
PeerIIR: Peer-to-Peer Interactive Internet Radio System

Tzu-Chieh Tsai, Tong-Yen Hsieh, Wen-Ching Lo
Department of Computer Science

National Chengchi University,
Taiwan, Taipei,

ttsai@cs.nccu.edu.tw, g9603@cs.nccu.edu.tw, d9806@cs.nccu.edu.tw

Abstract-Peer-to-Peer (P2P) applications are popular recently
and have become one of the hottest research topics. The
participants can share their resources (such as processing power,
disk storage, and network bandwidth) in the P2P architecture to
collaborate file downloading and streaming services. In this
paper, we design and implement an Interactive Internet Radio
system using the P2P approach, called PeerIIR. When the host,
co-hosts, and calliners are speaking at the same time, they will
produce multiple streams which need to deliver to all the
audience on the system. This will consume the network
bandwidth inefficiently, or even exhaust the link capacity of the
audience. Thus, how to process multiple streams produced at the
same time and to deliver to all the audience efficiently is the key
issue. When there is only one program host producing the audio
stream, a distribution tree is built to distribute it. If there are co
hosts or calliners speaking, a distributed mixer negotiation
algorithm is performed to build a voice mixing tree among
PeerIIR servers. Therefore the audio streams are mixed
distributedly and step by step along the mixing tree to save
transmission bandwidth. The results from series of simulation
show that the performance for response time and link/node stress
is enhanced compared with some related works.

Keywords-Peer-to-Peer; Internet Radio; Voice-over-Internet
Protocol (VoIP); Call-in Service.

I. INTRODUCTION

Using Peer-to-Peer (P2P) overlay has become an
increasingly popular approach due to its scalability and easy
deployment. In the P2P architecture, each peer can share their
resources without the need of a central server to collaborate file
downloading or streaming services. Several P2P-based
streaming systems have been successfully deployed to date,
such as PPlive[1], PPStream[2], and Skype[3]. We can watch
TV shows via PPstream or PPlive. We can make a phone call
via Skype. We can also hear an audio program on the Internet
like traditional radio programs. We call such audio service
transmitted via Internet as "Internet Radio".

Several Internet radio systems have been developed, such
as live356[4], PTTRadio[5], and ipavo[6]. These systems
broadcast the stream from the host to all audience. Specifically,
these systems can only process one stream at a time. However,
many live interactive shows which allow audience to call in to
participate in the program such as political commentary shows,
may produce multiple streams concurrently. In this case, hosts
and audience can interact like a conference call. Furthermore,
the P2P approach has to be utilized to reduce the possible
tremendous broadcast streaming. Thus, in this paper, we will
design a Peer-to-Peer Interactive Internet Radio system, called
PeerllR. In our PeerllR system, everyone could be a program
host to perform a show. The host can invite co-hosts to make
the show together, and can allow audience to use the call-in

service. When there is only one program host producing the
audio stream, a distribution tree is built to distribute the audio
stream on a P2P basis. If there are co-hosts or calliners
speaking, a voice mixing tree is built among the designated
PeerllR servers. Therefore the audio sources are first mixed
locally and then further mixed together among them to save
transmission bandwidth.

The rest of this paper is organized as follows. Section 2
introduces related works in P2P streaming systems and multi
party VoIP conferencing systems. Our PeerllR system and
algorithm are proposed in Section 3. In Section 4, we present
the simulation results compared with some related works.
Section 5 concludes this paper and remarks on the future work.

II. RELATED WORKS

There are several existing approaches to deal with multiple
streams produced at the same time. [7] shows the overlay
multicast approach to distribute multiple audio streams
concurrently. Although the overlay multicast is well suited for
broadcast applications with one speaker, it becomes inefficient
for the application with multiple streams produced at the same
time. The system may be overloaded by processing many audio
streams simultaneously. In addition, the system has to maintain
large number of multicast trees for all speakers. Thus, it will
incur a lot of maintenance overhead.

