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Abstract—An optimal joint channel selection and power con-
trol scheme is investigated in a cognitive network context,
where the cognitive network is composed by multiple cogni-
tive interference channels. Here, we take the fairness among
multiple secondary users (SUs) and Pareto optimality measured
by the capacity maximization into consideration. The complex
cooperation and competition relationship among multiple SUs
and primary users (PUs) is described with the refined signal-
to-interference plus noise (SINR) definition. According to the
Nash axioms from the Nash bargaining cooperative game, the
newly built utility function is formulated, and the spectral gap-
filling problem is formulated as cognitive capacity Nash product
maximization (CCNPM). To improve the centralized algorithm
design in in the cooperative game theory framework, we employ
the dual decomposition technique to achieve the distributed
bargaining approaches. The proposed approaches are with low
implementation complexities and the little information exchange.

Index Terms—Cognitive network capacity; Cooperative game
theory; Resource management; Power control; Decomposition
technique; Network Utility Maximization.

I. INTRODUCTION

Cognitive networks hold tremendous promise for improving
spectral utilization in mitigating the situation of shortage
of spectrum. The celebrated cognitive radio technology as
a promising paradigm is unified as an intelligent wireless
communication concept that exploits side information about
its cognitive context and their own capability, activity, chan-
nel information, code-books and other messages about other
players [1]. Here, cognitive networks are wireless networks
that consist of several types of users: often a primary user
(PU) and secondary users (SUs). As [3] pointed out the study
of the cognitive networks first coined in [4] is relatively new
and many questions are yet to be answered, which composes
of multiple coupled cognitive radio channels (CRCs).

Many attention has been focused on investigating resource
management problems in the wireless networks, e.g., channel
selection and power control in cognitive context [3]–[13]. To
our best knowledge, most of the literature is dependent on
the non-cooperative game and analyze the issue for the CR
system or the CR-composed networks, e.g. [3] investigates the
joint power control and channel allocation using the strategic
non-cooperative game approach, [4] study the uplink pricing
power control for a UWB-based cognitive radio system via
Stackelberg game, the S-modular game is utilized in [5],
[6], but [6] proposed a adaptive utility scheme, [7] is the
potential game. We note that these are all based on non-
cooperative game, and other problems are mostly investigated
using these similar model. But the celebrated Nash equilibrium

solution (NES) for the non-cooperative game can’t guarantee
Pareto optimality, let alone the fairness among various SUs.
Therefore, pricing based schemes are presented in [8], [9] to
improve the overall performance and the Pareto optimality of
NES. However, fairness criteria among SUs have never been
guaranteed. To guarantee both the Pareto optimality and the
fairness, the only way is to use cooperative game modeling
framework, e.g. the Nash bargaining game [10], [12] for power
control, [14] dynamic spectrum access, Kalai-Smorodinsky
bargaining game [11] and the coalition game [13] for analyzing
fair channel allocation in the OFDMA network. However, due
to there are too much information to exchange, they either
need a central controller [13]/central resource regulator [14],
or the cooperation of multiple primary users (PUs) with SUs
[16].

Due to the nice fairness and pareto efficiency proper-
ties, the cooperative game theoretical framework is still a
promising technique. In this paper, we formulate spectral
gap-filling problem using the Nash bargaining cooperative
game model, but to design the distributive bargaining process
with limit information exchange. What we are concern is
also different from aforementioned literatures. We investigate
cooperation/competition relationship among multiple SUs and
PUs. Based on the celebrated iterative water-filling algorithm
(IWFA), we propose two distributed bargaining approaches for
search for the Nash bargaining solution (NBS).

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We investigate the cognitive network, which is composed by
the N secondary users and M primary users. We assume that
each primary user will share his own spectrum band k ∈ K
with the N SUs. So there are K channels provided by the
M PUs to share with the N SUs in the cognitive network.
Both the PUs and the SUs care about the terminal-to-terminal
performance shown as Fig.1.

