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Abstract—The design of wireless sensor networks requires
cross layer optimization of sensing, signal processing and commu-
nication. We consider the linear decentralized estimation model
in which low complex sensors sense, amplify, and forward the
noisy and scaled observation of a source variable via a multiple-
access channel (MAC) to the fusion center (FC), where the FC
has perfect channel state information. We study the optimal
placement of sensors located between the source and the FC.
Using majorization, we prove for the orthogonal MAC, that an
equidistant placement of the sensors between source and FC is
optimal. For the general coherent MAC, the same behavior is
explained and observed. Bounds on the loss due to suboptimal
sensor placement are derived. The clear behavior changes if the
outage probability is used for sensor placement. At high SNR,
the average distortion is Schur-convex while for small SNR, it
is Schur-concave. Numerical simulations illustrate the theoretical
findings.

I. INTRODUCTION, SYSTEM MODELS, AND PROBLEM
STATEMENTS

We consider the scenario of a generic wireless sensor
network in which noisy observations of a source are measured
by multiple sensors. The low-cost sensors amplify the received
signal and send it to a fusion center (FC), where an estimate of
the realization of the source is build [1]. Three main operations
– sensing, processing and communication – should be jointly
optimized in a wireless sensor network since the resources are
limited. Sensors are limited in terms of computational power,
bandwidth, and energy [2].

A. Recent results and contributions
The real valued sensor messages are analog transmitted

to the FC. We follow the system model in [3], which is
based on amplify-and-forward operations at the sensors and
study the orthogonal multiple-access channel (MAC) as well
as the coherent MAC. The FC builds an estimate of the source
symbol using the linear minimum mean-square error (MMSE)
receiver. The performance of the reconstruction is measured by
the average distortion. In contrast to recent work, the sensors
have individual power constraints and we consider the problem
of the sensor placement in the space between source and FC.
The sensor placement problem in wireless sensor networks

is studied recently in a number of works (see the survey in
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[4]). In [5], the sampling in space and time is considered and
a characterization of the optimal sensor placement is derived.
In [6], the average transmit power is minimized with finite-
rate feedback for coherent communication in a wireless sensor
network.
Our contributions are as follows: For orthogonal and co-

herent MAC, we answer the question of how to place a
set of sensors between the source and the FC by a three
step approach using majorization theory. First, the impact of
random channel gains on the average distortion for fixed sensor
gains is derived. The average distortion is Schur-convex with
respect to the average channel gains, i.e., the minimum average
distortion is achieved for symmetrically distributed sensors
around the FC. Second, the impact of random sensor gains
on the average distortion for fixed channel gains is analyzed.
The behavior is identical to the first case with sensor and
channel gains switching their roles. In the final third step, these
results are combined to conclude that the minimum average
distortion with random channel and sensor gains is achieved
if the sensors are placed equidistant from source and FC. A
brief discussion of the outage probability shows that for high
SNR the optimal sensor placement does not change whereas
for small SNR (high outage probability), the results change
completely. Numerical simulations illustrate the results.

B. System models
We follow the model in [3] and consider the case where L

sensors S1, . . . , SL collect scaled and noisy realizations s of
a random variable S. Sensor Sl observes

xl = hls+ nl,

with hl denoting a random source-to-sensor channel gain
and nl representing zero-mean complex Gaussian noise with
variance σ2. For later use we define ρ = 1

σ2 . The noise at all
sensors is assumed to be i.i.d. (independent and identically
distributed). As in [7] we model with the source-to-sensor
channel gain the uncertainty in some physical aspect of the
sensing process. In the rest of the paper we abbreviatory
use the term sensor gain. The sensors amplify the noisy
observations and transmit it to the FC over a MAC. This MAC
can be thought of as a MAC in one cell in the model of [2].
The FC forms an estimate ŝ of the observation s.
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Fig. 1. System model with orthogonal MAC.