The audio mixing scheme can effectively reduce the
number of concurrent streams and conserve the bandwidth.
However, centralized audio mixing lacks the scalability and the
mixer could be a bottleneck. Previous work has proposed
distributed mixer processing (DMP) approaches (e.g., [8], [9],
[10]) that distributedly mix the audio streams step by step
along the mixing tree. This system not only saves the network
bandwidth, but also balances the loading of mixers.

III. PEERIIR: PEER-TO-PEER INTERACTIVELY INTERNET

RADIO SYSTEM

A. System Model
In our PeerllR system, we build distribution trees and a

voice mixing tree for an audio program channel. When there is
only one program host producing the audio stream, a
distribution tree is built to distribute it. If there are co-hosts or
calliners speaking, a distributed mixer negotiation algorithm is
performed to build a voice mixing tree among PeerllR servers.
Figure 1 depicts the PeerIIR system model.

ziglio
Typewritten Text
CHINACOM 2010, August 25-27, Beijing, ChinaCopyright © 2011 ICST 973-963-9799-97-4DOI 10.4108/chinacom.2010.61

• t
� • • Host

• Caliiner/Co-Host

• • • • PeerliR Server

. - - • • + SUI)er Peer

•
• .A. Back-up Super Peer

i .� ... • ormal Peer

Figure I: PeerIIR System Architecture.

There are six major components in PeerlIR system:

1. (Program) Host: the main content provider of a
program. The host can allow peers to use the call-in
service or invite co-hosts to participate in the program.

2. Calliner/co-host: a peer which uses the call-in
service/the assistant content provider of a program.

3. PeerIlR server: a dedicate server which provides the
advertisement and the service message. It can also deal
with the program host leaving the system without pre
notice. The PeerIIR server also maintains super peer
list.

4. Super peer: any nonnal peer with a public IP address
having sufficient network bandwidth selected to
become a super peer. It is a distributor which
distributes audio streams to multiple peers through the
tree.

5. Back-up super peer: the children peer selected by a
super peer. If a super peer leaved, the back-up super
peer will replace it and send the audio stream to its
children.

6. Nonnal peer: the general audience.

PeerIIR assigns at least one PeerIlR server to each program
channel. PeerIIR servers are the root of distribution trees.
When the speaker is only the program host, it sends the audio
stream to all the PeerIIR servers which then transmit to
audience via distribution trees. We assign a PeerIIR server to
the program host by "host ranking". Host ranking is derived
from (1) the popularity of the host's previous programs, (2) the
comments from the audience. The higher host ranking means
the higher attraction of this host. In this case, we assign more
PeerIIR servers to it.

Someone may join the channel before the show started. At
this time we can send the advertisement via the PeerIIR server
until the show starts. During the show, when more peers join
the channel, the PeerIIR could choose more super peers to
balance the load or enhance the perfonnance of the streaming
delivery. The activity of super peers is maintained by the
PeerIIR server. A new joining nonnal peer will request to a
PeerIIR server and download the super peer list. After that, it
will select a super peer to join the distribution tree and thus
listen to the channel.

B. Super Peer Selection
Any nonnal peer with a public IP address having sufficient

network bandwidth is a candidate to become a super peer.
Every super peer will, if possible, choose two back-up super
peers from its children. Once a new joining peer connects to
the super peer, this super peer will compute the super peer
score (SP) by the following equation (1) .

SP = a * BW + b * F + C * LT , (1)

where the BW is bandwidth, F is frequency, L T is listening
time, and a, b, and c are the parameters. Different from most
P2P systems, we choose the frequency and listening time to
select super peers. The frequency is the feverish of this peer to
the host. The higher frequency and listening time may decrease
the super peer chum rate. Thus super peer chooses two back-up
super peers from its children according to the super peer scores.

The overall load of a super peer may be saturated. This can
be detected by the Saturated-Notification scheme. These two
back-up supers will be transfonned to the super peer and
increase the distribution tree height. Thus, the ability of back
up super is not only back-up the super peer, but also prepares to
become a super peer. We will describe the Saturated
Notification scheme later.

