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Abstract—The paper investigates the average pair-wise error
probability (PWEP) performance of orthogonal space-time coded
MCPM (OST-MCPM) systems for two transmit antennas over
independent and correlated channels. Simple upper boundary
expression at high SNR is derived to evaluate the PWEP in
correlated channel. The achievable diversity gain of this system
decreases due to the signal correlation between the antennas. Sim-
ulation results show that the error performance over a correlated
channel is degraded when the correlation coefficient increases.
And the penalty on the code performance increases a lot in fully
correlated channel. It can also be seen that the diversity gain
decreases when the channel is fully correlated, which matches
well with the theoretical analysis. The upper bounds can be
looser when diversity order decreases. The effects of antenna
spacing and azimuth power distribution parameters (angle of
arrival/departure and angular spread) on the performance of
OST-MCPM are also simulated.

I. Introduction

Space-time coding for multiple antennas has attracted much
attention due to the potential capacity gain. It has been
widely used as an efficient scheme to overcome the effects
of multiple-path fading and increase the data rate for wireless
communication systems [1]–[7]. Alamouti [2] proposed the
design criterion of orthogonal space-time coding (OST) for
two transmit antennas. This scheme achieves a full diversity
gain with a simple maximum-likelihood decoding algorithm.
Due to the orthogonality, the receiver can decode each trans-
mitted signal separately. Tarokh et al. [5] extended this design
rule to a general number of transmit antennas.

The multi-level continuous phase modulation (MCPM) has
the characteristics of nonlinear phase, constant envelope, com-
pact spectrum, high power efficiency and so on [8]–[10].
Therefore MCPM has become one of the main modulation
schemes for the data transmission over both bandwidth- and
power-limited channels such as mobile communications, satel-
lite communications, data link and so on.

Space-time coded MCPM (STC-MCPM) is a technique
that combines space-time coding with MCPM. It can not
only provide power and bandwidth efficiency but also achieve
diversity and coding gains without sacrificing data rate or
bandwidth [11]. Since MCPM signals are continuous phase
modulated waveforms but not regular coded data, Alamouti’s
design rule cannot be applied directly. Recently Wang et
al. [12]–[14] extended Alamouti’s orthogonal encoding cri-
terion to MCPM signals and designed orthogonal space-time
coded MCPM (OST-MCPM) systems.

In a multiple antenna system, insufficient antenna spacing,
angle spread, and the lack of rich scattering may cause spatial
correlation between antennas. A considerable work has been
done to evaluate the impact of channel correlation on the
performance of space-time code [15]–[21].

Most of the work published on STC-MCPM so far is on
code design, and no similar work has been done on the
influence of the spatially correlated MIMO channel. In this
paper, the effect of the correlated channel on the diversity
gain of this algorithm is investigated. The frame error rate
(FER) performance of OST-MCPM systems in independent
and identically distributed (i.i.d.) channels and spatially cor-
related channels are simulated and compared with each other.
The effects of antenna spacing, angle of arrival/departure and
angular spread on the performance of OST-MCPM are also
investigated by simulation.

This paper is organized as follows: Section II first de-
scribes the system model of the spatially correlated OST-
MCPM system. In Section III, the spatial correlation and the
achievable diversity gain for the OST-MCPM system over
Rayleigh fading channels are studied. Then simulation results
and related discussions are presented in Section IV. Finally the
conclusions are drawn in Section V.

Throughout this paper, we use the following notations. AT

and AH stand for the transposition and the conjugate transpose
of matrix A respectively. det(A) is the determinant of A, tr(A)
denotes the trace of matrix A. IN stands for the N ×N identity
matrix.

II. SystemModel

In this paper, a wireless communication system with two
transmit antennas and nR receive antennas is considered. For
simplification we just focus on the baseband equivalent block
diagram of the correlated OST-MCPM system, which is shown
in Fig. 1. The information bits I are mapped to sequence
d ∈ {±1,±3, · · · ,±(M − 1)}, as the input of space-time coded
modulator. Then the orthogonal space-time coded MCPM
signals are simultaneously transmitted from the two transmit
antennas.

