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Abstract—Collaborative spectrum sensing enables opportunis- 

tic unlicensed access to the unused portions of the licensed 
spectrum. In this paper, we propose an effective sensor selection 
scheme for collaborative spectrum sensing over shadow fading 
channel using SVD-QR decomposition. Since shadow fading is 
correlated for closely spaced sensors, it is desired to select fewer 
independent sensors to reduce battery consumption and save 
bandwidth, while still adopting adequate sensors to make the 
sensing performance satisfied. The proposed scheme can reduce 
the redundancy in cognitive radio networks and does not rely on 
the position information of sensors. The simulation results 
illustrate that the SVD-QR algorithm outperforms correlation 
measure based selection method for spectrum sensing.  

Index Terms—Sensor selection, SVD-QR, spectrum sensing, 
collaborative detection, cognitive radio 

I. INTRODUCTION

In cognitive radio (CR), the energy detector [1] works well 
when the signal-to-noise ratio (SNR) is high. However, in 
wireless channels, signals often suffer from shadow fading, 
which may lead to a very low SNR. In this case, the energy 
detector might determine that a deeply shadowed channel is 
unoccupied, causing large interferences to the primary user. 

In order to improve the reliability of spectrum sensing, 
collaborative spectrum sensing schemes has been proposed (e.g. 
[2][3]). Collaborative spectrum sensing can alleviate the 
problem of corrupted detection by exploiting spatial diversity, 
and thus reduces the probability of interfering with primary 
users. It is effective to solve the hidden terminal problem.  

In [4][5], it was found that the probability of error in 
collaborative spectrum sensing usually decreases as the number 
of collaborating users increases. However, there exists an error 
floor where the decrease of the probability of error is minor 
when the number of collaborating users increases further, for 
correlated samples. From a performance standpoint, one should 
use more secondary users in collaborative sensing to achieve as 
much performance gain as possible. From a complexity 
standpoint, one should use less secondary users in collaborative 
sensing, since the consumption of system resources, such as the 
total transmission power of the signal measurements, the  
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amount of overhead traffic and the size of memory required at 
the fusion center, grows approximately linearly with the 
number of collaborating users. Efficient collaborative schemes 
should be designed to reduce bandwidth requirements while 
maximizing the sensing reliability. Thus, it is desirable to use 
the minimum number of CR users (i.e. sensors) to achieve a 
satisfied sensing performance. 
   The SVD-QR algorithm was used in [6] to reduce 
information redundancy in Wireless Sensor Networks. It was 
found that there exists redundancy among the information 
collected from adjacent sensor nodes. We state that the energy 
sensing results from adjacent CR users in a cell for 
collaborative spectrum sensing might be very similar from each 
other, since the distance to the primary user and the shadow 
fading suffered are similar. There must be redundancy in the 
data reported by sensors in the neighborhood. Sensor selection 
for CR networks was studied in [7]. It introduced an approach 
to select sensors which are sufficiently spatially separated. 
However, sensors’ positions or approximate positions should 
be known as priority for central node. 
   In this paper, we present a sensor selection scheme for 
collaborative energy sensing using SVD-QR decomposition 
without any position knowledge of sensors. Lognormal 
shadowing channel is examined. The objective is to select a set 
of sensors which experience uncorrelated shadow fading, and 
such a set of sensors can achieve higher performance in a 
subsequent sensing than a set of sensors selected only based on 
correlation measure in [7]. The SVD-QR algorithm can select 
uncorrelated sensors that perform reliable spectrum sensing 
using their local spectrum sensing results.  
    The rest of this paper is organized as follows. In Section II, 
the system model and spectrum sensing are briefly introduced. 
Collaborative Spectrum Sensing and performance metrics are 
also derived in section II. In section III, the sensor selection 
schemes based on SVD-QR and correlation measure are 
presented. Simulation results are presented and discussed in 
Section IV. Finally, we draw our conclusions in section V. 

II. PROPOSED SPECTRUM SENSING SCHEME

A. System Model 
We consider collaborative spectrum sensing in a centralized 

system. Assume that a CR system is composed of K CR users. 
Each CR user individually performs the spectrum sensing and 
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all CR users are strict synchronous. In the centralized systems, 
all the sensing results are reported to the central CR device that 
makes a decision on the presence of a primary user.  

Fig. 1.  Spectrum sensing structure of a cognitive radio network. 

    In Fig. 1, BS is the coordinating central CR device, which 
selects CRs to perform sensing and makes the final decision by 
fusing the local sensing results from the selected sensors. PU is 
a primary user. CR, also named sensor, is a secondary user 
when performs collaborative sensing. All CR users and a BS 
forming a circular cell are deployed randomly in a range 
presented in Fig. 1. We consider a single cell hence. D  is the 
primary user’s radio range. The radius of the cell is R.