C. Peer Join
Figure 2 shows the peer join procedure. There are three

steps: (1) After login to the login server and obtaining the
PeerIIR server list, the new peer P will first send a REQUEST
message to the PeerlIR servers. On receiving the message,
PeerIIR servers send the REPLY message to P. (2) P selects a
PeerIlR server with the minimum round trip time (RTT) as its
entry point to the system and then downloads the super peer list
from the selected PeerIIR. The RTT is the time measured from
sending REQUEST to receiving REPLY. (3) P sends the
REQUEST message to the random subset of the super peers as
its parent. On receiving the message, super peers will return
messages with D(SP). The D(SP) is delay time between the
host to super peer. Every super peer measures D(SP)
periodically. Finally, P chooses the super peer with minimum
(RTT+D(SP)) to join the distribution tree.

Login Selovel'
Peel'liR ServeR'

Pee ... IRSe,verUSI 8 .1
---- . ____ • 8 0
Selecl aClrannel � I 0/ 8

I
Supel' Peel'

Ust

Figure 2: Peer Join Procedure.

D. Peer Leave
I. Nonnal peer: when a nonnal peer leaves the system,

the super peer sets its status to be inactive. If this peer
does not rejoin the system for a long time, the super
peer will delete the infonnation of this peer.

ii.

HI.

Back-up super peer: if a back-up super peer leaves the
system, its super peer will choose a new back-up super
peer according to the super peer score by equation (1).

Super peer: every super peer selects two back-up super
peers and sends the address of back-up super peer to its
parent and children. When super peer leaves the
system, the back-up super peer will replace the super
peer to continuously transmit the audio stream.

E. Super Peer Maintenance
During the running of the system, peers join and leave the

system frequently. This high chum rate may cause that some
super peers manage very large number of peers, but the others
manage few peers. To make the loading of super peers more
balanced, we design a scheme called Saturated-Notification
scheme to avoid super peer overloaded. On the other hand, we
also merge the light loading super peers to decrease the height
of the distribution trees.

Saturated-Notification Scheme: we first define two
thresholds: (1) lock threshold, which means the upload
bandwidth of the super peer is nearly saturated, (2) un-lock
threshold, which means the locked super peer has sufficient
upload bandwidth now. While the capacity of super peer is
over the lock threshold, it will send the Saturated-Notification
to its PeerIIR server. This notification includes the address and
peer IDs of its back-up super peers. Once receiving the
Saturated-Notification, the PeerliR server will update the
super peer list: add new super peers to the list, and set the flag
of the saturated super peer to be locked. Figure 3 shows the
Saturated-Notification scheme.

a: lock [J Silturnlcd

............ � .. -.

Super Peer

Back-up
Super Peer C

Back-up b
Super Peer

a: lock
b: lIll-lock
c: un-lock

Super Peer

Figure 3: Saturated-Notification Scheme.

When the upload bandwidth of locked super peer is below
the un-lock threshold for a while, it will request the PeerIIR
server to un-lock it.

Super Peer Merge: when super peers are light loaded, we
merge the super peers to decrease the distribution tree height.
We define a threshold called merge threshold, which means
the super peer has sufficient free bandwidth. When the upload
bandwidth of a super peer is below the merge threshold, it will
send the merge message to its parent super peer or child super

peers. If one of them is also below the merge threshold, we
merge these two super peers. Figure 4 shows the super peer
merge example.

Figure 4: Super Peer Merge.

F. Call-in Service
Audience could use the call-in service to interact with the

host. In order to use call-in, audience must run the call-in
signaling first. Figure 5 shows the call-in signaling. The
calliner sends the call-in request and its infonnation to the host.
If the call-in request is accepted, the host will send the
infonnation of calliner to the PeerIIR server. Then, calliner
will connect to the PeerlIR server directly in order to increase
synchronization and interactivity among hosts and calliners.

Calliner Host Parent

Call-in Request

Call-in Accept

Send Cal line Information

I--
Send Call r Message

• .. -·-"'t -

Figure 5: Call-in Signaling.

PeerllR Server

.

.