We consider two different MAC models. Both assume
perfect channel state information (CSI) at the fusion center.
The first is additionally an orthogonal MAC in which the
transmission of the sensors are scheduled orthogonally in time
or frequency. The second is a standard MAC in which all
transmissions take place simultaneously. Note that for the first
setting, coordination between the sensors is needed, whereas
for the second the sensors transmit anytime. However, we
assume symbol synchronous transmission.
The system model with the orthogonal MAC is shown in

Fig. 1. For the orthogonal MAC, the received signals at the FC
are given by

yl = glalhls+ glalnl + ul, l = 1, . . . , L, (1)

with al denoting the sensor amplification factor and gl the
random sensor-to-FC channel gain of sensor Sl. The sensor-to-
FC channel gain models the wireless fading channel between
sensor and FC. We will refer to this gain subsequently as
channel gain. Furthermore, in (1) the quantity ul represents
zero-mean complex Gaussian noise with variance σ2. The
noise again is assumed to be i.i.d.a
The linear MMSE estimator at the FC results in an achiev-

able MSE Do satisfying [8]
1

Do
= 1 +

∑L

l=1

g2l a
2
l h

2
l

1/ρ+ g2l a
2
l

. (2)

Note that the average transmit power of sensor Sl is given by
Pl = a2l (h

2
l + 1).

The system model with the coherent MAC is shown in
Fig. 2. For the coherent MAC, the received signal at the FC is
given by

y =
∑L

l=1
glalhls+

∑L

l=1
glalnl + u. (3)

with al and gl as above and u being zero-mean complex
Gaussian noise with variance σ2. The linear MMSE estimator
at the FC results in an achievable MSE Dc given by [3, eq. (6)]

1

Dc
= 1 +

(∑L

l=1 glhlal

)2

1/ρ+
∑L

l=1 g
2
l a

2
l

. (4)

a We choose the variance of the noise at the FC identical to the variance
of the noise at the sensors to simplify analysis. However, it is trivial to extend
the model and the analysis for different variances.
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Fig. 2. System model with coherent MAC.

Assuming individual power constraints at the sensors, i.e. Pl =
1, leads to normalized amplification factors

a2l = (h2
l + 1)−1.

Define xl = (1 + h2
l )

−1 to obtain for the achievable inverse
MSEs Do and Dc

1

Do
= 1 +

L∑
l=1

g2l
h2

l

1+h2

l

1/ρ+ g2l
1

1+h2

l

= 1 +

L∑
l=1

g2l (1− xl)

1/ρ+ g2l xl

(5)

and

1

Dc
= 1 +

(∑L

l=1 gl

√
h2

l

1+h2

l

)2

1/ρ+
∑L

l=1 g
2
l

1
1+h2

l

= 1 +

(∑L

l=1 gl
√
1− xl

)2

1/ρ+
∑L

l=1 g
2
l xl

.

(6)

For ρ → ∞ (high SNR) the following limits are obtained:
1

Do
−−−→
ρ→∞

1 +
∑L

l=1

(
1

xl

− 1

)
= 1 +

∑L

l=1
h2
l (7)

and

1

Dc
−−−→
ρ→∞

1 +

(∑L

l=1 gl
√
1− xl

)2

∑L

l=1 g
2
l xl

(8)

which is a constant larger than or equal to (7).

C. Problem statements
In this work, we want to understand the impact of the sensor

location on the distortion. Recall, in (5) and (6) we denote by
h1, . . . , hL the sensor gains and by g1, . . . , gL the channel
gains.
1) Fixed sensor gains, random channel gains: First, we

consider the scenario in which the sensor gains are fixed h1 =
h2 = ...hL = 1 which leads to

xl = (hl + 1)−1 = 1/2.

Furthermore, let the random channel gains g1, ..., gL be mo-
deled as g2l = clwl with w1, ..., wL being i.i.d. standard
exponentially distributed. The resulting average distortion is

Do(c) = Ew[Do] = Ew

[(
1 +

L∑
l=1

(
1− 2

2+ρclwl

))−1]
(9)



and

Dc(c) = Ew[Dc] = Ew

[(
1 +

ρ
(∑L

l=1

√
clwl

)2

2 + ρ
∑L

l=1 clwl

)−1]
. (10)

