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Abstract—In this paper, we propose a novel transmission
probability scheduling scheme for opportunistic spectrum access
in cognitive radio networks. With the proposed scheme, the
secondary user’s throughput over a single channel is maximized
while collision probability perceived by the primary user is

constrained under a required threshold since the secondary
user optimally schedules its transmission probabilities during
the primary user’s idle period. Moreover, we deeply study the
maximum achievable throughput of the secondary user when
the idle period of the primary user is different distribution to
analyze the performance of the proposed transmission probability
scheduling scheme. In a practical communication systems, where
primary user’s traffic pattern and parameters are unknown and
the secondary user’s spectrum sensing is imperfect, a novel
predictor, which is based on hidden Markov model, is also
proposed to predict the future channel states and to enable
the transmission probability scheduling for the secondary user.
Conducted simulations show that the proposed transmission
probability scheduling scheme and predictor are effective and
can offer good system performances.

I. INTRODUCTION

Recently, dynamic spectrum access (DSA) has been pro-

posed to improve the utilization efficiency of the licensed

spectrum. Among all existing DSA technologies introduced

in [1], opportunistic spectrum access (OSA) is one of promis-

ing and emphasized techniques, in which spectrum holes are

defined as frequency bands allocated to primary (licensed)

users. However, a particular time and specific geographical

location have not being utilized in the scheme of OSA [2].

To utilize these spectrum holes with required protection for

the primary users over the same frequency band, secondary

(unlicensed) users have to adopt strict constraints on inter-

ference, e.g., for packet-based primary users, OSA schemes

usually constrain the probability of collision with the primary

user’s packet under a predefined threshold [3] - [5], [8], [10],

[13]. Therefore, it is indeed needed to study how to maximize

the secondary user’s throughput under a certain constraint of

collision probability for primary user’s packets.

Specifically, some effective approaches, which is based on

optimal channel selection in multi-channel systems, have been
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proposed in the literature. In [3], an optimal channel selection

strategy based on the constrained Markov decision process

(CMDP) was proposed to maximize the secondary user’s

throughput under the constraint of collision probability. In

[4], an optimal sensing and access strategy based on partially

observable Markov decision process (POMDP) was proposed.

In [5], a joint design of the PHY layer spectrum sensor and the

MAC layer access strategy has been considered. In [6], optimal

strategies were proposed to maximize the total expected data

rate of the secondary user without a priori knowledge of the

primary user’s channel statistics. In [7], a method to suppress

sidelobes of the orthogonal frequency division multiplexing

(OFDM) signals was proposed, which enables the OFDM-

based secondary users to utilize noncontiguous spectrum holes

over multi-channels.

Moreover, the problem of the throughput maximization

also has been addressed in single-channel systems. In [8],

secondary user’s sensing and transmission structure was op-

timized to maximize the secondary user’s throughput under

the consideration of sensing overhead. In [9], the achievable

throughput for the secondary network was maximized by

adopting an optimal sensing time. In [10], an optimal spectrum

access policy was derived asymptotically under the assumption

that the secondary user’s slot length approaches zero. However,

the problem is still open for the throughput maximization of

the secondary user under the collision probability constraints

when the secondary user’s slot length is finite. Moreover, one

of assumptions in all existing schemes is that the secondary

user has a priori knowledge of the primary user’s idle period

distribution, which is not appropriate in practical communica-

tion systems [10].

In this paper, we develop a novel access scheme for the

secondary user with periodic sensing and slotted structure,

which aims at exploiting instantaneous spectrum opportunities

over a single channel that is allocated to a packet based

primary user. We propose that, in a primary user’s idle

period that covers a number of the secondary user’s slots, the

secondary user’s transmission probabilities for these idle slots

could be optimally scheduled, so that the throughput of the

secondary user is maximized while the collision probability

with the primary user’s packets being constrained under a

required threshold. We formulate the maximization problem
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as a linear programming problem that is efficient to solve.

To better illustrate the proposed access scheme, analysis

of maximum achievable throughput for three typical cases

with different distributions of primary user’s idle period is

presented. Numerical results show that the improvement of

throughput by adopting the proposed access scheme highly

depends on the distribution of primary user’s idle period.

When the idle period follows hyper-Erlang distribution [13],

the throughput improvement is as high as 100%. For practical

situations, where the traffic pattern of the primary user and its

parameters are unknown, we develop a method, which is based

on hidden Markov model (HMM), to predict the future channel

states by learning past periodic sensing results. Moreover, the

impact of sensing errors on the performance of the proposed

scheme is also illustrated.

