
Cross-Layer Optimization for Wireless Sensor Network 
with Multi-Packet Reception 

 
Lei Shi†  Jiang-Hong Han†  Yi Shi‡   Zhen-Chun Wei† 

† School of Computer & Information, Hefei University of Technology, Hefei, Anhui 230009, China 
‡ Dept. of ECE, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 

 
Abstract—In this paper, we consider how to exploit multi-packet 
reception (MPR) to increase the capacity for a wireless sensor 
network. Since MPR behavior at the physical layer affects link 
layer scheduling, it is necessary to follow a cross-layer approach 
to obtain an optimal solution. Due to the complexity of cross-
layer optimization, although MPR has great potential to increase 
capacity, optimal solutions are yet to be developed. We build 
constraints for the signal-to-noise-ratio requirement under MPR 
at the physical layer such that we can check the feasibility for a 
set of concurrent transmissions. We further develop an upper 
bound for the number of concurrent transmissions, which 
enables us to identify all feasible sets of concurrent transmissions 
in polynomial time. Then a capacity problem can be formulated 
as a linear program (LP) but with a large number of variables. 
We propose a concept of maximum feasible set to decrease the 
size of LP. Finally, by comparing optimal solutions with and 
without MPR, we show that network capacity can be increased 
about 100% by using MPR. 
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I.  INTRODUCTION 
Recently, there have been considerable interests in wireless 

sensor networks (WSNs) (see e.g., [1], [2], [3], [4]) because 
WSNs have many important applications, such as military, 
agriculture monitoring, environmental monitoring, health care, 
industrial control, and traffic management. A fundamental 
problem for WSNs is capacity, especially for video monitoring 
applications. In this paper, we consider how to maximize data 
rates from all sensor nodes to a base station.  

Traditionally, the base station can only receive one packet 
from a sensor node at any time. If there are multiple sensor 
nodes transmitting at the same time, then all the packets are 
collided and cannot be received. But if the base station has 
multi-packet reception (MPR) capability [5], [6], [7], then it 
may receive multiple packets simultaneously. MPR can be 
achieved by several techniques, e.g., successive interference 
cancellation (SIC) [8], [9], parallel interference cancellation 
(PIC) [9], [10], multiple input multiple output (MIMO) [11], 
[12]. In this paper, we consider SIC for MPR. 

Since the base station can receive data from multiple sensor 
nodes at the same time by using MPR, the network capacity 

may be significantly increased. It has been shown that the 
asymptotic capacity bounds of wireless ad hoc networks can be 
increased by using MPR [13], [14]. However, due to the 
complex MPR behavior in a networking environment, the 
optimal solution for a given network is still unknown.  

In this paper, we aim to design a cross-layer optimal 
solution on how to apply the MPR technology in a single hop 
WSN. Note that although MPR is a physical layer technology, 
the decision of concurrent transmitting nodes affects the 
allocation of time slots at the link layer, which in turn affects 
the network capacity. Thus, it is necessary to follow a cross-
layer approach such that the optimal solution can be obtained.  
There are several challenges in this study. First, since there is 
no existing model to characterize the MPR behaviors in a 
network environment, we need to build constraints for the 
signal-to-noise-ratio requirement under MPR such that we can 
check the feasibility for a set of concurrent transmissions. 
Second, since the number of all possible sets of concurrent 
transmissions is exponential, we cannot check all possible sets. 
To obtain a solution procedure with polynomial time 
complexity, we prove that a feasible set cannot have more than l 
concurrent transmissions, where l is a constant. Then we only 
need to check polynomial number of sets to identify all 
feasible sets. Subsequently, we can formulate a capacity 
problem as a linear program (LP) [15]. Third, it turns out that 
the formulated LP has a large number of variables, each 
corresponding to one feasible set. Thus, we want to further 
decrease the complexity of our solution procedure. We 
propose a concept of maximum feasible set (MFS), which can 
be used to effectively reduce the number of variables and 
enable us to solve the problem optimally in low complexity.  