When the PU is transmitting, the main contributor to the 
decision static is the received signal energy from the PU, which 
depends on channel gain. We consider the channel gain as the 
combination of the path loss due to the distance and the shadow 
fading gain. Assume that the PU transmits with a fixed power 
Pt. With the simplified path loss model [3], the received signal 
energy from the PU during sT can be represented as 

( )r t sE P T S �� �� � � ��  (1) 
where � is a shadow fading gain which follows lognormal 
distribution, S is the distance between a CR user and the PU, �
is the path loss exponent, and � is the path loss unit constant. 

B. Energy Detection 
In this paper, we choose the energy detection for sensors, 

since it can simply be implemented and used even when the 
signal form of a primary user is unknown. The local spectrum 
sensing problem can be formulated as follows. 

To detect a weak primary signal confined inside some a 
priori known bandwidth B, one could pose a binary hypothesis 
testing problem as follows: 

0 : ( ) ( )x n v n��

1 : ( ) ( ) ( ),   1, 2,... ,x n s n v n n N� 	 ��                 (2) 
where 0�  represents the absence of the primary signal, i.e., the 
received baseband complex signal x(n) contains only additive 
white Gaussian noise (AWGN), 2( ) ~ (0, )vv n 
� . 1�
represents the presence of the primary signal, i.e., ( )x n consists 
of a primary signal ( )s n corrupted by ( )v n . Moreover, N 
corresponds to the number of available measurements.  

The noncoherent energy detector [2] is used in this paper. Let 
[ (1), (2),..., ( )]Tx x x N�x  and [ (1), (2),..., ( )]Ts s s N�s .The 

decision rule in this case is given by 
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Where ( )T x  is the test statistic and  �  is the corresponding test 
threshold. Although ( )T x  has a chi-square distribution, 
according to the central limit theorem, ( )T x  is asymptotically 
normally distributed if N  is large enough ( 20N  is often 
sufficient in practice). Specifically, for large N , we can model 
the statistics of ( )T x  as follows: 
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where 2
sp s N� represents the average primary signal power. 

In this way, for large N, the probability of false alarm, fP , and 
the probability of detection, dP , can be approximated as 
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respectively, where 
2 21( )
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	� �� �
is the tail probability of a zero-mean unit-variance Gaussian 
random variable. 

Given the probability of detection dP , we get the missed 
detection probability mP ,
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The signal-to-noise ratio is defined as 
2

2 2
s

v v

sp
SNR

N
 

� �  (8) 

C. Collaborative Sensing 
  In our approach, CR user’s operating duration is divided 

into two parts in collaborative sensing: one is Sensor Selection 
Period and the other is Normal Period. In the Sensor Selection 
Period, all sensors perform local energy spectrum sensing and 
send the exact sensing results to the BS without making a 
decision. The BS selects the most significant sensors based on 
the received local observations using SVD-QR algorithm. In 
the Normal Period, the sensors that are selected to participate in 
collaborative spectrum sensing makes a local binary decision as 
the sensing result and only send one bit decision to BS. The 
Sensor Selection Period is much shorter than Normal Period 
when the mobility of  the CR network is low, since the BS does 
not have to perform sensor selection frequently.  



For the decision fusion scheme, we choose OR rule. The BS 
infers the presence of the PU signal when there exists one CR 
user that has the local decision 1� . It can be seen that the OR 
rule is very conservative for the CRs to access the licensed band 
[8]. As such, the chance of causing interference to the PU is 
minimized. We shall consider the OR rule in the sequel. 

The false alarm probability of collaborative spectrum sensing 
based on the OR rule is given by [8] 
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where ( )i
fP denotes the false alarm probability of the ith CR in 

its local spectrum sensing. K is the number of the sensors 
selected to perform collaborative sensing. The missed detection 
probability of collaborative spectrum sensing is given by 
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where ( )i
mP denotes the missed detection probability of the ith 

CR in its local spectrum sensing. 
Assume that every CR has the same noise level, i.e., for 

equation (4), all CR users has the identical 2
v
 . According to 

equation (4), it is seen that every CR achieves identical fP (i.e., 
( )i

f fP P� , 1, 2,...,i K� � ). The false alarm probability and the 
missed detection probability of cooperative spectrum sensing 
are then given by 
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    We stress that the condition for (9) ~ (12) is that all selected 
CR users identify the availability of the licensed spectrum 
independently. To simplify the problem, CR users are 
considered as independent approximately if the correlations 
among them are small enough.  