II. SYSTEM MODEL

As depicted in Fig. 1, the secondary user exploits spectrum

holes while limits the interference perceived by the primary

user who works on the same channel in an OSA-based cogni-

tive radio network (CRN). The primary user has the priority

to access the channel and it is not responsible for any sort of

notification to secondary user for its transmission. Suppose that

the primary user’s traffic pattern follows an ON/OFF model,

in which its state becomes busy (“ON”, packet transmission)

or idle (“OFF”, idle period/spectrum hole) alternatively. The

distribution of busy or idle periods is supposed to be general.

Thus, the secondary user should target at a temporal utilization

of spectrum holes and vacate the channel as quickly as possible

when the primary user’s state turns from idle to busy.

Primary Packets
Spectrum Holes for 

Secondary User

Time

Fig. 1. The OSA-based CRN.

Suppose that the secondary user is equipped with a half-

duplex transceiver, i.e., the secondary node is no longer

capable of sensing the channel or receiving data during its

transmitting data. To periodically schedule sensing and trans-

mission, the secondary user employs a slotted communication

protocol as depicted in Fig. 2, in which L denotes the time

duration for one secondary user slot. At the beginning of a slot,

e.g., the k-th slot (k is a positive integer), there is a sensing

duration denoted as the k-th sensing sub-slot for the secondary

user to turn off the transmitter and sense the channel, the

remaining duration in this slot is denoted as the k-th data

sub-slot for data transmission. To protect the primary packets,

secondary user is allowed to access the channel only when the

current sensing result shows that the state of the primary user

is idle.

However, for an OSA-based CRN, strict interference con-

straint is needed to be imposed on the secondary user to

ensure that the interference perceived by the primary user lies

Primary

Packets

Secondary

Packets
Slot boundary

Sensing

sub-slot

Collision Occurs

TimeL

Fig. 2. Slotted structure of the secondary user.

below a required threshold. Due to the fact that the secondary

user could not sense the channel during its transmission,

collision occurs if the primary user accesses the channel when

the secondary user is transmitting, which may result in both

primary user’s and secondary user’s packets loss. For the

case of perfect sensing, collisions only occur at the head

of a primary user’s packets, which are denoted as type-I

collisions. For imperfect sensing case, collisions may happen

during primary user’s transmission process due to the missed

detection, which are denoted as type-II collisions. To protect

the primary packets from excessive collisions, we define the

average ratio of collisions in all primary packets during a

certain time duration U as a measure of the interference caused

by secondary users from the primary user’s perspective, which

is denoted as the average packet collision ratio (APCR) as RC,

i.e.,

RC = lim
U→+∞

NC

NP
, (1)

where NP denotes the number of the primary user’s packets

during U , and NC denotes the number of collision events

during U . In this study, we aim at constraining RC under

a required threshold RTH. In other words, the primary user

could tolerate the interference when RC ≤ RTH.

Moreover, we are really concerned about the throughput of

the secondary user in CRN, which depends on the utilization

efficiency of the spectrum holes. In this paper, we employ

an efficiency of spectrum hole utilization as a measure of the

secondary user’s throughput in the OSA-based CRN. Thus,

the normalized secondary user’s throughput is defined as

T = lim
U→+∞

NS

NIDLE
, (2)

where NS denotes the number of idle slots successfully utilized

by the secondary user during U , and NIDLE denotes the total

number of idle slots during U .

In the next section, we thoroughly study how to maximize

the throughput of the secondary user while the APCR is below

a required threshold.

III. THROUGHPUT MAXIMIZATION WITH THE PROPOSED

TRANSMISSION PROBABILITY SCHEDULING SCHEME

In this section, we propose a transmission probability

scheduling (TPS) scheme for the OSA-base CRN, in which

secondary user optimally schedules its transmission probabili-

ties for the data sub-slots during the idle period of the primary

user. With the proposed TPS scheme, the throughput of the



secondary user is maximized while the APCR perceived by

the primary user is constrained under a required threshold.

Obviously, it is needed to know the sensing results for

the secondary user to identify a spectrum hole, in which

the sensing result is binary for every sensing sub-slot, i.e.,

either busy or idle. We first assume that the sensing results

are perfect, which makes sense in high signal-to-noise ratio

(SNR) environment. The sensing result X(k) for the k-th (k

is a positive integer) sensing sub-slot is written as,

X(k) =

{

1, if busy
0, if idle.