The transmitted signal at the i-th antenna can be represented
as

si(t, d) =

√
2Es

T
exp{ jφi(t, d)}, i = 1, 2. (1)
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Fig. 1. Simplified base-band equivalent block diagram of correlated OST-MCPM system

φi(t, d) = 2πh
k∑

n=0

di,nq(t − nT ), kT < t ≤ (k + 1)T. (2)

where d = (d1,1, d2,1, · · · , d1,k, d2,k), Es is the symbol energy, T
is the symbol period, φi(t, d) is the carried phase information, h
is the modulation index. q(t) =

∫ t
−∞ g(τ)dτ is the phase smooth-

ing response function. g(t) is the pulse shaping function, which
is nonzero only at the limited time period 0 ≤ t ≤ LT (L is
the modulation memory), and it decides the smoothness of the
transmitted phase.

Wang et al. extended Alamouti’s encoding rule to CPM,
where a design methodology was presented such that the
signals s1(t, d) and s2(t, d) from the two transmit antennas over
two symbol periods are orthogonal, i.e., the rows of the matrix[

s1(t, d) s1(t + T, d)
s2(t, d) s2(t + T, d)

]
(3)

are orthogonal for each t. In this paper, full response CPM
signals (L = 1) are mainly considered. In order to ensure the
orthogonality between two waveforms s1(t, d) and s2(t, d), a
second phase smoothing response function q0(t) is introduced
with q(0) = q0(0) = 0, q(T ) = q0(T ) = 1/2. The symbol d1,k
and d2,k are jointly encoded.

At the time slot between 2(k−1)T and 2kT , the transmitted
signals of the first antenna can be written as

s1(t, d) =

√
2Es

T
exp { jφ1(t, d)} . (4)

φ1(t, d) = θ1(2k − 2) + 2πhd1,kq(t − (2k − 2)T ),
for (2k − 2)T < t ≤ (2k − 1)T ;

φ1(t, d) = θ1(2k − 1) + 2πhd2,kq(t − (2k − 1)T ),
for (2k − 1)T < t ≤ 2kT.

(5)

θ1(2k − 2) = φ1((2k − 2)T, d),
θ1(2k − 1) = φ1((2k − 1)T, d). (6)

At the time slot between 2(k − 1)T and 2kT , the following
signals are transmitted through the second antenna

s2(t, d) =

√
2Es

T
exp { jφ2(t, d)} . (7)

φ2(t, d) = θ2(2k − 2) − 2πhd2,kq(t − (2k − 2)T )
+2πckq0(t − (2k − 2)T ),

for (2k − 2)T < t ≤ (2k − 1)T ;
φ2(t, d) = θ2(2k − 1) − 2πhd1,kq(t − (2k − 1)T )

+2πckq0(t − (2k − 1)T ),
for (2k − 1)T < t ≤ 2kT.

(8)

θ2(2k − 2) = φ2((2k − 2)T, d),
θ2(2k − 1) = φ2((2k − 1)T, d). (9)

ck = 1 + 2h + 2((d1,k + d2,k)h/2 mod 1) (10)

It can be checked that

s1(t, d)s∗2(t, d) = −s1(t + T, d)s∗2(t + T, d) (11)

Consequently the row vectors of the transmitted signal
matrix defined in (3) are orthogonal for each t.

III. Performance analysis

These algorithms are presented under the assumption that
the channels are quasi-static flat Rayleigh fading, i.e. the
fading coefficients are constant for the whole frame. The
received signals at the j-th antenna can be written as

r j(t) =
2∑

i=1

hi, j si(t, d) + nj(t), j = 1, 2, · · · , nR, (12)

where hi, j is the correlated fading coefficient between the i-th
transmit antenna and the j-th receive antenna, and is modeled
as a complex Gaussian random variable with variance σ2.
n j(t) is the additive white Gaussian noise (AWGN) at the j-th
receive antenna, which is modeled as a zero-mean complex
Gaussian random variable with power spectral density N0 per
dimension.

A. Spatially Correlated Channel

We assume that uniform linear array (ULA), which is an
array that has all its elements on a line with equal spacing
between the elements, is used for both the nT transmit and the
nR receive antennas.