III. SENSOR SELECTION ALGORITHM

A. Sensor Selection Based on SVD-QR 
In order to perform reliable spectrum sensing, several 

sensors which experience (at least to some extent) uncorrelated 
fading, with respect to the possible signals they are sensing for, 
are required. The number of sensors to use is a trade-off 
between high reliability and high resources usage efficiency.  

In the predefined CR network, the BS selects a few CR users 
as active sensing set before CR users send the binary decisions 
to the BS. Other CR users that are not selected by BS do not 
perform spectrum sensing during the Sensing Period.  

The following SVD-QR algorithm used here is as same as 
the one designed for wireless sensor network in [6]. The 
algorithm is to select a set of independent data sets that 
minimize the residual error in a least-squares sense: 
1) Given m nP R �� , assume n m� , rank( )=P r m�  denote   
the rank of P . Determine a numerical estimate r � of the rank 
of the data sets matrix P  by calculating the singular value 
decomposition 
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where, U is an N N�  matrix of orthonormalized eigenvectors 
of TPP , V is an m m� matrix of  orthonormalized 
eigenvectors of TP P , and � is the diagonal matrix 

1 2( , ,..., )rdiag 
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2) Calculate a permutation matrix $ such that the columns of 
the matrix ˆ

1
n rR �% �  in 
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are independent. The permutation matrix $  is obtained from 
the QR decomposition of the submatrix comprised of the right 
singular vectors, which correspond to the r̂  ordered 
most-significant singular values. 
In short, we select the data sets as the following: 
� Decomposes P , from the SVD of P , save V.
� Observe � , Select an appropriate r̂ .
� Partition  
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where ˆ ˆ
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m r m rV R � � �� . In many practical cases, 1
  is much larger 

than r
 � ; thus r̂  can be chosen much smaller than the estimate 
r �  of rank(P), even 1. 
� Using QR decomposition with column pivoting, determine 

$  such that 
11 21 11 12[ , ] [ , ],T T TQ V V R R$ �  (16) 

where Q is a unitary matrix, and 11R  and 12R  form an upper 
triangular matrix; and $  is the permutation matrix, the column 
permutation $  is chosen so that abs(diag(R)) is decreasing. In 
short, $  corresponds to the r̂  ordered most-significant sets. 

Examples for how to use the SVD-QR decomposition for 
sensor selection are given in [6]. One of the advantages of 
SVD-QR is that it can solve two problems simultaneously: 
determine how many sensors are uncorrelated and identify 
which sensors are uncorrelated. 

B. Sensor Selection Based on Correlation Measure 
To give a comparison of spectrum sensing performance, we 

give a simple review of the existing sensor selection algorithm 
in [7]. The author of [7] presented three different algorithm to 
select a set of sensors that do not experience correlated shadow 
fading when perform spectrum sensing. The three algorithms 
for sensor selection use different amount of information of the 
sensors’ positions. We choose one typical algorithm based on 
correlation measure for comparison. The algorithm is based on 
the following optimization problem: 

min  
1 1
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where ia represents activity of the sensor i: ia = 1 if the sensor 
belongs to the active set and ia = 0 if the sensor belongs to the 
passive set. M is the total number of sensors available for 
sensing and the user parameter N is the desired number of 



sensors to use in the sensing. The term 0ijc   is a correlation 
measure between the sensors i and j. The correlation measure 
could be a correlation function based on the Euclidian distance 
between the estimated positions of two sensors, such as C(d)

( ) dC d e &��                                    (18) 
where d is the distance and &  is an environment parameter. In 
an urban non-line-of-sight environment, &  = 0.1204/m, and in 
suburban environments &  = 0.002/m. As stated in [7], A 
correlation of 0.2 is assumed “small enough”, such that the 
decorrelation distance becomes 0 ln(0.2)d &� � . For an urban 
scenario, the decorrelation distance becomes 0d = 13m, that is, 
the minimum separation between sensors required for the 
shadowing correlation to fall below a determined threshold. 
More details about sensor selection based on correlation 
measure can be found in [7].     

IV. SIMULATION RESULTS

This section contains simulation results of the sensor 
selection based on SVD-QR algorithm and correlation measure 
algorithm for collaborative spectrum sensing. The CR networks 
are formed as Fig. 1. We consider circular cell having a radius 
of R = 200 m (all positioning units are given in meters) with the 
PU placed in the center of the circle. In the CR cell, 100 sensors 
are distributed over the cell randomly uniformly. L is set to 
300m and all sensors are assumed in the PU’s transmission 
range. The distance between a sensor and the PU is calculated 
using their positions. The path loss and shadow fading 
parameters for equation (1) are set to � = 3, � = 1, and the 
standard deviation of shadow fading � in logarithm is set to 5 
dB. The transmit power of PU is fixed at 1. The PU is presented 
with probability 0.7. 