Here gi,j , i, j ∈ N , and hm,i,m ∈ M, i ∈ N are
the cognitive channel gain. When i = j, gi,i represents
the communication channel gain, otherwise, it represents the
interference channel gain. hm,i is the interference gain from
the ist SU-transmitter (SU-Tx) to the mst PU-receiver (PU-
Rx). In this paper, we focus on how the SU chooses his power
level to maximize the cognitive network capacity but with the
performance of the PU into consideration. Meanwhile, we pay
attention to the cooperation and the competition among them,
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Fig. 1. System model.

which will reflect in the new form of signal-to-interference
plus noise (SINR) definition.

B. Redefined SINR

To the knowledge of our best, most of the previous work
did not seriously consider the SINR definition issue. They
usually take the form of the traditional definition, without the
consideration of the interference from the primary to the sec-
ondary user. In [8], where the authors consider this constraint,
but fail to describe the complex interference relationship. It
is necessary to redefine the SINR, motivated by the multi-
tone sharing problem research in [17]. We denote SINR in the
cognitive spectrum sharing scenario as (1).

Here pi(k) is the transmission power level of SUi on the
channel k, |gi,j(k)|2 is the channel gain between the transmit-
ter of SUi to the receiver of SUj , and when i = j, it represents
the communication link gain, when i 6= j represents the
interference link gain. pm(k1) is the transmission power level
of PUm on the channel k1. |hm,i(k1)|2 is the corresponding
channel gain from the transmitter of PUm to the receiver of
the SUi.

Here, we should be particularly emphasized mutual inter-
ference factor denoted as ρ(∆k),

ρ(∆k) =

{
1,∆k = 0,

2
K2 sin2( π

K ∆k)
,−(K − 1) ≤ ∆k ≤ (K + 1),∆k 6= 0.

(2)
It can well depict the interference relationship. There is such

a fact that when different user access the same channel, they
will appear in varying degrees of performance loss if there isn’t
one better, preassigned sharing strategies to achieve rationalely
scheduled. The relationship can well reflected by the channel
sharing policy. For example, when ρ(∆k) = 0, there are two
users conflict with each other where sharing the same channel,
it is the total cooperation case and ρ(∆k) 6= 0, it represents
the partial cooperation case.

C. Utility Function Design

Throughout this paper, all users want to maximize the
overall performance of capacity. Also, from the cooperative
game perspective, we intend to employ the NBS fairness as
the fairness criteria.

Corollary 1: The unique, Pareto optimal and fair solution
for the NBS game can obtained by maximizing the payoff
function takes the form of the Nash Product, shown as

V =
∏

i

Uωi
i (Pi, P−i) (3)

where ωi is the weight factor.
If the individual utility is Uk

i (Pi, P−i) = γk
i (Pi, P−i), now

the total performance measurement under the Corollary 1 is
V =

∐
i

γωi
i (Pi, P−i), where γi is

γi(pi, p−i) =
∏

k

pi(k)|gi,i(k)|2
ξi(k)

(4)

if we use ξi(k) is the original definition of SINR in (1), where
ξi(k) is replaced by (5).

Here SUi always expects to attain the optimal and fair
sharing on the multiple channels. (5) satisfies the Corollary 1,
too. Maximizing the Nash Product function has been proved
to be the only way for pursuing the overall performance
improvement and the fairness amongst multiple users [18].

To sum up, at this time the payoff function defined in (3)
can be expressed as

V =
∏
i

γωi
i (pi, p−i)

=
∏
i

(∏
k

pi(k)|gi,i(k)|2
ξi(k)

)ωi (6)

Meanwhile, we give another corollary, although it have
repeatedly appeared in the literature, e.g., [11]–[13], [20].

Corollary 2: The Nash bargaining solutions is always ob-
tained using the log form payoff function, and we can prove
it satisfies the proportional fairness [11]–[13], [20].

Especially, under the log-transformation in (2) the problem
is equivalent transformation, so the solution does not undergo
any change in the nature of fairness and Pareto efficiency. We
give the equivalent transformation theorem and further in the
framework of cooperative game theory, the payoff function in
(6) that can be equivalently defined.

