
A Block-Based Parallel Decoding Architecture for
Convolutional Codes

Chengyi Su, Yu Zhang, Changyong Pan, Xiaofeng Wan
State Key Laboratory on Microwave and Digital Communications

Tsinghua National Laboratory for Information Science and Technology
Department of Electronic Engineering

Tsinghua University
Beijing, China

E-mail: zhang-yu@mail.tsinghua.edu.cn

Abstract—This paper delivers a block-based parallel
convolutional decoding architecture in which several Viterbi
decoders work concurrently to decode consecutive code blocks.
Each code block contains a preamble and a postamble which are
duplicate data from neighbor blocks. Preamble and postamble
are beneficial to the continuity and correctness of decoding
output. Simulation results demonstrate that this architecture has
a negligible coding-gain loss, compared with the conventional
Viterbi decoder. An FPGA implementation of this architecture
achieves a throughput up to 1.2Gbps.

Keywords-Convolutional Codes; Parallel Decoding; Viterbi
algorithm;FPGA

I. INTRODUCTION
Viterbi algorithm [1] is an optimal convolutional decoding

algorithm from the maximal likelihood decoding point of view.
However, the feedback loop in the add-compare-select (ACS)
unit in the Viterbi decoder imposes the bottleneck on the
decoding speed [2]. Parallel architecture has been widely
studied and proposed to improve the decoder throughput.
Block-based decoding approaches like state initialization and
interleaving have relatively simple architectures, but their
usages are limited to certain coding schemes [3]. M-step
lookahead algorithm and slice-block algorithm could be
applied to any coding scheme, at the price of an exponential
growth in hardware area [3, 4]. The highest throughput of a (2,
1, 7) Viterbi decoder was about 1Gbps on ASIC [5], or
510Mbps on FPGA [6] so far.

The basic limitation on the parallelism of convolutional
codes is its memory effect. The simplest method is to
decompose the code sequence into blocks of length LB which
can be processed in parallel using N convolutional Viterbi
decoders. These N decoders are named sub-decoders in the
following text to avoid confusion. Such architecture multiplies
the throughput and complexity both by N times. The difficulty
of this method is that the initial state metrics of a block is
unknown until its previous block has been processed [3].
Without the knowledge of the initial state metrics, the decoding
of a block should undergo an initial synchronization stage in
which the paths gradually merge into one correct path. Initial
synchronization stage takes a length of 4 or 5 times of lC, where
lC is the constraint length of the code. Besides, the decoding
output in initial synchronization stage is subject to error [1].

A partition scheme was proposed in [7] that a segment of S
branches from precedent block is appended to the beginning of
a block for the initial synchronization stage. Theoretical
analysis was given to prove that the error probability due to this
partition scheme is negligible compared with the affect of path
memory truncation. The choices of S for certain codes were
verified by simulation. Nevertheless, the architecture in [7]
introduces an unnecessary output delay. The area efficiency
and practical performance under noise were not exploited.

In this paper a novel partition scheme is developed based
on [7]. A preamble and a postamble are appended to a block to
increase the continuity and correctness of decoding. The
preamble of the n-th block is a sequence of duplicate branches
from the valid data segment of the (n-1)th block. Preamble
helps a sub-decoder to transition to a required initial state
before the decoding of valid data segment starts. The postamble
of the n-th block is a sequence of duplicate branches from the
valid data segment of the (n+1)th block. Postamble is a guard
interval between two consecutive blocks in a sub-decoder. A
proper proportion of preamble and postamble in a block could
decrease the area overhead and bit error rate (BER) to the
minimum level. Simulation of this architecture shows that the
coding-gain loss by this parallel architecture is almost
negligible. Punctured codes are also taken into consideration.
This architecture is implemented on an FPGA chip as part of a
concatenated decoder based on CCSDS recommendation [8].

The organization of this paper is as follows. Section II
covers the architecture of the whole decoder. Section III depicts
the format of a block. In Section IV the theoretical analysis of
this partition method is discussed. Simulation and
implementation results are provided in Section V and VI,
respectively.