(3)

As depicted in Fig. 3, an idle period, i.e., new spectrum

opportunity, is identified by the secondary user at the k-th

sensing sub-slot if the current sensing result X(k) is idle

and the previous sensing result X(k − 1) is busy. Then, the

secondary user predicts the primary user states in the following

N sensing sub-slots. N is the number of prediction steps and

ideally N → +∞. Based on the prediction, the secondary user

schedules its transmission probabilities in the following N data

sub-slots. If the k-th to the (k + i)-th sensing sub-slot are all

idle, the secondary user transmits its packet in the (k + i)-th
data sub-slot with the probability PT

k (i), i = 0, 1, ..., N − 1.

Otherwise, the secondary user stops its transmission and waits

for the next spectrum opportunity.

Timeslot k

step 1 step 2 step i step N

slot k-1

Primary

Packets
Slot boundary

Sensing

sub-slot

idlebusy

Spectrum Opportunity

Identified

slot k+1

Fig. 3. Spectrum opportunity identification.

In the following, we present how to obtain the optimal trans-

mission probabilities that achieves throughput maximization

for the secondary user under the APCR constraint.

Secondary

Packets

Primary

Packets

Timeslot k+i+1slot k+i

idle busy

Fig. 4. Collision between the primary users and secondary users.

Firstly, we derive the collision probability PC
k for the

coming primary packet. As shown in Fig. 4, secondary user

transmits during the (k+i)-th data sub-slot, if X(k+i+1) = 1,

it is reasonable to consider that the primary user accesses the

channel again during the (k+i)-th data sub-slot and a collision

occurs; otherwise, the secondary user transmission during the

(k + i)-th data sub-slot is successful. With the transmission

probabilities PT
k (i), we have

PC
k =

N−1
∑

i=0

Bk(i) · PT
k (i), (4)

where Bk(i) is the probability that the primary user keeps idle

during the k-th to the (k+ i−1)-th data sub-slot and accesses

the channel during the (k + i)-th data sub-slot, we have

Bk(i) =














Pr(X(k + i + 1) = 1), i = 0

Pr(X(k + 1) = 0, ..., X(k + i) = 0, X(k + i + 1) = 1),
0 < i ≤ N − 1

(5)

lim
N→∞

N−1
∑

i=0

Bk(i) = 1. (6)

For large enough N ,
N−1
∑

i=0

Bk(i) ≈ 1 and
+∞
∑

i=N

Bk(i) is negli-

gible.

In order to constrain the interference towards the primary

user, threshold RTH is set as a constraint on APCR. If we

set RTH as the threshold of PC
k , i.e., PC

k ≤ RTH for every

primary packet, then RC ≤ RTH is satisfied.

Secondly, we derive the expected normalized throughput

Tk of the secondary user in the idle period starting from the

k-th sensing sub-slot. During the (k + i)-th data sub-slot, if

the secondary user transmits and no collision occurs, the data

sub-slot is considered to be successfully utilized. Ik(i) is the

probability that the primary user would not access the channel

from the k-th to the (k + i)-th data sub-slot, we have

Ik(i) =














Pr(X(k + i + 1) = 0), i = 0

Pr(X(k + 1) = 0, ..., X(k + i) = 0, X(k + i + 1) = 0),
0 < i ≤ N − 1

(7)

Tk =

N−1
∑

i=0

Ik(i) · PT
k (i)

N−1
∑

i=0

Ik(i)

, (8)

where
N−1
∑

i=0

Ik(i) is the expectation of the idle period duration.

Obviously, if Tk in every idle period is maximized, the

secondary user’s normalized throughput T is also maximized.

Then, the optimal transmission probabilities that maximize

the secondary user’s throughput is formulated as follows:

Max. Tk

s.t. PC
k ≤ RTH

0 ≤ PT
k (i) ≤ 1, i = 0, ..., N − 1,

(9)

It is obvious that (9) is a typical linear programming

problem [14]. To solve the linear program in (9), Bk(i) and

Ik(i) are required. The method of predicting the value of Bk(i)
and Ik(i) without a priori knowledge of the primary user’s idle

period distribution is presented in Section IV.



IV. THROUGHPUT MAXIMIZATION WITH DIFFERENT

DISTRIBUTIONS OF THE PRIMARY USER’S IDLE PERIOD

In this section, three cases with different distributions of

the primary user’s idle period is discussed respectively for

throughput maximization.

A. Unknown distribution

In this subsection, we consider the case when the distribu-

tion knowledge of the primary user’s idle period is unavail-

able. In this case, a baseline scheme is employed, in which

transmission probability PT
k (i) is set to RTH for all slots

with idle sensing outcome. Thus the resulted APCR of the

baseline scheme is equal to RTH according to (4) and (6).