Theorem 1: The payoff function in (6) is equivalent to

V =
∑

i

∑

k

ωi log2

(
pi(k)|gi,i(k)|2

ξi(k)

)
(7)

The certification process have been omitted here, which can
be found in our previous work [11].

From the cooperative game-theoretic perspective, we have
well considered the requirements of Game Theory. This form
of payoff function design is to meet the Nash Axioms.

Here, we must also discuss and take into account the phys-
ical communication meaning of the payoff function. Inspired
by the question itself in this paper,we have

V =
∑

i

∑

k

ωi log2

(
1 + Γ

pi(k)|gi,i(k)|2
ξi(k)

)
(8)

Although, on the surface, such a transformation may only
change on the value. It is only added with a constant "1", and
then multiplied by a factor Γ. In fact, these can be reflected
in value of the original definition of pi(k)|gi,i(k)|2

ξi(k) .



γi(k) =
pi(k)|gi,i(k)|2

∑N
j=1,j 6=i

(∑K
k1=1 ρ(k − k1)pj(k1)|gj,i(k1)|2

)
+

∑M
m=1

(∑K
k1=1 ρ(k − k1)pm(k1)|hm,i(k1)|2

)
+ σ2

i (k)
(1)

ξi(k) =
∑N

j=1,j 6=i

(∑K

k1=1
ρ(k − k1)pj(k1)|gj,i(k1)|2

)
+

∑M

m=1

(∑K

k1=1
ρ(k − k1)pm(k1)|hm,i(k1)|2

)
+ σ2

i (k). (5)

D. Multiple Constraint Conditions

For this spectrum sharing problem in the cognitive context,
there are many limitations and constraints. In addition to the
restrictions and requirements from cognitive radio itself, there
are factors that need to be considered in game theory.

First of all, we are concerned about restrictions on game
theory, as

Ci,min ≤
∑K

k=1
log2

(
1 + Γ

pi(k)|gi,i(k)|2
ξi(k)

)
,∀i (9)

where Ci,min is the minimum capacity requirement. In other
words, for each user, while ensuring the overall utility max-
imization, we must also take into account the usefulness of
the individual utility. This restriction, in the current study, is
not very common. In cooperative game theory, Ci,min is called
the disagreement point, which is the Nash equilibrium solution
and is the start-point of the Nash bargaining. That is to say,
if multiple users can’t achieve the practical agreements. They
will use this strategy. This value also changes with the changes
in the cognitive environment.

Second, from the cognitive network, as the interference-
power constraints, we deal with two catteries of constraints:
the peak interference-power constraints from PUs:

Peak : pi(k) ≤ Pmask
m (k)

/
N, ∀i,∀k,∀m. (10)

In summary, the problem is

max : V =
∑N

i=1

∑K
k=1 ωi log2

(
1 + Γpi(k)|gi,i(k)|2

ξi(k)

)

s.t :

Ci,min ≤
∑K

k=1 log2

(
1 + Γpi(k)|gi,i(k)|2

ξi(k)

)
,∀i,

∑K
k=1 pi(k) ≤ pi,max,∀i,

pi(k) ≤ Pmask
m (k)

/
N, ∀i,∀k,∀m.

(11)

III. ITERATIVE WATER-FILLING BASED BARGAINING
APPROACH

For this problem itself, it is not an easily-solved problem.
Taking into account the characteristics of cognitive network
itself, multiple nodes are difficult to form a cooperative
relationship. At the same time, we also expect the design
algorithm is distributed, and the communication overhead
should be small. Motivated by the work of [21]. We will
adopt a decomposition approach to solve this problem. At the
same time, in view of the multiple user iterative water-filling
algorithm [22] has a number of excellent properties such as

Remark 1: Summarizing Remarks on Iterative Water Fill-
ing:
• The algorithm functions in a self-organized manner,

thereby making it possible for the network to assume an
ad-hoc structure.

• It avoids the need for communication links (i.e., coor-
dination) among the multiple users, thereby significantly
simplifying the design of the network.

• By using convex optimization, the algorithm tends to con-
verge relatively rapidly to a Nash equilibrium; however,
once this stable point is reached, no user is permitted to
change its transmit-power control policy unilaterally.

