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Abstract—Iterative probabilistic decoding of binary low-
density parity-check (LDPC) codes have been studied extensively.
Non-binary LDPC codes have recently attracted an increasing
attention. Most of the existing non-binary codes are built over
GF(2q), and decoding methods developed for binary LDPC
codes cannot be used directly with multilevel modulations. In
this paper, we first extend the binary parity-check codes to
the case with multiple symbols over modular arithmetic. Then,
we develop a sum-product algorithm to decode this new type
of codes at the symbol level. Finally, we propose an effective
constellation mapping method for multilevel modulations. Error
performances of this type of codes with 4-PAM, 4-PSK, and 16-
PSK modulations over AWGN channels are provided. Compared
with uncoded systems, the coding gain of a medium-size regular
LDPC code of rate 8/9 with 4-PAM and 4-PSK modulations
is about 5 dB. With 16-PSK and an appropriate constellation
mapping at a code rate 3/4, the proposed code’s performance is
comparable to that of trellis codes.

Index Terms—Parity-check code, multilevel modulation, itera-
tive probabilistic decoding, and constellation mapping.

I. INTRODUCTION

Low-density parity-check (LDPC) codes were first intro-
duced by Gallager in 1961 [1]. They were rediscovered in the
late 1990’s [2], [3]. It has been shown that the performance of
irregular LDPC codes could be very close to the Shannon limit
[4], [5]. Most of existing studies are restricted to LDPC codes
over GF(2), which cannot be used directly with multilevel
modulations. Non-binary LDPC codes [6]–[8] have recently
attracted a growing research interest. Most of these codes
are defined over GF(q). In [7], binary LDPC codes with
multilevel-symbol mapping are discussed. In this scheme, the
a posteriori probability (APP) at the bit level is computed
first and then the sum-product algorithm [1], [2] is used for
soft decision iterative decoding. Mapping mechanisms based
on Gray coding are proposed in [8].

In this paper, we first show that binary LDPC codes can
be extended to the case with multiple symbols and the sum-
product algorithm could be modified for decoding at the
symbol level over modular arithmetic. Then we propose a new
constellation mapping scheme for multilevel modulations. We
develop this type of codes and the decoding algorithm, and
compare their performances when 4-PSK, 4-PAM, and 16-
PSK modulations are employed.

II. PARITY-CHECK CODES FOR MULTILEVEL
MODULATION

The conventional low-density parity-check codes are built
over GF(2), that is, they are over the set {0, 1} with addition
defined by

a+ b = c mod 2. (1)

This can be easily extended to the modulo-N case, where the
addition is defined over the set {0, 1, ⋅ ⋅ ⋅N − 1} as

a+ b = c mod N. (2)

A parity-check code is defined through a k × n parity-check
matrix H . An n-tuple c is a code word if and only if it is
orthogonal to every row vector of H , that is,

cHT = 0 mod N (3)

where N is the number of multilevel signals in our case, and
each element of c is in {0, 1, ⋅ ⋅ ⋅N − 1}.

For a low-density parity-check code, H is a sparse matrix.
In this paper we only consider regular LDPC codes, for which
H has dc non-zero elements in each column and dr non-zero
elements in each row. Theoretically, a non-zero element of
H does not have to be one1, but for simplicity we restrict
the non-zero element of H to be 1. For simplicity and
clarity of description, we will call this type LDPC codes
N -LDPC codes; consequently the conventional binary LDPC
code would be a special case, 2-LDPC codes.

For a multilevel modulation with N different levels, every
signal level Ai can be mapped to a single digit i, i ∈
{0, 1, 2, ⋅ ⋅ ⋅N − 1}. Therefore, a code word c defined by the
parity-check matrix H can be mapped to the corresponding
sequence of multilevel signals. Theoretically, the best signal
constellation mapping should maximize the Euclidean distance
among code words.