Assume that reporting channels that between sensors and the 
BS are errorless. Assume that the BS itself will not perform 
spectrum sensing. We suppose each sensor sends 100 spectrum 
sensing results to the BS in Sensor Selection Period. For 
equation (5) and (6), we set the number of available 
measurements N = 30 and the average SNR is set to -10 dB.

It is seen in Fig. 2 that the 5 sensors selected from all 100 
sensors using SVD-QR algorithm outperform the 5 sensors 
selected based on correlation measure in collaborative 
spectrum sensing. The performance is averaged over 500 
sensor distribution realizations. In the SVD-QR sensor 
selection  algorithm, we get a permutation matrix $  from 
equation (16). Since the number of columns of $ is same to the 
number of all the sensors, the ordering of the significance of the 
sensors in collaborative sensing can be obtained according to 
$ . We select 5 sensors according to the first 5 columns of $ .

From (5) to (6), for a given sensing time, the local spectrum 
sensing performance relies on SNR. However, according to (17) 
and (18), correlation measure based sensor selection algorithm 
only gets a set of sensors with largest mutual distances but 
ignores the SNR of the sensors. So the “distance penalty” for 
using lower correlation values would be large. This statement 
could be proved by the SNR of the sensors selected using 
SVD-QR and correlation measure, as seen in Fig. 3. Fig. 3 
shows that the average SNR of the sensors selected by 

SVD-QR is much higher than that of sensors selected by 
correlation measure. This explains why the sensors selected by 
SVD-QR achieve a much higher performance in spectrum 
sensing.  

Fig. 2. Collaborative spectrum sensing performance comparison of 5 sensors 
selected based on SVD-QR and correlation measure. 

Fig. 3.  The average SNR of the 5 sensors selected based on SVD-QR and 
correlation measure for 500 sensor distribution realizations. 

Fig. 4 shows the minimum distance of the distances among 
the 5 sensors selected based on SVD-QR and correlation 
measure for 500 sensor distributions. Decorrelation distance

0d = 13m is also plotted in Fig. 4 as the horizontal line. An 
interesting phenomenon in Fig. 4 is that the 5 sensors selected 
from 100 densely distributed sensors by SVD-QR are separated 
by considerable distance, though there is none position 
information of sensors in SVD-QR. There are only 25 
realizations in which the minimum distance among the sensors 
selected by SVD-QR fall below the decorrelation distance. That 
means, for 500 sensor distribution realizations, the correlations 
calculated by (18) of the 5 sensors selected by SVD-QR are all 
smaller than 0.2 in 95% realizations. In other word, using the 
correlation model depicted by (18), the SVD-QR algorithm can 
select a few uncorrelated sensor without the information of 
their positions. 

Fig. 5 shows the minimum distance of the distances among 
the 10 sensors selected based on SVD-QR and correlation 
measure without any change to the system parameters given 
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above. As seen in Fig. 5, if the target number of sensor selection 
fixed to 10, the minimum distance of the sensors selected based 
on two algorithms both decrease significantly. The number of 
the minimum distance among the sensors selected by SVD-QR 
falls below the decorrelation distance increased up to 94. Under 
such conditions, we can not use (11) ~ (12) to get the theoretical 
performance of collaborative sensing, since the sensors selected 
by SVD-QR are not independent according to the correlation 
model depicted by (18). This tells us that we can not fix the 
target number of sensors to be selected for different sensor 
distributions. If we fix the target number, the two problems of 
how many sensors are uncorrelated and which sensors are 
uncorrelated will be separated. The SVD-QR algorithm can 
solve the two problems simultaneously. 

Fig. 4.  Minimum distance of  the distances among the 5 sensors selected based 
on SVD-QR and correlation measure for 500 sensor distributions. 

Fig. 5.  Minimum distance of the distances among the 10 sensors selected based 
on SVD-QR and correlation measure for 500 sensor distributions. 

V. CONCLUSION

    In this paper, we have proposed an effective sensor selection 
scheme for collaborative spectrum sensing based on SVD-QR 
decomposition. There exists redundancy among CR users that 
suffer shadow fading and the most significant sensors that 
suffers uncorrelated shadow fading should be selected to 
achieve a satisfied sensing performance. As a result, the 
SVD-QR sensor selection algorithm outperforms the 

correlation measure based sensor selection algorithm.  Future 
work includes theoretical analysis on the relationship of the 
SVD-QR and the correlation of sensors. 
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