• Computational complexity of the algorithm is relatively
low, being on the order of two numbers: the number
of secondary users and the number of spectrum holes
available for utilization.

At the same time, the algorithm to obtain solutions proven
to meet the requirements of the Nash equilibrium solution
under only a few mild requirements. Through a rigorous
mathematical derivation, we will adopt a joint approach to
solve the above-mentioned two kinds of problems that we have
defined.

A. Decomposed Ordinal Problem

For the original definition of the problem in (11), we use
Lagrangian Layering Technology. Here, we first consider the
peak interference-power constraints, since it is easily to deal
with. Therefore, we should introduce the Lagrangian multiplier
λ and υ for the first and the second constraint conditions in
(11). And we can get the mathematical expression after the
relaxation as (12).

Here, Θi(k) = (ωi + λi) log2 (1 + Γγi(k))− υipi(k).
In accordance with the decomposition theory, we have the

multiple sub-problems,

max : {Θi(k) = (ωi + λi) log2 (1 + Γγi(k))− υipi(k)}
st : pi(k) ≤ Pmask

m (k)
/
N, ∀i,∀k,∀m.

(13)
and, the dual master problem,

min :
{

Θ =
∑N

i=1

∑K
k=1 {Θ∗i (k)} − λT Cmin + υT pmax

}

s.t. : λ ≥ 0, υ ≥ 0
(14)

where, Θ∗i (k) is optimal individual payoff with the capacity
achieved by SUi as C∗i (k) = log2 (1 + Γγ∗i (k)) on the chan-
nel k and the power consumed p∗i (k) into consideration. Θ∗i (k)
is achieved when each user obtains the optimal power level



Θ =
∑N

i=1

∑K
k=1 ωi log2 (1 + Γγi(k))−∑N

i=1 λi

(
Ci,min −

∑K
k=1 log (1 + Γγi(k))

)
−∑N

i=1 υi

(∑K
k=1 pi(k)− pi,max

)

=
∑N

i=1

∑K
k=1 {(ωi + λi) log2 (1 + Γγi(k))− υipi(k)} − λT Cmin + υT pmax

=
∑N

i=1

∑K
k=1 {Θi(k)} − λT Cmin + υT pmax.

(12)

p∗i (k) and the best channel selection policy as the subproblem
in (13).

B. Iterative Water-Filling Approach For Subproblems

Observe the subproblems in (13), we can see that it is a
non-cooperative strategic game G = {N, S,U}.

Definition 1: Non-cooperative resource management game
(NRMG): G = {N, S,U}, where N is the player set, here
it refers to the secondary transmitter-receiver pair. S is the
Cartesian product space consisted by Si, i = 1, ..., N . And Si

is

Si = {pi|0 ≤ pi(k) ≤ pmask
m (k)/N, ∀k ∈ K, ∀m ∈ M}.

Meanwhile, the individual payoff function is

{Θi(k) = (ωi + λi) log2 (1 + Γγi(k))− υipi(k)}
Here, Further, we derive the first-order partial difference

function of individual payoff function in (13) with respect to
pi(k), i = 1, ..., N . Then we obtain,

∂Θi(k)
∂pi(k)

=
ωi + λi

ln 2
Γ

1 + Γγi(k)
gi,i(k)
ξi(k)

− υi. (15)

Let (15) equal to zero, and we can get the optimal power for
the SUi at the channel k is

p∗i (k) =
ωi + λi

υi ln 2
− ξi(k)

Γgi,i(k)
. (16)

To observe the cooperation and the competition relationship
of the multiple SUs, substitute ξi(k) with into (16). Then we
obtain the water-filling function as shown in (17).