The normalized throughput in the idle period starting from

the k-th sensing sub-slot is

Tk =

N−1
∑

i=0

Ik(i) · RTH

N−1
∑

i=0

Ik(i)

= RTH. (10)

B. Exponential distribution

Poisson arrival traffic model has been widely used in the

literatures [3] - [5], [8]. In this model, the durations of

idle period and busy period are assumed to be exponential

distributed with parameters λ (idle) and µ (busy), respectively.

The channel occupancy of the primary user for this case could

be modeled by a two-state continuous time Markov chain with

Q-matrix

Q =

[

−λ−1 λ−1

µ−1 −µ−1

]

(11)

Through periodic sensing, the sampled states of the primary

user form a discrete-time Markov chain with 2 × 2 transition

matrix. Thus, we obtain that

A =

[

p00 p01

p10 p11

]

= eQL

=





µ0 + λ0e
−(λ−1+µ−1)L λ0

[

1 − e−(λ−1+µ−1)L
]

µ0

[

1 − e−(λ−1+µ−1)L
]

λ0 + µ0e
−(λ−1+µ−1)L





(12)

where L is the slot length, λ0 = λ−1

λ−1+µ−1 ,µ0 = µ−1

λ−1+µ−1 .

Based on (5), (7) and (12), we have

Bk(i) = pi
00p01, (13)

Ik(i) = pi+1
00 =

p00

p01
· pi

00p01 =
p00

p01
· Bk(i) = ηBk(i), (14)

where η = p00

p01

is a constant.

Assume that the number of prediction steps N approaches

to infinite, from (6), (4) and (8), the normalized throughput is

calculated as

Tk =

lim
N→∞

N−1
∑

i=0

ηBk(i) · PT
k (i)

lim
N→∞

N−1
∑

i=0

ηBk(i)

=
PC

k

lim
N→∞

N−1
∑

i=0

Bk(i)

≤ RTH.

(15)

Then, the maximum normalized throughput of the primary user

is

T max
k = RTH. (16)

The maximum normalized throughput is the same as that of

the baseline scheme. Thus for Poisson arrival traffic model,

the transmission probability PT
k (i) could be set to RTH for

all data sub-slots with the idle sensing outcome.

C. Hyper-Erlang distribution and the hidden Markov model

based predictor

In wireless networks, the traffic flows are commonly con-

sidered to be self-similar. The traditional Poisson arrival

traffic model likely becomes invalid to model such kind of

traffic. Hyper-Erlang model is a natural choice for self-similar

traffic modeling in communications networks with integrated

services, which is considered a better fit than the exponential

distribution for wireless networks [11] - [13]. Recently, mea-

surements show that the hyper-Erlang distribution is a better fit

than the exponential distribution for the white space modeling

of the 802.11b-based wireless local area networks (WLAN)

[13].

In this subsection, the duration of the primary user’s idle

period is hyper-Erlang-k-2 distributed (contains two weighted

Erlang-k components) according to [12]. We assume that the

idle period distribution and its parameters are unknown to the

secondary user, then a method to obtain Ik(i) and Bk(i) via

hidden Markov model(HMM) based predictor is proposed.

A discrete time HMM with M hidden states and K output

symbols is a doubly embedded stochastic process [15] which

is denoted by parameters set ξ = {P,B, π}, where P is the

M -by-M state transition matrix, which denotes the underlying

stochastic process that is not observable. B is the M -by-

K output symbol probability matrix, which stands for the

stochastic process that produces the observed output sequence,

and the initial state probability vector π gives the probability of

being in a particular state at the beginning of the process. In the

context of sensing the channel occupancy by the primary user,

the output symbol ranges between 0 and 1, where 0 represents

an idle sensing output and 1 represents a busy sensing output.

As mentioned above, the sensing history forms a binary

vector Z(k). Generally speaking, when Z(k) is given, an

optimal ξ to maximize the expectation of Pr(Z(k)|ξ) could

be trained via the Baum-Welch Algorithm (BWA) [16]. Fur-

thermore, when we get ξ, Pr(Z(k)|ξ) could be obtained via

the forward-backward procedure [15]. Therefore, based on the

trained HMM, the predicted Bk(i) and Ik(i) can be obtained

as follows

B̂k(i) =






























Pr(X(k + i + 1) = 1,Z(k)|ξ)

Pr(Z(k)|ξ)
, i = 0

Pr(X(k + 1) = 0, ..., X(k + i + 1) = 1,Z(k)|ξ)

Pr(Z(k)|ξ)
,

0 < i ≤ N − 1
(17)
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Fig. 5. APCR perceived by the primary user when the idle period of the
primary user is exponential distribution.