A slightly less general but more useful model considers cor-
relations on transmit and receive sides separately. Representing
the transmit-side correlation matrix as RT while receive-side
correlation matrix as RR. The inter-element spacings between
the antennas at the transmit-side and receive-side are dT and
dR respectively. The mean angle-of-departure (AOD) at the
transmitter side and the mean angle-of-arrival (AOA) at the
receiver side are denoted by θT and θR. Then we define

ρ (sdR, θR,ΔR) = E
{
hi, j, h∗i+s, j

}
, j = 1, 2, · · · , nR. (13)

to be the fading correlation coefficient between the two re-
ceive antenna placed sdR apart. ΔR are the angular spreads.
The transmit spatial correlation matrix RT could be defined



similarly. Consequently the correlation matrix RR can be
represented as

[RR]m,n = ρ ((n − m) dR, θR,ΔR) . (14)

The array propagation vectors can be represented as

aT

(
θlT

)
=
[
1, e− j2πdT sin θlT /λ, · · · , e− j2π(nT−1)dT sin θlT /λ

]T
,

aR

(
θlR

)
=
[
1, e− j2πdR sin θlR/λ, · · · , e− j2π(nR−1)dR sin θlR/λ

]T
. (15)

where θlT and θlR represent the actual AOD at the transmit-
ter side and the AOA at the receiver side of the lth path.
θlT ∈ [θT − ΔT , θT + ΔT ], θlR ∈ [θR − ΔR, θR + ΔR]. λ = c/ fc
is the carrier frequency wavelength of a narrow-band signal
with center frequency fc.

Consequently the correlation matrix RT and RR could be
represented as

RT =
1
L

L∑
l=1

aT

(
θlT
)

aH
T

(
θlT
)
. (16)

RR =
1
L

L∑
l=1

aR

(
θlR
)

aH
R

(
θlR
)
. (17)

where L denotes the number of the dominant unresolvable
paths of the spatial scenario.

Finally, the correlated channel is represented as [22]

H = R
1
2
R HwR

T
2
T (18)

where Hw is a i.i.d. channel fading coefficients matrix.

B. The MLSD Algorithm

The optimum decoding and demodulation of OST-MCPM
system is a maximum likelihood sequence detection (MLSD)
algorithm, which could be expressed as

d̂ = arg min
d

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nR∑
j=1

∫ NcT

0

∣∣∣∣∣∣∣r j(t) −
2∑

i=1

hi, j si(t, d)

∣∣∣∣∣∣∣
2

dt

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (19)

where Nc is the symbol length of a frame.
The pair-wise error probability (PWEP) conditioned on H

can be approximated by [13]

P(d1 → d2|H) = Q
⎛⎜⎜⎜⎜⎝
√

Es

2N0
d2
[
S (t, d1), S (t, d2)

]⎞⎟⎟⎟⎟⎠ . (20)

where d2
[
S (t, d1), S (t, d2)

]
is a modified Euclidean distance be-

tween the two space-time coded CPM signal matrices S (t, d1)
and S (t, d2), given by

d2
[
S (t, d1), S (t, d2)

]

=

nR∑
j=1

∫ NcT

0

∣∣∣∣∣∣∣
2∑

i=1

hi, j

[
si(t, d1) − si(t, d2)

]∣∣∣∣∣∣∣
2

dt. (21)

Let
Γ = d2
[
S (t, d1), S (t, d2)

]
. (22)

By using Graig’s formula for the Gaussian Q function

Q(x) =
1
π

∫ π
2

0
exp
{
− x2

2 sin2 θ

}
dθ. (23)

we can rewrite the conditional PWEP

P(d1 → d2|H) =
1
π

∫ π
2

0
exp
{
− Es

4N0 sin2 θ
Γ

}
dθ. (24)

In order to calculate the average PWEP, we average (24)
with respect to the distribution of Γ. The average PWEP can
be represented in terms of the moment generating function
(MGF) of Γ, which is given by

MΓ(s) =
∫ ∞

0
esΓPΓ(Γ)dΓ. (25)