Problem 1: What is the impact of the average channel gains
c = [c1, ..., cL] on the average distortion?
2) Random sensor gains, fixed channel gains: Next, we

consider the scenario in which the channel gains are fixed and
normalized, i. e. g1 = g2 = ... = gL = 1, and the sensor
gains h1, ..., hL are random. The sensor gains are modeled
as h2

l = dlvl with v1, ..., vL being i.i.d. random variables
with expectation equal to one. Note that we do not need to
consider a specific distribution of the random variables vl for
the subsequent analysis. We obtain

1

Do
= 1 +

∑L

l=1

(1− xl)

1/ρ+ xl

= 1 +
∑L

l=1

ρh2
l

1 + ρ+ h2
l

. (11)

The resulting average distortion for the orthogonal MAC is

Do(d) = Ev[Do] = Ev

[(
1 +

L∑
l=1

ρdlvl
1 + dlvl + ρ

)−1]
. (12)

For the coherent MAC the resulting average distortion is

Dc(d) = Ev[Dc] = Ev

[(
1 +

(∑L

l=1

√
dlvl

1+dlvl

)2

1/ρ+
∑L

l=1
1

1+dlvl

)−1]
.

(13)
Problem 2: What is the impact of the average sensor gains

d = [d1, ..., dL] on the average distortion?
3) Random sensor and channel gains: Finally, we consider

the case in which the channels as well as the sensor gains are
random. However, the average channel gains and sensor gains
are not independent. If a sensor is close to the source it is
automatically far from the FC and vice versa. We model this
relationship by

h2
l = dlvl and g2l =

cl︷ ︸︸ ︷
(1− dl)wl, l = 1, . . . , L. (14)

The small scale fading realizations v1, ..., vL, w1, ..., wL are
distributed as in the models above. From (14) it follows that∑L

l=1
dl +

∑L

l=1
cl =

∑L

l=1
cl +

∑L

l=1
(1− cl) = L. (15)

Obviously, this is an idealized model. However, it includes
many cases of practical interest and allows an analytical
approach. We define the composed vector γ = [d, c] and
consider the average distortion for the orthogonal MAC

Do(γ) = Ew,v

[(
1 +

L∑
l=1

clwl
dlvl

1+dlvl

1/ρ+ clwl
1

1+dlvl

)−1]
(16)

and for the coherent MAC

Dc(γ) = Ew,v

[(
1 +

(∑L

l=1

√
clwl

dlvl

1+dlvl

)2

1/ρ+
∑L

l=1 clwl
1

1+dlvl

)−1]
. (17)

Problem 3: What is the impact of the sensor placement γ on
the average distortion?

II. PRELIMINARIES
In order to compare different scenarios, we will apply

majorization theory. Without loss of generality, we order the
sensors in a decreasing way according to their average sensor
gains, i.e. c1 ≥ c2 ≥ ... ≥ cL. The constraint regarding the
sum of these gains verifies that we compare scenarios in which
the sensors obtain the same average sum power. We need the
following definitions [9].
Definition 2.1: For two vectors x,y ∈ R

n we say that the
vector x majorizes the vector y and write x � y if∑m

k=1
xk ≥

∑m

k=1
yk

for m = 1, ..., n− 1 and
∑n

k=1 xk =
∑n

k=1 yk.
The next definition describes a function Φ which is applied

to the vectors x and y with x � y.
Definition 2.2: A real-valued function Φ defined on A ⊂

R
n is said to be Schur-convex on A if from x � y on

A follows Φ(x) ≥ Φ(y). Similarly, Φ is said to be Schur-
concave on A if from x � y on A follows Φ(x) ≤ Φ(y).
Schur-convexity and Schur-concavity correspond to our

understanding of less and more spread out. The most spread
out vector has equal entries, while the less spread out vector
has only one entry which is equal to L in our case.
The operational meaning of majorization in our wireless

sensor network context seems first unmotivated if the two se-
parate cases with fixed channel gains or fixed sensor gains are
studied. However, in the case in which random channel gains
as well as random sensor gains are considered, the operational
meaning is explained in the following two figures.
In Fig. 3, the black sensors are symmetrically arranged and

have equal distance to the source as well as to the FC. This
implies d = 1

2 [1, 1, ..., 1] = c. This situation is illustrated in
contrast to the case, where some sensors are closer (gray) to
the source and others are closer to the FC (white).