III. DECODING ALGORITHM

Now let y be the received signal in an additive white
Gaussian noise (AWGN) channel expressed as

y = A+ n (4)

1It can be shown that as long as the element is relatively prime to N ,
with minimum modifications, the code design will still be valid. This will be
discussed in our future research.
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where n is Gaussian noise with variance ¾2
n. The posteriori

probability of code symbol x being equal to i in {0, 1, ⋅ ⋅ ⋅N−
1} is

pr(x = i∣y) = e−(y−Ai)
2/(2¾2

n)

∑N−1
k=0 e−(y−Ak)2/(2¾2

n)
. (5)

Let Pr(k∣y) be the discrete Fourier transform (DFT) of pr(x =
i∣y) expressed as

Pr(k∣y) =
N−1∑

k=0

pr(x = i∣y)e−j2¼ik/N . (6)

We have the following theorem:
Theorem 1: Let xm (m = 0, 1, ⋅ ⋅ ⋅M) be a single parity-check
code

N−1∑

k=0

xm = 0 mod N. (7)

Let the probability of xm = i (i = 0, 1, ⋅ ⋅ ⋅ , N − 1) be
pr(i,m) and its DFT be denoted as Pr(k,m). The extrinsic
probability prext(i0, 0) with known probability pr(i,m), (m =
1, 2, ⋅ ⋅ ⋅ ,M) can be computed as

prext(i0, 0) =
1

N
DFT

( M∏
m=1

Pr(k,m)

)
at i0. (8)

Proof: The extrinsic probability of code symbol in position
0, x0 = i0 in {0, 1, ⋅ ⋅ ⋅ , N − 1} is

prext(i0, 0) =
∑

(i1+⋅⋅⋅ ,iM )=−i0 mod N

( M∏
m=1

pr(im,m)

)
. (9)

The product of Pr(k,m) is

M∏
m=1

Pr(k,m) =
M∏

m=1

N−1∑

im=0

pr(im,m)e−j2¼kim/N

=
∑

i1,⋅⋅⋅ ,iM

M∏
m=1

pr(im,m)e−j2¼
∑ imk

N . (10)

The DFT of the extrinsic probabilities prext(i0, 0), i0 ∈
{0, 1, ⋅ ⋅ ⋅ , N − 1}, at value k, is computed as

N−1∑

i0=0

prext(i0, 0)e
−i2¼ki0/N

=
N−1∑

i0

∑

i1+⋅⋅⋅+iM=−i0 mod N

M∏
m=1

pr(im,m)e−j2¼i0k/N

=
∑

i1,⋅⋅⋅ ,iM

M∏
m=1

pr(im,m)e−j2¼imk/N

=
M∏

m=1

Pr(k,m). (11)

Hence,

prext(i0, 0) =
1

N

N−1∑

k=0

M∏
m=1

Pr(k,m)e−j2¼ki0/N

=
1

N
DFT

( M∏
m=1

Pr(k,m)

)
at i0. (12)

This concludes the proof.
It is easy to see that when N = 2, the result is the same

as Gallager’s result [1], which is the core of the sum-product
algorithm.

Let the set of bits for check node m be Cs(m) = {i :
Hmi = 1}. Let the set of checks for bit i be Bs(i) = {m :
Hmi = 1}. We denote a set Bs(i) excluding check m as
Bs(i)∖m. Now the sum-product algorithm for the N -LDPC
codes can be stated as following:

Initialization: let the log-likelihood of the input proba-
bility be

llinput,i(k) = log

(
pr(k, i)

)
, k = 0, 1, ⋅ ⋅ ⋅ , N − 1 (13)

where pr(k, i) can be calculated by using Eq. (5) for the
AWGN channel, and the extrinsic log-likelihood of the
probability is computed as

llext,mi(k) = 0, k = 0, 1, ⋅ ⋅ ⋅ , N − 1. (14)

Notice that the target is the log-likelihood ratio. There-
fore, we can add or subtract a common factor for log-
likelihood. For example, for the AWGN case of Eq. (5),
we can choose

llinput,i(k) = (2yAk −Ak ∗Ak)/(2¾
2). (15)

Vertical Step: for the check m, for each bit i ∈ Cs(m),
calculate the following:

llmi(k) = llinput,i(k) +
∑

m′∈Bs∖m
llext,m′i(k). (16)

Horizontal Step: from the llmi(k) for the check m, cal-
culate the probability pr(k, i) for each k. From the main
theorem, calculate the extrinsic probability prext,m(k, i)
for the parity check m. Then the new llext,mn(k) is
calculated through the following equation:

llext,mn(k) = log

(
prext,m(k, n)

)
. (17)

Output: At the end of iteration, the output log-likelihood
can be calculated as

lloutput,i(k) = llinput,i(k) +
∑

m∈Bs(i)

llext,mi(k). (18)

From the output log-likelihood, we choose the k which has
the biggest lloutput,i(k) as the decoder output.



IV. CONSTELLATION MAPPING

For multilevel modulations, there are various constellation
mapping schemes between symbols and the constellation. For
each pair of code words, the Euclidean distance between them
can be calculated. It is essential to keep this distance as large
as possible. In reality, the number of code words could be
huge and it is not easy to determine the constellation mapping
by maximizing the Euclidean distance between each pair of
code words.