Thus the average PWEP can be represented as

P (d1 → d2) =
1
π

∫ π
2

0
E
[
exp
(
− Es

4N0 sin2 θ
Γ

)]
dθ

=
1
π

∫ π
2

0

∫ ∞
0

exp
(
− Es

4N0 sin2 θ
Γ

)
PΓ (Γ) dΓdθ

=
1
π

∫ π
2

0
MΓ

(
− Es

4N0 sin2 θ

)
dθ. (26)

Equation (21) can be rewritten as

d2
[
S (t, d1), S (t, d2)

]
= tr(HB(d1, d2)HH). (27)

where B(d1, d2) is a 2 × 2 difference matrix with entries

[B(d1, d2)]m,n =

∫ NcT

0

[
sm(t, d1) − sm(t, d2)

]

×
[
sn(t, d1) − sn(t, d2)

]∗
dt. (28)

Therefore the PWEP can be represented as [20]

P (d1 → d2) =
1
π

∫ π
2

0

2∏
i=1

nR∏
j=1

(
1 +

Es

4N0 sin2 θ
μiλ j

)−1

dθ

≤
2∏

i=1

nR∏
j=1

(
1 +

Es

4N0
μiλ j

)−1

. (29)

where μi and λ j are the eigenvalues of B(d1, d2)RT and RR.
Equation (29) is the Chernoff bound for the PWEP. When the
SNR is high, the upper bound can be simplified as

P (d1 → d2) ≤
(

Es

4N0

)−rr̂ r∏
i=1

r̂∏
j=1

(
μiλ j

)−1
. (30)

where r,r̂ are the ranks of B(d1, d2)RT and RR respectively.
μi(i = 1, 2, · · · , r) and λ j( j = 1, 2, · · · , r̂) are the nonzero
eigenvalues of B(d1, d2)RT and RR. In the high-SNR regime,
the diversity order of a pair of codewords of the OST-MCPM
system is the exponent of SNR, i.e., rr̂ = rank(B(d1, d2)RT ) ·
rank(RR).

For the special case of fully correlated channel where
(RT )i, j = (RR)i, j = 1, the diversity order rr̂ is 1. For i.i.d.
channels, the spatially correlated channels are RT = InT ,



RR = InR . Consequently, the achievable diversity gain could
be represented as rr̂ = rank(B(d1, d2)RT ) · nR.

The typical scenario in the wireless channel environment is
partial channel correlation. The channel correlation matrices
RT and RR are nonnegative definite Hermitian matrices of a
Toeplitz form. RT = RH

T , det(RT ) > 0 and RR = RH
R , det(RR) >

0. Obviously the correlation matrices RT and RR will always
have full rank. Thus the diversity order is the same as that in
i.i.d. channels.

In order to achieve full diversity, B(d1, d2) should be full
rank. The waveform difference from the two transmit antennas
should be linearly independent over the complex field. That is
to say, for any complex numbers C1 and C2, there exists a t,
such that [13]

C1

[
s1(t, d1) − s1(t, d2)

]
+C2

[
s2(t, d1) − s2(t, d2)

]
� 0. (31)

unless C1 = C2 = 0.
Because the transmitted signals from the two antennas are

orthogonal, the transmitted signal matrix S (t, d) is unitary.
Thus it is easy to see that the OST-MCPM satisfies the above
condition of full rank. Therefore, in i.i.d. or partially correlated
channels the OST-MCPM system can achieve full diversity.

IV. Simulation Results

In this section, some simulation results are presented to
evaluate the FER performances of the MLSD over quasi-static
Rayleigh fading channels with spatial correlation. The frame
error rate (FER) results of this algorithm are plotted against
Eb/N0. OST-MCPM systems of full response CPM signals
with two transmit antennas are considered. The number of
receive antennas is one and two. The modulation level M is
chosen to be 2 and 4, while the modulation index h = 1/M.
The pulse shaping functions g(t) and g0(t) are chosen to be
1REC and 1RC [9] respectively in both OST-2CPM and OST-
4CPM systems. The transmit and receive antenna correlation
matrices are given by

RT =

[
1 ρt

ρt 1

]
,RR =

[
1 ρr

ρr 1

]
, (32)

for the two transmit and two receive antennas systems. The
antenna spacing and azimuth power distribution parameters at
the receiver side are chosen as

dR = 0 ∼ 3λ, θR = 22.5◦, ΔR = [5◦, 35◦, 180◦].