FC

source

sensors

Fig. 3. Symmetric sensor placement (black, equidistant from source and
FC) vs. asymmetric sensor placement (white sensors moved closer to FC,
gray sensors moved closer to source).

In conclusion, this illustrates that the most spread out case
corresponds to the scenario in which all sensors have the same
distance to the source. The less spread out case corresponds to



the scenario in which one sensor is very close while the others
are far away. The monograph [10] gives details on majorization
theory and applications in multiple antenna and multiuser
networks. Before proceeding to the distortion analysis, we give
some auxiliary results.
Theorem 2.1 (Theorem in [11]): Let X = (X1,. . . ,Xn) be

a random vector with support A and interchangeable com-
ponents and let a = (a1, . . . , an) and b = (b1, . . . , bn) be
vectors such that a � b. If φ is a real, continuous and convex
function on A and symmetric in its n arguments, then

EXφ(a1X1, . . . , anXn) ≥ EXφ(b1X1, . . . , bnXn).

If φ is strictly convex, equality occurs only when a = b,
possibly after reordering components, or Xi is zero with
probability one.
We need another characterization in terms of the cumu-

lative probability function stated next. The random variables
w1, ..., wn are again i.i.d. standard exponentially distributed.
Theorem 2.2: Suppose that the inverse function f−1 of f

exists and f is non-negative. Further assume that the vectors
μ1 = (μ1

1, . . . , μ
1
n) and μ2 = (μ2

1, . . . , μ
2
n) satisfy μ1 � μ2.

If f−1(x) ≥ 2 then

P

[
f
(∑n

k=1
μ1
kwk

)
≤ x

]
≤ P

[
f
(∑n

k=1
μ2
kwk

)
≤ x

]
.

If f−1(x) ≤ 1 then

P

[
f
(∑n

k=1
μ1
kwk

)
≤ x

]
≥ P

[
f
(∑n

k=1
μ2
kwk

)
≤ x

]
.

The result says that P [f (
∑n

k=1 μkwk) ≤ x] is Schur-concave
for x ≥ f(2) and Schur-convex for x ≤ f(1). The proof can
be found in [12]. In the interval f(1) < x < f(2) there is no
clear behavior with respect to majorization.

III. AVERAGE DISTORTION ANALYSIS

We approach the three problems formulated above using
majorization theory. For the orthogonal MAC, Schur-convexity
of the average distortion is shown. For the coherent MAC,
we provide arguments for the observation that the average
distortion is Schur-convex as well.

A. Fixed sensor gains, random channel gains

We apply majorization to the average distortion defined in
(9) and (10) for the orthogonal and coherent MAC, in order
to show the impact of the average channel gains.
Theorem 3.1: The average distortion Do in (9) is Schur-

convex with respect to average channel gain vector c.
This implies that the sensors should be spread out uni-
formly/symmetrically around the FC.
Proof: The average distortion measure Do(c) is obviously a

symmetric function and w1, ..., wL are interchangeable random
variables. To show convexity, we parametrize the vector

c(t) = tp+ (1− t)q

for arbitrary p=(p1, . . . , pL)≥ 0, q=(q1, . . . , qL)≥ 0
(component-wise) with t ∈ [0, 1]. Next, consider the
parametrized average distortion as

Do(c(t)) = Ew

[(
1 +

∑L

l=1

(
1− 2

2+ρ{tpl+(1−t)ql}wl

))−1
]
.

(18)

The second derivative of (18) with respect to t is given by

∂2Do(t)

∂t2
= Ew

⎡
⎢⎣ ρ2

(∑L

l=1 wl(pl − ql)
)2

(
1 + ρ

∑L

l=1{tpl + (1− t)ql}wl

)3

⎤
⎥⎦ > 0,

(19)

which shows convexity. Hence, Theorem 2.1 applies and
shows that Do(c) is Schur-convex. �
An interesting interpretation of the result for the coherent

MAC is provided next. In the average distortion expression
of the coherent MAC (10), there are two terms which can be
identified with well analyzed expressions. The term

EGC(c) =
(∑L

l=1

√
clwl

)2

can be identified with the SNR after equal gain combining.
It is known that this is Schur-convex with respect to c (see
[13]). The term

MRC(c) =
(∑L

l=1
clwl

)
can be identified with the SNR after maximum ratio combin-
ing. This term does not depend on c since

Ew

(∑L

l=1
clwl

)
=

∑L

l=1
cl = L.