[WFi(p−i)]k
∆= κi − ϑi(k)

gi,i(k)
(17)

where κi = ωi+λi

υi ln 2 , andϑi(k) =

1/Γ
∑N

j=1,j 6=i

(∑K
k1=1 ρ(k − k1)pj(k1)|gj,i(k1)|2

)
+

∑M
m=1

(∑K
k1=1 ρ(k − k1)pm(k1)|hm,i(k1)|2

)
+ σ2

i (k).
Here, we give a lemma for the existence and the uniqueness

of Nash equilibrium solution for the NRMG model.
Lemma 1: The optimal solution p∗i = {p∗i (k)}K

k=1 for the
proposed NRMG model exists and is unique. Meanwhile,

p∗i = WFi(p1, ..., pi−1, pi+1, ..., pN ) = WFi(p−i) (18)

where the water-filling function is denoted as (17).
Definition 2: A feasible strategy profile p∗ = {p∗}N

i=1 is
the NES of the NRMG model if

Ui(p∗i , p
∗
−i) ≥ Ui(pi, p

∗
−i),∀pi ∈ Si,∀i ∈ N. (19)

According to the Lemma 1, all the NES of the NRMG
model need to satisfy the condition expressed by the following
corollary.

Corollary 3: A feasible strategy profile p∗ = {p∗}N
i=1 is

the NES of the NRMG model if and only if it salifies the
following systems of nonlinear equation:

p∗i = WFi(p∗1, ..., p∗i−1, p∗i+1, ..., p∗N ) (20)

with WFi defined in (17).
More specifically, we propose two alternative totally dis-
tributed algorithms based on the water-filling solution in (7),
and provide a unified set of convergence conditions for both
algorithms. A. Sequential Iterative Water-Filling Algorithm
(IWFA) The sequential IWFA we propose is an instance of
the GaussĺCSeidel scheme (by which, each userąŕs power level
is sequentially updated [22]) based on the mapping (7): Each
player, sequentially and according to a fixed updating order,
solves problem (6), performing the single-user water-filling
solution in (7). The sequential IWFA is described in Algorithm
1.

Algorithm 1: Sequential IWFA
1. Set p(0) = {p(0)}N

i=1, here we carefully choose
the initial power level p(0) with the feasible
strategy set Si in mind.
2. For n = 0 : numberofiterations,

p
(n+1)
i =




WFi(p

(n)
−i ), if(n + 1) mod N = i,

p
(n)
i , otherwise,∀i ∈ N.

3. end.
To overcome the drawback of the possible slow speed of

convergence, we consider in this section the simultaneous ver-
sion of the IWFA, called simultaneous IWFA. The algorithm
is an instance of the Jacobi scheme: At each iteration, the
users update their own PSD simultaneously, performing the
water-filling solution, given the interference generated by the
other users in the previous iteration. The simultaneous IWFA
is described in Algorithm 2.

Algorithm 2: Parallel IWFA
1. Set p(0) = {p(0)}N

i=1, here we carefully choose
the initial power level p(0) with the feasible
strategy set Si in mind.
2. For n = 0 : numberofiterations,
p
(n+1)
i = WFi(p

(n)
−i ),∀i ∈ N .

3. end.

C. Gradient Projection Method For Master Problem

For dual master problem denoted as (14), Θ∗i (k) is best
individual payoff function as above-mentioned, it is achieved



by the proposed IWFA in the above subsections, when multiple
users obtain the optimal transmission strategies. That is,

Θ∗i (k) = F(p∗i (k), p∗−i(k), λi, υi)

The optimal strategies p∗i (k), p∗−i(k) in this step are con-
stants. [Θ∗i (k) is the function of (λi, υi).

We employ the Gradient Projection Method for master
problem,

λi(t + 1) = λi(t) + α(t)
(
λ̄i(t)− λi(t)

)
(21)

where λi is referred to the dual variables, α(t) is the
iteration step. Such an iteration looks like a gradient projection
method except that a subgradient is used instead of the gradient
(which may not exist).

There are many results on convergence of the subgradient
method. For constant step size α(t) = α and constant step
length α(t) = α/||G(t)||, the subgradient algorithm is guar-
anteed to converge to within some range of the optimal value;
in other words, the subgradient method finds an ε-suboptimal
point within a finite number of steps. For the diminishing step
size rule

α(t) =
m + 1
m + t

(22)

where m is a fixed nonnegative number, the algorithm is
guaranteed to converge to the optimal value.