To show the benefit of MPR, we compare the optimal 
solutions with and without MPR. Our results show that MPR 
can increase the network capacity about 100%.  

The paper is organized as follows. In Section Ⅱ, we solve 
the network capacity problem for a WSN without MPR. In 
Section Ⅲ, we develop a cross-layer model for a WSN with 
MPR and formulate an optimization problem based on this 
model. We further show how to decrease the problem size by 
MFS and then solve it optimally in polynomial time. In Section 
Ⅳ, we give numerical results to show the significant 
performance improvement by using MPR. 
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II. PROBLEM AND OPTIMAZITION FOR  WSNS WITHOUT MPR 
We now solve a capacity problem for a WSN when MPR 

is not used. The result obtained in this section will be 
compared with the result for a WSN with MPR. 

We consider a WSN consisting of n sensor nodes and a 
base station deployed over a two-dimensional area. We denote 
N as the set of sensor nodes. Now we build constraints to 
characterize behaviors at the physical and link layers and 
formulate the problem. 

 
SNR at the Physical Layer. Each sensor node uses 
power P and bandwidth W to transmit data to the base station 
directly. When is  is transmitting, the base station receives a 
signal with power Pgi , where ig  denotes the channel gain 
from is  to base station. Denote id  as the distance between is  
and base station and λ  as the path loss index. We have 

λ−⋅= ii dag ,      (1) 
where a is an antennas related constant. In order to simplify 
the problem, we can normalize a and let 1=a . Then the SNR 
(signal-to-noise-ratio) of is  is 

0N
PgSNR i

i = ,        (2) 

where 0N  is the noise power. For a successful transmission, 
SNR should be larger than a threshold 1>β  [16] and the peak 

data rate is )1(log2 iSNRW + . 
 
Time Slot Based Scheduling. Since MPR is not used, 
there can be at most one sensor node transmitting at any time. 
For a time slot based scheduling, we use n time slots, where 
each time slot i is assigned to node is . The length of each 
time slot is denoted as 1t , 2t , … , nt . Denote T as the total 
length of these time slots, i.e., ∑

=

=
ni
itT

L1
. 

To ensure that the signal from node is  can be decoded in 
time slot i, the data rate in this time slot should be no more 
than the peak data rate )1(log2 iSNRW +  and thus the average 
data rate over all n time slots is no more than 

)1(log2 i
i SNR
T
Wt

+ . 

 
Problem Formulation. In this paper, we consider the case 
that each sensor node is )( Nsi ∈  has a minimum rate 
requirement )(ir . We aim to maximize a common scaling 

factor K, such that each sensor node is  can transmit data to 
base station with rate )(iKr . We note that there are many 
other objectives that can also be used in this investigation, e.g., 
the sum of all rates, the sum of log utility of rates, etc. In 
general, we may consider an objective function in the form of 
the total utility of all nodes, with the utility of a node being a 
concave function of its rate. We emphasize that the same 
approach that we will develop regarding how to identifying all 

MFS is independent of and can be applied for all these 
objective settings. 

To formulate the problem with linear constraints, we can 
normalize all it  by T and then 1

1
=∑

= ni
it

L

. We now have the 

following problem. 
Max  K 
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Where it  and K are variables. The constant value of iSNR  
can be calculated by (2). This is a linear problem (LP). Since 
the number of variables and constraints are both n+1, this LP 
can be solved optimally in polynomial time [15]. 

III. WIRELESS SENSOR NETWORK WITH MPR 
In this section, we consider the same problem as that in 

Section II, but now for a WSN with MPR. By using MPR, 
multiple sensor nodes can transmit data simultaneously. Thus, 
the data rates from sensor nodes can be increased. 