The calliners and hosts may speak at the same time and
produce multiple streams concurrently. We adopted the
Distributed Mixer Processing (DMP) to build a mixing tree
among PeerIIR servers. This scheme will distributedly mix
mUltiple streams and then transmit the mixed stream via the
distribution trees. We consider the workload of PeerIIR
servers to build the mixing tree. PeerIIR servers measure the
workload periodically which is calculated by the following
equation (2).

Workload = O.5*IS + O.5*MTL (2)

The IS is the number of the mixed input streams and the MTL
is mixing tree level. The higher IS means the higher mix
loading of the PeerlIR servers. The higher MTL means the
higher overlay hop count. So we choose these two criteria to
build the voice mixing tree.

When a PeerIIR server has a new calliner connection, it
will use Distributed Mixer Negotiation to join the voice
mixing tree. First, the new joining PeerIIR server will send the

JOIN message to other PeerIlR servers. On receiving the JOIN
message, these PeerIIR servers will return the REPLY
message with the current workload. Then the new joining
PeerIIR server connects to the PeerIIR server which has the
minimum workload. Figure 6 shows the Distributed Mixer
Negotiation.

.. Host • PrerIIR Server .. CalIiner

Figure 6: Distributed Mixer Negotiation.

IV. SIMULATIOIN RESULTS

A. Simulation Setup
We compare our PeerIIR system with the other existing

approaches: (A 1) Overlay Multicast, (A2) Centralized Mixing,
and (A3) Distributed Mixer Processing (DMP). The simulation
model is implemented in JAVA. The network setups are shown
in Table 1. We take into account the asymmetric property of
the residential access network where the upload bandwidth is
smaller than the download bandwidth.

Table I· Simulation Parameters

Parameters Default Values
Physical Link Delay 8�12 (ms)

Hops 1�7

Upload bandwidth 64K, 256K, 640K (bps)

Download bandwidth 256K, 1M, 2M, 8M (bps)

Mixing Delay In * [1, 20] + [3, 15]

We use the following metrics to evaluate the quality of our
PeerIlR system: (1) Average tree length of a channel which is
defined as the mean tree length from all speakers to all
audience; (2) Response time of a channel which is defined as
the mean response time from all speakers to all audience,
including the mixing delay, distribution delay, and queueing
delay; (3) link stress over all physical links which is defined as
required bandwidth divided by the available bandwidth. The
higher link stress implies large queueing delay and loss rate; (4)
node stress over all peers which is define as total amount of
audio data the peer needs to process over its processing
capacity. The larger node stress implies larger stream
processing delay and loss probability.

B. Simulation Results
1) Scenario 1

In the first scenario, we evaluate the performance of the
PeerIIR system under different number of audience in a
channel, illustrated by Figure 7 � Figure 10. The number of
audience is ranged from [100, 700]. There are three speakers
for this scenario. Figure 7 shows the average tree length
achieved by different approaches. We observe that the
centralized mixing and the overlay multicast both have better
performance than PeerIIR and DMP. This is because we don't
take into account the mixing delay and the affect of the limited
bandwidth. Figure 8 shows the average response time achieved
by different approaches. The results show that PeerIIR
achieves lower response time than the other approaches.

? 3.0
.§. 0

ro 150
j 200

� 150
� 100

�

r 50
�
�

..

100

_Q\·erlo\" J\lul�c3S1 Centrahzed �l.txlOg -PocrllR -DMP
_ 900

VI 800
.§. -00
E c500
E= 500
� JOO
� 300
� 200
'::: 100
'"
t 0

� 100 150 JOO 550

Audience in a PrognlU with three Sll(',,)kers

Figure 8: Average Response Time under Different Number of Audience.

I.

100 ". '00 sso 700

Audience in il ProgroHll n'itll three spe:tkers

Figure 9: Link Stress under Different Number of Audience

Figure 9 shows the average link stress on all the physical
links under different approaches. We observe that peerIIR can
achieve similar link stress as DMP by employing explicit load
balancing. The reason is that they both employ a multiple
stream mixing phase that can greatly reduce the number of
concurrent audio streams distributed across networks. Figure
10 shows average node stress on all the peers under different
approaches. We observe that peerIIR can achieve smaller node
stress due to its load balance scheme.