II. DECODER ARCHITECTURE
Fig. 1 depicts the proposed parallel architecture. It consists

of a data splitter, N conventional convolutional sub-decoders
and a data combiner. Data splitter decomposes the codes
sequence into blocks with equivalent size and distributes these

ziglio
Typewritten Text
CHINACOM 2010, August 25-27, Beijing, ChinaCopyright © 2011 ICST 973-963-9799-97-4DOI 10.4108/chinacom.2010.77

Subdecoder 1

Subdecoder 2

Subdecoder N

Input

@f1

Output

@f2 @f3

Figure 1. The proposed parallel architecture

blocks to the N parallel sub-decoders in order. Sub-decoders
work concurrently and deliver the decoding output into data
combiner. Data combiner assembles the decoding output block
by block to retrieve a continuous sequence. To facilitate clock
management and maintain an acceptable timing condition, the
whole system is partitioned into three clock domains. Parallel-
to-serial conversion and serial-to-parallel conversion are
performed to the input and output of the sub-decoders to slow
down the frequency of the first time domain and the third time
domain. Asynchronous FIFOs are utilized as buffers for clock
domain crossing.

A. Data Splitter
Data Splitter works at the first clock domain. The frequency

of this clock domain, f1, depends on the throughput of the
system, the width of input data in symbol and the code rate.
Code sequences are disassembled into blocks here, following
the format described in Section III. Symbol synchronization,
branch synchronization or puncture pattern synchronization
should be processed here before the partition of data. Sub-
decoder feedback is provided for the try-and-error search to
dissolve these synchronization issues.

B. Sub-decoders
The sub-decoders instantiated in this architecture are

conventional Viterbi decoders [9] operating at frequency f2.
The basic code is (2, 1, 7), with punctured codes at the rate of
2/3, 3/4, 5/6, 7/8, as recommended by CCSDS [8]. The
traceback depth lT of sub-decoder could be adjusted with the
punctured rate. These N sub-decoders work concurrently. A
sub-decoder processing the n-th block will continue to process
the (n+N)th block later. The decoding outputs of preamble and
postamble are discarded. A serial-to-parallel conversion is
performed at the output end of the sub-decoder to slow down
the clock frequency of data combiner. Setting the output width
of sub-decoder as the symbol width of an outer code is a good
choice from a systematical perspective.

C. Data Combiner
Data Combiner fetches data from sub-decoders in order,

one block at a time, to assemble a seamless sequence output.
Parameters of block format should be selected to assure the

Figure 2. The proposed block format

decoding result of a block is the multiple of data bus width
under any code rate.

III. BLOCK FORMAT
Fig. 2 depicts the proposed block format and the relation

between adjacent blocks. Every block contains three segments,
the preamble (PA), the valid data segment and the postamble
(PS). The lengths of these segments in branches are l1, l2 and l3,
respectively. Neighbor blocks share part of data, but there is no
overlap or gap between their valid data segments.

The distribution of data is illustrated in (1) - (3).

2

2 2

2

(, ,) ()
(1) / mod 1, 1,2, ,
(1) mod() 1, 1,2, ,
((1) 1)

valid ind m i j d k
i k l N i N
j k l j l
k m N i l j

=⎧
⎪ = − + =⎢ ⎥⎪ ⎣ ⎦
⎨

= − + =⎪
⎪ = − + − +⎩

…
…

 (1)

where din(k) is the k-th branch in the input sequence, dvalid(m, i,
j) is the j-th branch in the data valid segment of the m-th block
processed by the i-th sub-decoder. For the n-th block in Fig. 2,
n=(m-1)N+i.

1

2 1

1

2 1

1

(1,1,) 0, 1,2, ,
(,1,) (1, ,),
1,2, , , 1
(, ,) (, 1,),
2,3, , , 1,2, , , 1

PA

PA valid

PA valid

d j j l
d m j d m N l l j
j l m
d m i j d m i l l j
i N j l m

= =⎧
⎪ = − − +⎪⎪ = >⎨
⎪ = − − +⎪
⎪ = = ≥⎩

…

…

… …

 (2)

where dPA(m, i, j) is the j-th branch in the preamble of the m-th
block processed by the i-th sub-decoder. The preamble of the
n-th block is the last l1 branches of the data valid segment of
the (n-1)th block.

3

3

(, ,) (, 1,),
1, 2, , 1, 1, 2, ,
(, ,) (1,1,),
1, 2, ,

PS valid

PS valid

d m i j d m i j
i N j l
d m N j d m j
j l

= +⎧
⎪ = − =⎪
⎨ = +⎪
⎪ =⎩

… …

…

 (3)

dPS(m, i, j) is the j-th branch in the postamble of the m-th
block processed by the i-th sub-decoder. The postamble of the
n-th block is the first l3 branches of the data valid segment of
the (n+1)th block.