Îk(i) =






























Pr(X(k + i + 1) = 0,Z(k)|ξ)

Pr(Z(k)|ξ)
, i = 0

Pr(X(k + 1) = 0, ..., X(k + i + 1) = 0,Z(k)|ξ)

Pr(Z(k)|ξ)
,

0 < i ≤ N − 1
(18)

Simulation results in Section V show that, when the idle pe-

riod of the primary user follows the hyper-Erlang distribution,

the maximum achievable throughput of the secondary user that

adopts TPS scheme is beyond that adopts the baseline scheme

for nearly 100%.

V. SIMULATION RESULTS

In this section, we present simulation results of the TPS

scheme. For the primary user traffic, the primary packet length

is fixed to 4 slots, while the duration of the primary user’s

idle period follows exponential distribution or hyper-Erlang

distribution with mean 8 slots. For the TPS scheme, the

prediction steps number N = 40, the hidden states number for

HMM-based predictor is M = 16 and the training sequence

length is set to 3000. We compare the performance of the TPS

scheme with the baseline scheme.

Firstly, we compare the APCR perceived by the primary

user when the secondary user adopts different schemes. A

group of APCR thresholds RTH ∈ [0, 0.2] are given and

resulted APCR are measured. We select the low region out of

all possible APCR thresholds since over-loose APCR thresh-

olds (e.g. RTH > 0.2) may not constrain secondary users

for sufficient protection of the primary user. Then, the APCR

versus APCR threshold curves for exponential distribution and

hyper-Erlang distribution are plotted in Fig. 5 and Fig. 6,

respectively. Apparently, the baseline scheme constrains the

APCR perfectly. The TPS scheme using HMM-based predictor

achieves a performance that is very closed to that of the

baseline scheme.

Next, the normalized throughput of the secondary user is

compared for the two schemes. The secondary user’s normal-
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Fig. 6. APCR perceived by the primary user when the idle period of the
primary user is hyper-Erlang distribution.
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Fig. 7. Normalized throughput of the secondary user when the idle period
of the primary user is exponential distribution.

ized throughput versus APCR threshold curves are plotted in

Fig. 7 and Fig. 8, respectively. The normalized throughput

achieved by the baseline scheme equals to the APCR thresh-

old, which is consistent with (10). It is observed that the TPS

scheme using HMM-based predictor outperforms the baseline

scheme significantly in hyper-Erlang distribution case, when

APCR threshold is set to 0.1, the normalized throughput with

the TPS scheme is about 0.2, while the normalized throughput

with the baseline scheme is only 0.1. By contrast, the TPS

scheme could not achieve higher throughput than the baseline

scheme in exponential distribution case, which is consistent

with (16). These results verify that, when proper prediction

of the primary user state is available, the TPS scheme could

increase the secondary user’s throughput significantly when

the distribution of the primary user’s idle period is a hyper-

Erlang distribution.

In practical systems, the sensing performance of the sec-

ondary user is imperfect. Let set {Pf , Pm} denotes the sensing

errors, where Pf is the probability of false alarm (recognizing

the idle channel as busy) while Pm is the probability of missed

detection (recognizing the busy channel as idle). The impact

of sensing errors on APCR and secondary user’s throughput
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Fig. 8. Normalized throughput of the secondary user when the idle period
of the primary user is hyper-Erlang distribution.
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Fig. 9. APCR perceived by the primary user with imperfect sensing.

for the TPS scheme are illustrated when the distribution of the

primary user’s idle period is a hyper-Erlang distribution. For

comparison, three groups of sensing error sets {Pf , Pm} =
{0.01, 0.01}; {0.03, 0.03}; {0.05, 0.05} are simulated.

In Fig. 9 and Fig. 10, in which HMM-based predictor is

adopted to predict the primary user’s traffic pattern that is

unknown to the secondary user, results show that APCR is

not increased much even when sensing errors are severe. The

reason lies in the capability of the HMM-based predictor that

can learn and adapted to the history of sensing results that

has been polluted with sensing errors. The secondary user’s

throughput is more declined as Pf and Pm grow due to the

degradation of the predictor’s accuracy resulting from sensing

errors.

VI. CONCLUSIONS

In this paper, we proposed a transmission probability

scheduling scheme to maximize the throughput of the sec-

ondary user while constraining the packet collision probability

perceived by the primary user under a required threshold in

the cognitive radio networks. Simulation results have shown

that, for hyper-Erlang distribution of the primary user’s idle

period, significant throughput improvement was achieved by
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Fig. 10. Normalized throughput of the secondary user with imperfect sensing.

employing the proposed scheme via the hidden Markov model

based predictor.
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