50
J�
40

� '-'
;: 3
� 25
"0 20
Z 15

1 0

JOO 550

Audience in :l Pro r:lm with three spe:lkers

Figure 10: Node Stress under Different Number of Audience

2) Scenario 2
Different with scenario 1, we evaluate the performance of

the peerliR system under different number of speakers,
illustrated by Figure 11 � Figure 14. The number of speakers
is ranged from [5, 25] and we set the audience as 500 peers.

_Overlay Multicast __ Centr.llized Mixing -PeerliR -DMP
"0

.::: 300 � =
..

� 250
" 200 • • ...
� • •
" ISO
..
b 100 * * .. • * :t. �O

10 15 20 2!'
Spt'akers in:1 Progr:IR1 ,,'l1h 500 AudiencE'

Figure II: Average Tree Length under Different Number of Speakers.

Q 3.500
.§ 00
e; 2 500
� 2000
i 1500
� 1000
�' 500
� 0 < 10 25

Speakers in it Program" ith 500 Audience

Figure 12: Average Response Time under Different Number of Speakers.

-+-Overlay Multicast Centralized Mixing PeerliR -DMP

50 �
� �O

� 3
.:t

� 1 0
o

Spfakfr' in a Program "ith :;00 Audience

Figure 13: Link Stress under Different Number of Speakers.

Figure 11 is similar to Figure 7 because we don't take into
account the mixing delay and the effect of the limited

bandwidth. Figure 12 shows the average response time
achieved by different approaches. We observe that PeerIIR can
consistently achieve lower response time than the other
approaches. Figure 13 shows that both PeerIIR and DMP have
much lower link stress than the others approaches by
employing distributed audio mixing. Figure 14 shows that
PeerIIR can achieve lower node stress than the other
approaches because of its inherent load balancing capability.

�
1::
.;i'j 15 ..
2: 1 0
Z

10 I' 20 25

Spe:lkers in " Pr1)gram wilh 500. odiener

Figure 14: Node Stress under Different Number of Speakers.

V. CONCLUSION

In this paper, we design a Peer-to-Peer Interactive Internet
Radio system called PeerliR. In PeerlIR, everyone could be a
program host to make any programs. The host can invite co
hosts to make the program together. The host can also allow
audience to use the call-in service. By using the call-in service,
audience can interact with the host. The host, co-hosts and
caIliners may speak at the same time and produce multiple
streams concurrently. Multiple streams may burden our system
due to bandwidth limitation. So we use the Distributed Mixer
Negotiation scheme to distributedly mix the streams. This
scheme not only conserving the bandwidth but also avoid
overload of the mixers. We compare our PeerIIR with the
overlay multicast, centralized mixing, and distributed mixer
processing (DMP) schemes. We observe that PeerliR can
achieve the best performance than the other approaches. In the
future, we will test it in the real world and target at 1000 people
playing our system concurrently. We have implemented the
prototype system, and the video clips of the demo can be found:
http://www.youtube.com /userINCCUmclab 1

[I] http://www.pplive.com/

[2] http://www.ppstreal11.com/

[3] http://www.skype.com/

[4] http://www.live356.com/

[5] http://pttradio.net/

[6] http://www.ipavo.com/

REFERENCES

[7] Y. H. Chu, S. G. Rao, S. Seshan, and H. Zhang, "Enabling Conferencing
Applications on the Internet using an Overlay Multicast Architecture,"
in SIGCOMM'OI, San Diego, California, USA, August. 2001.

[8] M. Radenkovic, and C. Greenhalgh, "Multi-party Distributed Audio
Service with TCP Fairness," in Multimedia'02, luan-Ies-Pins, France,
December. 2002.

[9] T. K. Chua, and D. C. Pheanis, "Bandwidth-Conserving Real-Time
VolP Teleconference System," in ITNG'06, 2006.

[10] X. Gu, Z. Wen, P. S. Yu, and Z. Y. Shae, "peerTalk: A Peer-to-Peer
Multi-Party Voice-Over-IP System," in Parallel and Distributed Systems,
IEEE Transaction on April. 2008.