A. Effect of Correlation

Fig. 2, Fig. 3 and Fig. 4 show the FER performance of
the MLSD algorithm for OST-2CPM and OST-4CPM systems
over correlated fading channels. It can be seen from these
figures that the system in i.i.d. MIMO channels (ρt = ρr = 0)
has the same diversity gain as that of the system over partially
correlated channels (0 < ρt < 1, 0 < ρr < 1). Simulation results
show that the error performance over a correlated channel is
degraded by approximately 2dB at a FER of 10−2 when the
correlated index ρt increases from 0 to 0.7 for the one-receive
OST-2CPM system. And the penalty on the code performance
increases to over 9dB at the same FER in fully correlated
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Fig. 2. FER curves of MLSD of OST-2CPM systems (nR = 1).
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Fig. 3. FER curves of MLSD of OST-2CPM systems (nR = 2).

channel. From Fig. 3 we can see that the performance is
degraded by approximately 2.7dB, when the correlated indexes
ρt and ρr increase to 0.7.

It can also be observed from the three figures that the
diversity gain decreases when the channel is fully correlated,
which matches well with the theoretical analysis. The upper
bounds can be looser whenever diversity is low, e.g., if the
number of receive antennas is small, or the transmit or receive
antennas are fully correlated.

B. Effect of Antenna Spacing

First we consider the effect of receive antenna spacing on
the FER performance of the MLSD algorithm for OST-2CPM
and OST-4CPM systems. Consider a system with two receive
antennas. For simplicity, it is assumed that the scattering
environment at the transmitter side is uncorrelated due to the
sufficiently long distance between the transmit antennas.
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Fig. 4. FER curves of MLSD of OST-4CPM systems (nR = 2).
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Fig. 5. FER curves of MLSD of OST-2CPM systems (nR = 2, θR =
22.5◦,ΔR = 35◦).

Fig. 5 and Fig. 6 show the FER performance with different
receive antennas separation (dR = [1λ, 0.5λ, 0.2λ]). The mean
AOA θR at the receiver side is chosen to be 22.5◦. The angular
spread ΔR is 35◦.

It can be observed from the figures that the FER perfor-
mance degradation is not obvious, compared with the FER
for the i.i.d slow fading channel when the receive antenna
separation is 0.5λ or higher. However the effect of antenna
separation is significant when the receive antenna separation
is small.

C. Effect of Angular Spread

Fig. 7 and Fig. 8 illustrate the effects of receive angular
spreads (ΔR = [0◦, 35◦, 180◦]) on the FER performance of
the MLSD algorithm for OST-2CPM and OST-4CPM systems
with mean AOA θR = 22.5◦.
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Fig. 6. FER curves of MLSD of OST-4CPM systems (nR = 2, θR =
22.5◦,ΔR = 35◦).
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Fig. 7. FER curves of MLSD of OST-2CPM systems (nR = 2, θR = 22.5◦).

From the two figures, we can observe that for a given Eb/N0,
the FER performances are improved with the increase of the
receive angular spread and the receive antenna separation.
However, the performances don’t improve monotonically as
the receive antenna separation are increased. They do not
change a lot with medium or high angular spreads when the
receive antennas are spaced more than 0.5λ apart. When the
angular spread is quite small (e.g. ΔR = 5◦), the two receive
antennas need to be placed at least several wavelengths apart
to achieve acceptable performances.

V. Conclusion

The effect of the spatial correlation on MLSD of OST-
MCPM system over Rayleigh fading channels was investigated
in the paper. The PWEP upper bound of OST-MCPM systems
was deduced to evaluate the achievable diversity gain over
quasi-static Rayleigh fading channels with spatial correlation.
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Fig. 8. FER curves of MLSD of OST-4CPM systems (nR = 2, θR = 22.5◦).

Due to the orthogonality and the constant envelope, the OST-
MCPM system in partially correlated channels still could
achieve full diversity. The simulation results well match the
theoretical analysis. The effects of antenna spacing and az-
imuth power distribution parameters (angle of arrival/departure
and angular spread) on the FER performance of OST-MCPM
are also simulated to estimate the error performance under
given parameters.
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