The average distortion can be written as

Dc(c) = Ew

[(
1 +

ρEGC(c)

2 + ρMRC(c)

)−1
]
. (20)

We argue using the results on compositions involving Schur-
convex functions in [9, Section 3B] that the combination in
(20) is Schur-convex with respect to c.
Worst case sensor placement analysis for orthogonal MAC:

The maximum distortion difference due to sensor misplace-
ment is given by the difference of the best case (c1 = c2 =
... = cL = 1) and the worst case (c1 = L, c2 = c3 = ... =
cL = 0). For the orthogonal MAC, this leads to the expressions

Do(1, ..., 1) = Ew

[(
1 +

∑L

l=1

(
1− 2

2+ρwl

))−1]
=

∫ ∞

0

e−t
∏L

l=1
Ewl

[
exp

(
− t

(
1− 2

2+ρwl

))]
dt

for the best case and

Do([L, 0, ..., 0]) = Ew1

[(
1 +

(
1− 2

2+ρLw1

))−1]
=

∫ ∞

0

e−t
Ew1

[
exp

(
− t

(
1− 2

2+ρLw1

))]
dt



for the worst case. For small SNR ρ 
 1, the following
approximation for the best case holds

Do(1, ..., 1) =

∫ ∞

0

e−t

(
E

[
exp

(
− t

(
1− 2

2+ρw1

))])L

dt

≈
∫ ∞

0

e−t

(
1− tρ

2

)L

dt =
L∑

k=0

(
L

k

)∫ ∞

0

e−t
(
− tρ

2

)k

dt

=

L∑
k=0

(
L

k

)(−ρ

2

)k

Γ(k + 1) (21)

where Γ(·) is the Gamma function. Considering only the first
two terms in the sum in (21), we obtain

Do(1, ..., 1) ≈ 1− L
ρ

2
+O(ρ2) ≥ 1− L

ρ

2
(22)

For the worst case, we obtain

Do([L, 0, ..., 0]) ≈ 1− ρL

2
. (23)

Comparing (22) and (23) confirms the result in Theorem 3.1
for small SNR.

B. Random sensor gains, fixed channel gains
We apply majorization to the average distortion defined in

(9) and (10) for the orthogonal and coherent MAC, respec-
tively, in order to show the impact of the average sensor gains.
Theorem 3.2: The average distortion Do in (12) is Schur-

convex with respect to average sensor gain vector d.
This implies that the sensors should be spread out uni-
formly/symmetrically around the source.
Proof: The average distortion for the orthogonal MAC and

random sensor gains can be rewritten as

Do(d) = Eν

[(
1 + ρ

∑L

l=1

(
1− 1 + ρ

1 + ρ+ dlvl

))−1
]
. (24)

This function is symmetric. Using the arguments as in the
proof of Theorem 3.1 it is shown that the function is convex.
The random variables are interchangeable so we can apply
Theorem 2.1 which shows the Schur-convexity of Do(d). �
For the average distortion Dc in (13) for the coherent MAC,

a similar argument as in Section III-A is used to indicate that
the average distortion is Schur-convex in this case as well.

C. Random channels and random sensor gains
We combine the results from the two previous sections. The

average distortion is Schur-convex with respect to c for fixed
d and also Schur-convex with respect to d for fixed c. The
average distortions in (16) and (17) are thus also Schur-convex
in the combined vector γ = (c,d).
For the orthogonal MAC, we make in view of Theorem 3.1

and 3.2 the following observation.
Observation 3.1: The average distortion in (16) is a Schur-

convex function with respect to the combined average gain
vector γ. This shows that the sensors should be placed
equidistantly from the source and the FC.

