|U1)] +

[h(Y12|U2) − T1h(Y22|U2)] +

T3[h(Y11|V1) − h(Y31|V1)] (18)

for some joint distributions on (U1, V1, X1) and (U2, X2) such

that U1−V1−X1 forms a Markov chain and E[X2
i ] ≤ Pi for

i = 1, 2.

The terms on the right-hand side of the above equation can

be further bounded/evaluated as follows.

1) It is well known [1] that Gaussian maximizes differential

entropy for a given power, so we have

h(Y21) ≤ 1

2
log 2πe(P1 + N1 + N2 + N3)

h(Y22) ≤ 1

2
log 2πe(P2 + N4 + N5)

h(Y31) ≤ 1

2
log 2πe(P1 + N1).

(19)

2) The channel inputs (X1, X2) are independent of the



T2(Q
∗
1 + N1 + N2)

−1 + M1 = T1(Q
∗
1 + N1 + N2 + N3)

−1 + M2 (7)

(Q∗
2 + N4)

−1 + M3 = T1(Q
∗
2 + N4 + N5)

−1 + M4 (8)

T2 + T3 = 1 (9)

T1R
o
0 = T1

[

C

(

P1 − Q∗
1

Q∗
1 + N1 + N2 + N3

)

+ C

(

P2 − Q∗
2

Q∗
2 + N4 + N5

)]

(10)

T2R
∗
1 = T2

[

C

(

Q∗
1

N1 + N2

)

+ C

(

Q∗
2

N4

)]

(11)

T3(R
o
0 + R∗

1) = T3

[

C

(

P1

N1

)

+ C

(

Q∗
2

N4

)]

(12)

M1Q
∗
1 = 0 (13)

M2(P1 − Q∗
1) = 0 (14)

M3Q
∗
2 = 0 (15)

M4(P2 − Q∗
2) = 0 (16)

Gaussian noise (Z1, Z2, Z3, Z4, Z5), so we have

h(Y11|X1) = h(Z1 + Z2) = 1

2
log 2πe(N1 + N2)

h(Y12|X1) = h(Z4) = 1

2
log 2πeN4.

(20)

3) Putting together the KKT conditions (7), (13) and (14),

we have

T2(Q
∗
1 + N1 + N2)

−1 + M1 = T1(Q
∗
1 + N1+

N2 + N3)
−1 + M2

M1Q
∗
1 = 0

M2(P1 − Q∗
1) = 0

where M1, M2, T1 and T2 are nonnegative real numbers.

By Lemma 11, we have

T2h(Y11|U1) − T1h(Y21|U1)

= T2h(X1 + Z1 + Z2|U1) −

T1h(X1 + Z1 + Z2 + Z3|U1)

≤
T2

2
log 2πe(Q∗

1 + N1 + N2) −

T1

2
log 2πe(Q∗

1 + N1 + N2 + N3). (21)

4) Similarly, putting together the KKT conditions (8), (15)

and (16), we have

(Q∗
2 + N4)

−1 + M3 = T1(Q
∗
2 + N4 + N5)

−1 + M4

M3Q
∗
2 = 0

M4(P2 − Q∗
2) = 0

where M3, M4 and T1 are nonnegative real numbers.

1If T2 = 0, we have either T1 = 0 or Q∗

1
= 0. In either case, inequality

(21) holds trivially.

Again, by Lemma 1, we have

h(Y12|U2) − T1h(Y22|U2)

= h(X2 + Z4|U2) − T1h(X2 + Z4 + Z5|U2)

≤
1

2
log 2πe(Q∗

2 + N4) −

T1

2
log 2πe(Q∗

2 + N4 + N5). (22)

5) Finally, note that

h(Y11|V1) − h(Y31|V1)

= h(X1 + Z1 + Z2|V1) − h(X1 + Z1|V1)

= I(Z2; X1 + Z1 + Z2|V1)

= h(Z2) − h(Z2|X1 + Z1 + Z2, V1) (23)

≤ h(Z2) − h(Z2|X1 + Z1 + Z2, V1, X1) (24)

= h(Z2) − h(Z2|Z1 + Z2, V1, X1)

= h(Z2) − h(Z2|Z1 + Z2) (25)

= I(Z2; Z1 + Z2)

=
1

2
log 2πe(N1 + N2) −

1

2
log 2πeN1 (26)

where (23) is due to the independence of Z2 and V1; (24)

is due to the fact that conditioning reduces differential

entropy [1]; and (25) is due to the independence of

(Z1, Z2) and (V1, X1).

Substitute (19)–(22) and (26) into (18). With some rearrang-

ing of terms, we may obtain

(T1 + T3)R
o
0 + Ro

1

≤ T1

[

C

(

P1 − Q∗
1

Q∗
1 + N1 + N2 + N3

)

+

C

(

P2 − Q∗
2

Q∗
2 + N4 + N5

)]

+ T2C

(

Q∗
1

N1 + N2

)

+

T3C

(

P1

N1

)

+ C

(

Q∗
2

N4

)

(27)

Note that δ > 0, so this is a contradiction to (17). We therefore



conclude that any achievable rate pair (Ro
0, R

o
1) must also be

inside the rate region (5). This completes the proof of the

converse part of the theorem.
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