MPR can be achieved by SIC technique [8], [9] as follows. 
The base station first decodes the strongest signal if the 
corresponding SINR (signal-to-interference-and-noise-ratio) is 
at least β . Once the strongest signal is successfully decoded, 
the base station can remove the strongest signal from the 
received signal. By doing so, the SINR for the second 
strongest signal can be increased (because the strongest 
interference is removed). If this increased SINR is at least β , 
then the second strongest signal can be successfully decoded. 
This process can be repeated until all signals are decoded or a 
signal cannot be decoded. 

A. MPR Model and A Naive Approach 
A naive approach can be developed by following a similar 

approach as that in Section II. Note that when MPR is not used, 
the physical layer behavior is very simple and only one node 
can transmit at any time. But with MPR, the physical layer 
behavior is much more complex. Now a set of nodes may 
transmit at the same time. For a given set of concurrent 
transmitting nodes, if we can decode the data from all nodes in 
this set, then we call it a feasible set. Now we need to assign 
one time slot for each feasible set. But before that, we need to 
identify all feasible sets. This can be done by analyzing the 
signal-to-noise-ratio requirement under MPR. 
 
SINR at the Physical Layer. Denote F as the set of all 
feasible sets. We now consider a feasible set k ( Fk ∈ ). 
Denote constant 

⎩⎨
⎧= 　

　
 otherwire.   0

slot  in timestation  base  the todata transmit  node if1 kixk
i  

Under MPR, when we decode the signal from node is  in 
time slot k, we already decoded all stronger signals and 
removed them. Thus, the SINR of is  is increased as 
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For a successful transmission, k
iSINR  should be larger than or 

equal to the threshold β  for each nodes is  with 1=k
ix  and 

the achieved peak data rate is )1(log2
k
iSINRW + . 

 
Time Slot Based Scheduling. Since a node is  may 
transmit in multiple time slots and the peak data rate in time 
slot k is )1(log2

k
iSINRW + ,1 its average data rate over all time 

slots is no more than ∑
∈

+
Fk

k
ik SINRWt )1(log2 , where kt  is the 

normalized length for time slot k.   
 
Problem Formulation. We now have the following 
problem. 

Max  K 

s.t. 
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where kt  and K are variables. The constant value of k
iSINR  

can be calculated by (4). This problem is also an LP. 
 

Thus, a naive approach is as follows. 
(i) Check the feasibility for all possible sets.  
(ii) Solve LP (5) to obtain the optimal scheduling kt  for each 
feasible set.2  
However, the complexity of this naive approach is prohibitive. 
For an n-node network, the total number of all possible sets is 

12 −n . Thus, the complexity of (i) in the naive approach is 
)2( nΘ . Moreover, LP (5) has a large number of variables. 

The complexity of (ii) in the naive approach is also very high.  

B. From Exponential Complexity to Polynomial Complexity 
To obtain a polynomial time algorithm, we should not 

check the feasibility for all possible sets. In this section, we 
analyze the MPR behavior and prove that the number of nodes 
in a feasible set is bounded by a constant l. Therefore, we only 
need to check )(),(

1

l

lk
nknC Θ=∑

=L

 sets to find all feasible sets 

and thus, the number of feasible sets is )( lnO . Therefore, the 
complexity of solving LP is also polynomial. 

To develop an upper bound for the number of nodes in a 
feasible set, we sort nodes in this set by their distances to the 
base station and consider the distance ratio between two 

                                                           
1 This holds even if node is  does not transmit in time slot k.  
When node is  does not transmit in time slot k, we have 

0=k
iSINR  by (4) and thus the computed peak data rate is 0. 

2 If kt =0 in a solution, then the k-th feasible set is not used in 
this solution. 

neighboring nodes is  and js  in the sorted feasible set. 

Without loss of generality, we assume ji dd ≤ . We have the 
following lemma. 
 
Lemma 1 If nodes is  and js  transmit data to the base station 

in a time slot k and ji dd ≤ , then λ
β

1
0 )(

−
−≥

P
Ngd i

j  .  