Instead of considering all code words of the original LDPC
codes, we propose to consider the single parity check code
with two symbols:

c0 + c1 = 0 mod 16. (19)

We then try to find the constellation mapping to maximize
the Euclidean distance for the above code words. Because of
the very small set of code words for the above single parity
check code, constellation mapping can be found through an
exhaustive search or via a Monte-Carlo method.

V. RESULTS

In the simulation, after each vertical step and horizontal
step, the output is calculated. If the output satisfies the parity
check, the simulation stops. A failure is declared if no valid
code word is found after 20 iterations.

Fig. 1 compares the performance of 4-LDPC codes with 4-
PAM modulation and that of the uncoded 4-PAM system. The
code rate is 8/9, and dr = 27, dc = 3 are chosen. The signal
constellation mapping is {0 → −3, 1 → −1; 2 → −1; 3 → 3}.
For the (1134 126) 4-LDPC code, the gain is about 5 dB at a
symbol error rate of 10−5, and the (2268 252) 4-LDPC code
performs about 0.5 dB better than the (1134 126) 4-LDPC
code at the same symbol error rate.

 

 

 

 

 

 

 

Fig. 1. Comparison of symbol error rates for (2268 252) 4-LDPC,
(1136 126) 4-LDPC with 4-PAM modulation (code rate 8/9), and uncoded
4-PAM.

Fig. 2 compares the performance of 4-LDPC codes with
4-PSK modulation and that of the uncoded 4-PAM system.

The LDPC code is the same as the previous one. The signal
constellation mapping is {i → ej2¼/4}. For the (1134 126)
4-LDPC code, the gain is about 5 dB at a symbol error rate of
10−5, and the performance of the (2268 252) 4-LDPC code
is about 0.5 dB better than that of the (1134 126) 4-LDPC
code at the same error rate.

 

 

 

 

 

 

 

Fig. 2. Symbol error rates for (2268 252) 4-LDPC, (1134 126) 4-LDPC
with 4-PSK modulation (code rate 8/9), and uncoded 4-PSK.

For the 16-LDPC codes, we have tried several different
signal constellation mappings. We have also conducted a
computer search to find the constellation mapping that has the
largest minimum Euclidean distance among the code words for
a single parity-check code c0 + c1 = 0 mod 16. The resulting
constellation mapping is shown in Fig. 3 and the minimum
distance among the code words is 1.18.

It is interesting to compare the performances of N -LDPC
codes and trellis codes [9], since both of them can use large
sets of signals for data transmission. Fig. 4 compares the
performance of 16-LDPC codes with 16-PSK modulation and
that of the uncoded 8-PSK system. The code rate is 3/4, and dr
and dc equal 12 and 3, respectively. The constellation mapping
shown in Fig. 3 is applied for the 16-LDPC code. Compared
with the uncoded system, the gain of the (1004 251) code
is about 4.6 dB at a symbol error rate of 10−5, which is
comparable to the performance of the trellis code providing
the same spectral efficiency. We have also tried other signal
constellation mappings; the coding gains range from 1 dB to
about 5 dB over the uncoded system at a symbol error rate
of 10−5. From these results for this example, we observe that
it is critical to optimize the signal constellation mapping to
maximize the coding gain for the N -LDPC codes.

VI. CONCLUSION

We developed a new multilevel LDPC code and proposed an
iterative symbol-by-symbol decoding algorithm for this code.
We have also proposed an effective constellation mapping
method. Compared with the uncoded 4-PSK, the proposed



 

 

 

 

 

Fig. 3. The signal constellation mapping for 16-PSK obtained via computer
search that has a minimum Euclidean distance of 1.18 for the single parity
check code c0 + c1 = 0 mod 16.

 

Fig. 4. Symbol error rates for (1004 251) 16-LDPC with 16-PSK modulation
(code rate-3/4) and uncoded 8-PSK.

code with a coding rate of 8/9 and 4-PSK and 4-PAM mod-
ulations, which provides roughly the same spectral efficiency
as the uncoded system, achieves about 5 dB coding gain. For
the 16-LDPC code with 16-PSK modulation and a code rate
3/4, the error performance depends on the signal constellation
mapping. With one mapping scheme obtained via computer
search, the performance is comparable to that of the trellis
code at the same spectral efficiency. Since this is a large family
of LDPC codes, more research is needed to fully exploit the
potential of these codes.
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