To appreciate the benefits of a preamble, the initial
synchronization of a Viterbi decoder should be reviewed. As a
Viterbi decoder starts to work, its initial values of all the state
metrics are set to zeros. The decoder will merge to the correct
path gradually, and finally recover after a span of decoding
errors when the valid path dominates. This stage will take a few
constraint lengths. For punctured codes or codes under noise it
should take a larger length. The affect of incorrect initial state
metrics on decoder is negligible after this stage.

For a sub-decoder in the proposed architecture, the code
sequence input is discontinued at the boundaries between
blocks. Therefore the sub-decoder shall undergo an initial
synchronization at the beginning of every block. Preamble is
used as training sequence to help the sub-decoder merge to the
correct path before decoding the valid data segment. The
decoding outputs of preamble, which are subject to error,
should be discarded. But that of valid data segments are
generally reliable and reserved. The length of preamble l1, as
mentioned above, is about 4~5 times of lC.

Postamble works as a guard interval between blocks. For a
sub-decoder working in a continuous stream mode, it traces
back a length of data before making a decision and delivering
output. Without a postamble, the head of (n+N)th block is used
for the decoding of the tail of the n-th block. This would cause
errors at the end of each block. A postamble l3 no shorter than
the traceback depth lT will prevent this kind of error. In a
practical system, lT is 4~5 times of lC for original code, and up
to 15 times of lC for highly punctured codes [10].

While l1 and l3 depend on lC and the code rate, l2 is free to
scale. As overheads, preamble and postamble decrease the area
efficiency and throughput of the system. A large l2 helps to
improve efficiency and throughput. But a trade-off between
efficiency and area should be considered here because a larger
l2 means longer blocks which require more buffers before and
after decoding. When the ratio of l2/(l1+l3) is 20, the overhead is
cut down to 5%. Meanwhile the total memory utilization is
within an acceptable range.

IV. THEORETICAL ANALYSIS
In [1, 7] initial synchronization error probability PIS is

bounded by

1 1() exp[()]ISP l Vl E R≤ − (4)

where R=b/V bit /symbol is the code rate and

])([max)(010
RERE ρρ

ρ
−=

≤≤
 (5)

is Gallager’s function.

And the average path memory truncation error probability
PT is also bound by

() exp[()]T T TP l Vl E R≤ − (6)

The error probability in a valid data segment Pvalid is

1 2

1

1

1 2
2

1

2

1(,) ()

exp[()]
(1 exp[()])

l l

valid IS
i l

P l l P i
l

Vl E R
VE R l

+ −

=

=

−
≤

− −

∑
 (7)

For l2=20l1 and l1=lT=5lC, Pvalid is constrained by a bound 2
orders lower than PT. More theoretical analysis is difficult to
carry on, but it could be safe to say that with proper l1 and l2,
the effect of initial synchronization on each block is negligible
compared with that of path memory truncation. And For l3≥lT,
the partition will cause no error at the end of a valid data
segment.

V. SIMULATION RESULTS
Computer simulation was performed to exploit the

degradation of performance of the proposed architecture under
different signal-to-noise ratio (SNR). The simulation used
Binary phase shift keying (BPSK) in additive white Gaussian
noise (AWGN) channel. Punctured codes were also simulated.
Comparison of conventional decoder and the proposed
architecture on the code rate of 1/2 and 3/4 are demonstrated in
Fig. 3 and Fig. 4. For 1/2 code rate, l1=l3=lT=6lC, l2=40l1; for
3/4 code rate, l1=l3=lT=8lC, l2=30l1. In another word, the
preamble, postamble and traceback depth are larger for 3/4
code, while the valid data segment is equivalent for two codes.
Theoretical curve for 1/2 code and unquantized curve for 3/4
code are plotted for reference.

The curves of conventional decoder and the proposed
architecture are very close in Fig. 3 and Fig. 4. Actually the
BER of the proposed architecture is about 5% higher than that
of the conventional decoder for 1/2 code. The BER difference
ratio of 3/4 code ranges from 5% to 10% at different SNR. This
slight coding-gain degradation is about 0.01~0.02dB in Eb/N0.