 
Proof. By (1) and ji dd ≤ , we have PgPg ji ≥ . Thus, the 

signal from is  is stronger than that from js  and then the 

signal from is  is decoded before the signal from js . By the 

requirement to decode the signal from is , we have  

PgN
Pg

SINR
j

ik
i +
≤≤

0
β ,       (6) 

where the second inequality holds because there may be 
interference from other nodes. By (6), we have 
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1
0 )(

−
−≥

P
Ng

d i
j  .                                                                 □ 

Based on Lemma 1, we have 
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For a sorted feasible set with h nodes, suppose the distances 
from these h nodes to the base station are hddd ˆ...ˆˆ

21 <<< . 
By (7), we have 

1

1

2
ˆˆ dd ⋅> λβ , 

1

2
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1
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Thus, h is at most 1log
1

1 +
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d
dh

λβ
. For a given WSN, we 

have min1 dd ≥  and maxddh ≤ , where constants mind  and 

maxd are the minimum and maximum distance from a node in 
the network to the base station, respectively. Thus, the number 
of nodes in a feasible set is no more than a constant 

1log
min

max
1 +

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=

d
dl

λβ
. This result is stated in the following 

theorem. 
 
Theorem 1 The number of nodes in a feasible set is no more 

than a constant 1log
min

max
1 +

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=

d
dl

λβ
. 

By Theorem 1, a better approach is as follows: 



(i) Check the feasibility for all possible sets with no more than 
l nodes.  
(ii) Solve LP (5) to obtain the optimal scheduling kt  for each 
feasible set. 
We call this approach as the FS approach. The complexity of 
(i) in the FS approach is )(),(

1

l

lk
nknC Θ=∑

=L

. Further, the 

number of feasible sets is no more than )( lnΘ , i.e., is )( lnΟ . 
Once we determine all feasible sets, we can obtain an optimal 
solution by solving the LP in (5), with the number of variables 
being )( lnΟ . Thus, the complexity of (ii) in the FS approach 
is also polynomial. Therefore, the total complexity of the FS 
approach is polynomial. 

C. Maximum Feasible Set 
We note that the number of feasible sets is still a large 

number. To further decrease the complexity, we define a 
concept of maximum feasible set (MFS) and show that we 
only need to consider all MFS.  

The following lemma considers two feasible sets A1 and 
A2 and data rates from nodes in these sets.  
 
Lemma 2 For two feasible sets A1 and A2, if 12 AA ⊂  and 
nodes in the set A1-A2 are closer to the base station than nodes 
in the set A2, then: (i) the data rate from each node in A1-A2 is 
positive in A1’s time slot and is zero in A2’s time slot; (ii) the 
data rate from each node in A2 is the same in both A1’s and 
A2’s time slots.  
 
Proof. Because A1 is a feasible set, for each node in A1, its 
data rate is positive in A1’s time slot. In particular, for each 
node in A1-A2, its data rate is positive. On the other hand, such 
a node has a zero rate in A2’s time slot since it is not in A2. 
Thus, (i) is proved. 

By SIC, stronger signals are decoded and cancelled 
before decoding weaker signals. Since nodes in A1-A2 are 
closer to the base station than nodes in A2, signals from nodes 
in A1-A2 are stronger than signals from nodes in A2. Therefore, 
in A1’s time slot, before signals from nodes in A2 are decoded, 
signals from nodes in A1-A2 are all cancelled. Thus, the 
decoding process for node in A2 are the same in both A1’s and 
A2’s time slots, yielding the same data rates. (ii) is also proved.             
□ 

By results in Lemma 2, it is easy to see that if we replace 
A2 by A1 in a solution, the new solution will have a better 
objective value. Thus, we have the following definition. 
 
Definition 1  A feasible set A1 is better than another feasible 
set A2 if 12 AA ⊂  and nodes in the set A1-A2 are closer than 
nodes in the set A2.   

We can further define a concept of MFS.  
Definition 2 A feasible set A is a maximum feasible set (MFS) 
if for any node s that is closer to the base station than all 
nodes in A, }{sA∪  is not a feasible set.  