The conclusion of Observation 3.1 does not imply that
placing all sensor at the same position with equal distance
to source and FC is optimal. In the model, we assumed
that the channel gains g2l = clwl and h2

l = dlvl have
independent small scale fading realizations, i.e., w1, ..., wL are
i.i.d. and v1, ..., vL as well. This shows that there must be a
certain distance between sensors to assure independence of
the channel and sensor gain realizations. Therefore, the sensor
placement in Fig. 3 (black sensors) is optimal for minimum
average distortion if the inter-sensor distance is large enough.

IV. OUTAGE DISTORTION ANALYSIS

We briefly point out another performance measure which is
important for a slow fading MAC. Define the distortion value
d0 and z0 = 1

d0

− 1. The outage probability in the orthogonal
MAC is given by

Pout(z0, c) = P

(∑L

l=1

g2l (1− xl)

1/ρ+ g2l xl

≤ z0

)
. (25)

For the fixed sensor gain scenario, i.e., h1 = . . . = hL =
1, we have x1 = . . . = xL = 1/2. We model g2l = clwl

with i.i.d. standard exponentially distributed random variables
w1, . . . , wL. Then it follows that∑L

l=1

1/2clwl

1/ρ+ 1/2clwl

= L−
∑L

l=1

2

2 + ρclwl

and the outage probability in (25) can be written as

Pout(z0, c) = P

(
L−

∑L

l=1

2

2 + ρclwl

≤ z0

)
= P

(∑L

l=1

2

2 + ρclwl

≥ L− z0︸ ︷︷ ︸
ξ

)
. (26)

Next, an approximation for small SNR (ρ 
 1) by series
expansion is given by∑L

l=1

2

2 + ρclwl

= 2− 1

2

(∑L

l=1
clwl

)
ρ+O(ρ2). (27)

Using (27) the outage probability for small SNR is approxi-
mated by

Pout(z0, c) ≈ P

(∑L

l=1
clwl ≤ 2 · 2− ξ

ρ

)
. (28)

Invoking Theorem 2.2 leads to the conclusion that for small
SNR, i.e. for a RHS of (28) larger than two, the outage
probability is Schur-concave with respect to c. This behavior
is illustrated in the second example of the next section.

V. ILLUSTRATIONS

In Fig. 4, the average distortion for the orthogonal and the
coherent MAC with two sensors and fixed sensor gains h1 =
h2 = 1 is shown for different average channel gains of sensor
S1. Since the total average channel gain is constant, we have
c2 = 1− c1. Note that the symmetric equidistant scenario, i.e.
c1 = c2 = 1

2 , should have lowest average distortion.
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Fig. 5. Outage probability of the distortion for d0 = 0.8 as function of SNR
and average channel gain for two sensors.

Fig. 4 illustrates the result of Theorem 3.1 and shows also
that for high SNR, the orthogonal MAC outperforms the
coherent MAC (see equations (7) and (8)).
Fig. 5 shows the outage probability for the distortion for the

orthogonal MAC for two sensors with different average chan-
nel gains and SNR. For high SNR, the behavior is identical to
the average distortion and symmetric sensor placement yields

minimum outage probability. However, for small SNR and
admittedly incredible high outage probabilities, the behavior
turns around and an asymmetric sensor placements gives lower
outage probability. Interestingly, the behavior for the coherent
MAC seems to be consistent for small and high SNR values.

VI. CONCLUSIONS AND OPEN PROBLEMS
In order to minimize the average distortion using an or-

thogonal or coherent MAC, it is optimal to place the sensors
equidistantly between source and FC, e.g., on a circle with
inter-sensor distance larger than two times the wavelength but
small inter-sensor distance compared to the overall distance
to source and FC. This conclusion changes theoretically if
the outage probability is applied as the performance measure.
Practically, the outage probability is also Schur-convex as a
function of the average channel gains for all reasonable outage
probabilities.
In this work, we have assumed that the sensors have

individual power constraints. If this assumption is relaxed,
the above conclusion might change and an asymmetric sensor
distribution could achieve lower distortion. Another direction
for future research is to consider multiple sources.
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