3 3.5 4 4.5 5 5.5 6

10-8

10-7

10-6

10-5

10-4

10-3

Eb/N0(dB)

B
E

R

Theoretical
Conventional, 3 softbits
Proposed, 3 softbits

Figure 3. BER of 1/2 code

4 4.5 5 5.5 6 6.5 7

10-8

10-7

10-6

10-5

10-4

10-3

Eb/N0(dB)

B
E

R

Unquantized
Conventional, 3 softbits
Proposed, 3 softbits

Figure 4. BER of 3/4 code

VI. IMPLEMENTATION
A high-speed parallel decoder as proposed is implemented

on Altera FPGA Stratix II EP2S90F1020C3. The resource
utilization is listed in Table. I. The maximum frequencies of
three clock domains are list in Table. II. The number of sub-
decoders N=6, with 3 soft bits and maximum constraint length
lT=15lC, for each sub-decoder. The implementation shows that
for a large l2/(l1+l3), this architecture is almost linear in
complexity. For 1/2 code, code sequence input through a bus
width of 4 branches at 300MHz. Decoding output is delivered
as byte sequence at 150MHz. A throughput up to 1.2 Gbps is
achieved. A throughput about 1.1Gbps is available for highly
punctured codes like 7/8 codes. High rate codes require longer
preamble and postamble, decreasing the area efficiency and
hence throughput.

TABLE I. RESOURCE UTILIZATION

Logic Utilization 21%
Combinational ALUTs 13,976/72,768(19%)

Dedicated logic registers 7,288/72,768(10%)
Total block memory bits 425,496/4,520,448(9%)

TABLE II. MAXIMUM FREQUENCY OF CLOCK DOMAIN

Clock Domain FMAX(MHz)
1st: Data splitter 327.0

2nd: Sub-decoders 220.1
3rd: Data combiner 224.5

VII. CONCLUSION
In this paper a block-based parallel convolutional decoding
architecture is introduced. A specific block partition format for
this architecture is also developed. Compared with other
parallel decoding algorithms, this architecture exceed in
scalability, generality and compatibility. The complexity of
this architecture is linear to the throughput. Area permitting,
arbitrary folds of throughput can be achieved. It imposes no
constraint on the code rates or the encoding scheme. This
architecture is independent of the details of sub-decoder,
providing a simple expansion method for any present algorithm.
Simulation results demonstrated that the coding-gain loss
caused by the initial synchronization in each block is negligible.

ACKNOWLEDGMENT
All the work in this paper is supported by Program for

Changjiang Scholars and Innovative Research Team in
University (PCSIRT)

REFERENCES
[1] A. J. Viterbi and J. K. Omura, “Principles of digital communication and

coding,” New York:McGraw-Hill, 1979.
[2] J. Tang and K. K. Parhi, “Viterbi decoder for high-speed ultra-wideband

communication system,” ICASSP 2005, vol.5, pp.37-40, 18-23 March
2005.

[3] H. D. Lin and D. G. Messerschmitt, ”Algorithms and architectures for
concurrent Viterbi decoding,” ICC’89, vol. 2, pp.836-840, 11-14 June
1989.

[4] P. J. Black and T.H. -Y. Meng, “A 1-Gb/s, four-state, sliding block
Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 32, pp.797-805, June
1997.

[5] Mark A. Anders, Sanu K. Mathew, Steven K. Hsu, Ram K.
Krishnamurthy, Shekhar Borkar, “A 1.9 Gb/s 358 mW 16256 State
Reconfigurable Viterbi Accelerator in 90 nm CMOS,” IEEE Journal of
Solid State Circuits, Vol. 43, No. 1, pp214-222. January 2008.

[6] Jiuling Tang, “Design and FPGA Implementation of a Viterbi Decoder:
A Case Study Using SystemVerilog and Co-Simulation,” Signal
Processing and Information Technology (ISSPIT), 2009 IEEE
International Symposium on, Ajman. Feb. 2009.

[7] Y.F. Zhang and P. Csillag, “Parallel architecture for high-speed Viterbi
decoding of convolutional codes,” Electronics Letters, vol. 35, No.14, pp.
887–888, April 1989.

[8] Recommendation for space data system standards-TM synchronization
and channel coding, CCSDS 131.0-b-1, Blue Book September 2003.

[9] J. A. Heller and I. M. Jacobs, “Viterbi decoding for satellite and space
communication,” IEEE Trans. Commun. Technol., vol. COM-19, No.5,
pp. 835-848, October 1971.

[10] H. A. Bustamante, I. Kang, C. Nguyen and R.E. Peile, “Stanford telecom
VLSI design of a convolutional decoder,” MILCOM'89, vol.1, pp.171-
178, 15-18 October 1989.