 

TABLE 1 Optimal Objective Value with and without MPR 

n K (without MPR) K (with MPR) Improvement Ratio
20 11.62 20.83 79.19% 
25 9.31 16.95 81.99% 
30 7.18 14.67 104.28% 
35 6.21 13.02 109.78% 
40 5.25 10.84 106.42% 
45 4.56 9.57 93.06% 
50 4.50 8.69 93.03% 

TABLE 2 Complexity Comparison  
n Complexity of the 

naive approach 
Complexity of the 

FS approach 
The size of LP in the 

MFS approach 
20 1.04×106 9.1×105 1280.30 
25 3.35×107 1.68×107 4067.75 
30 1.07×109 1.94×108 11152.00 
35 3.44×1010 1.54×109 26722.25 
40 1.10×1012 2.55×109 55663.9 
45 3.52×1013 9.12×109 94613.55 
50 1.13×1015 1.72×1011 167902.90 
 
By Definition 2 and Lemma 2, for any non-MFS, we can 

always find a better feasible set. Thus, it is no need to consider 
non-MFS to obtain an optimal solution. So we only need to 
consider all MFS in the LP (5). We call this approach as the 
MFS approach. The MFS approach can further decrease the 
number of considered sets and the problem size. In the next 
section, we will show the benefit of MFS quantitatively.  

IV. NUMERICAL RESULTS 
In this section, we compare the performance of the 

optimal solutions with and without MPR to show the benefit 
of applying MPR. We also compare the complexity of each 
approach.  

We consider WSNs with the base station at the center 
and n=20, 25, …, 50 sensor nodes within a disk with radio 250 
meters. Each sensor has a minimum rate requirement within 
[10, 100] Kb/s. We randomly generated 20 different network 
instances for each n. The presented result for each n is the 
average value over all 20 instances. The transmission power is 
1 W and the channel bandwidth is 22 MHz (bandwidth in 
802.11). The path loss index is λ =4 and the noise is 

0N = 1010− W. The SINR threshold is β =3 [17]. 
We present optimal objective (K) value in Table 1. We 

can see that K value is increased significantly (about 100%) by 
using MPR for all different sized networks.  

We show the complexity of each approach in Table 2. 
The complexity of the naive approach is 12 −n , which is 
shown in column 2. The complexity of the FS approach is 

∑
= lk

knC
L1

),( , which is shown in column 3. Finally, in the MFS 

approach, we further decrease the size of LP, which is shown 
in column 4. From Table 2, we can see that the improvement 
by bounding the maximum number of nodes in a feasible set 
and removing all non-MFS is significant. 

In order to analyze how the actual size of the LP (the 
results in column 4) changes for different n, we do polynomial 
fitting for results in column 4, and obtain the curve in Fig. 1. 
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Fig.1. Fitting Curve for the number of nodes and the size of LP 

 
     The fitting formula:  

9899011780480014.7 23 −+−= xxxy . 
This is a cube polynomial fitting curve, which shows that the 
relationship between the size of the LP and the number of 
nodes is )( 3nΘ  approximately. 

V. CONCLUSIONS  
In this paper, we developed a cross-layer model for a 

single hop wireless sensor network (WSN) with MPR and 
applied this model to solve a network capacity problem. This 
problem can be formulated as a linear program (LP) with a 
large number of variables, each corresponding to a feasible set 
of concurrent transmitting nodes. The key challenge is to 
determine all the feasible sets. A naive approach to check all 
possible sets yields an exponential complexity. To develop a 
polynomial time algorithm, we analyzed the MPR behavior and 
proved that the number of nodes in a feasible set is bounded by 
a constant. Our approach based on this result has a polynomial 
time complexity. We also proposed a concept of maximum 
feasible set to further decrease the LP size. Our optimal 
solutions showed the benefit of applying MPR: the capacity of 
a WSN can be increased about 100% by using MPR. The 
developed MPR model can be extended for multi-hop networks. 
Optimal solutions for multi-hop WSNs will be addressed in our 
future work. 
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