The gradient λ̄i(t) of the master dual problem (21) is

λ̄i(t) =
[
λi(t) + s(t)

∂Θ
∂λi

|λi=λi(t)

]
(23)

where s(t) is a scale at the tst iteration. Further,

∂Θ
∂λi

=
∑K

k=1
log2 (1 + Γγi(k))− Ci,min. (24)

For another dual variable, we have the similar representation
as (25).

υi(t + 1) = υi(t) + α(k) (ῡi(t)− υi(t))

ῡi(t) =
[
υi(t) + s(t) ∂Θ

∂υi
|υi=υi(t)

] (25)

where ∂Θ
∂υi

= pi,max −
∑K

k=1 pi(k).
Here we have some further observations, which are given

out using the remark form.
Remark 2: Further observations to the sub-problems and

the dual master problem:
• We always can find the optimal policy pi(k), i ∈ N, k ∈

K, after the IWFA (17) obtain the optimal dual informa-
tion, e.g., λi (21).

• We note here that there are two algorithms, respectively,
to solve the master problem using (21) and (25) and sub-
problems issues (17) after the successful decomposition
of original problem (11).

• There exists the presence of information interaction,
which is actually the strategy information λi, υi, pi(k) in-
teraction and does not include environmental information
such as the complex and large amounts of information
interaction process.

• These two algorithms will be gradually interactive policy
data, the dynamic implementation will keep on in the fi-
nite steps and eventually achieve a balanced performance.

D. IWFA-based Bargaining Approach

Here, we propose a Nash bargaining structure shown as
Fig.2,

Suggests an 

agreement: X

Accept?

Suggests an 

agreement: Y

Accept?

Conclude the bargaining.

No No

Yes Yes

Fig. 2. Bargaining process, where there are only two players.

Fig.2 illustrates the bargaining concept. In the previous
literature, design of algorithms is not well reflect the concept
of game or a specific bargaining process. In this paper, we
assume that the two players are SU1 and SU2.

As Fig.2 shown, first, SU1 proposes a transmission strategy
X , then further asked another user SU2 whether he is to accept
such a strategy X . If SU2 can accept the recommendations
of the transmission strategy of SU1, the bargaining process
is over. Otherwise,when SU1 understands the final strategy
agreement hasn’t been concluded, during the next bargaining
process, the SU2 will put forward his recommended strategy
Y . Similarly, repeat the above process until the final agreement
is conclude.

We can see that this process requires a lot of information
exchange, interaction, resulting in communication overhead
is too large. If there is no central control mechanism or a
specialized agency, it is very difficult to complete. For multi-
user scenario, this is more of a process can not be imagined.
In addition to these, we also have some further observations
and discussions on this bargaining process.

Remark 3: Many problems in the bargaining process need
to be done.

• When the suggested policy of SU1 isn’t accepted by SU2

in this circumstances, the adjustment strategy, or other
player’s strategy is what in the next bargaining step of
the the proposed framework.

• If you have not been able to form a stable strategy after
limit iterations, at this time, the user should use what kind
of Transmission Strategy.

• What is decision-making mechanism to determine
whether to accept the opponent’s strategy.

To solve these problems, we have proposed IWFA-based
bargaining approach. The detailed adjustment strategy is the
Fig.2 in illustrated as Fig.3.
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Fig. 3. Iterative water-filling based bargaining approach

IV. CONCLUSION

Motivated by the cooperative game theory and the cele-
brated decomposition technique, the spectral gap-filling prob-
lem is formulated as cognitive capacity Nash product maxi-
mization (CCNPM). The cooperation and competition behav-
ior is reflected by the newly-described signal-to-interference
plus noise (SINR) definition. From the Nash bargaining game,
the spectrum gap filling problem is well discussed, which
take multiple constraint conditions into consideration. It pro-
vides an uniform mathematical model for further studying
the cooperative game theory for distributive approaches de-
sign. Using the decomposition technique, we proposed the
distributed bargaining algorithm based on the celebrated iter-
ative water-filling algorithm (IWFA), which maintain the typi-
cal distributed and simple-implementation properties. Specific
conclusions are given by the mathematical proof and detail
discussion.
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