
A Generic Method of Detecting Private Key Disclosure in

Digital Signature Schemes

FengBao
Institute for Inforcomm Research

1 Fusionopolis Way, #21-01 Connexis
Singapore 138632

Abstract-Digital signature is very critical and

useful for achieving security features such as

authentication, certification, integrity and non­

repudiation etc. In digital signature schemes,

private keys play the most fundamental role of

security and trust. Once a private key is

compromised, the key owner loses all of the

protection to himself so that he can be

impersonated. Hence it is crucial for a private key

owner to know whether his key has been stolen.

The first study toward detecting private key

disclosure is (4), where the schemes based on the

time-division and private key updating are

presented. The approach is similar to the

forward-secure signature in the key-update style.

In this paper we propose a completely different

approach for a user to detect whether his private

key for signing digital signatures is compromised.

The solution satisfies the four attractive

properties: 1) the user need not possess another

cryptographic key and what he has are his

private key and a memorable password; 2) the

signature schemes are not in the update of the

private key in time-divided manner and our

method can be applied to the existing signature

schemes; 3) although a trusted party (TP) is

required in our method, the user and the TP need

not share any secret; and 4) the user is stateless,

i.e., he does not need to record all the messages

and the signatures he has signed before.

I. Introduction

Public key cryptosystems have been widely
adopted as very important and effective tools for
information security. Digital signature is the
most powerful technology for authentication,
integrity and non-repudiation etc. It has been
accepted as a legal evidence of commitment in
the legislation of many countries.

All the security systems which take digital
signature as a building-block component

establish the security mechanism based on the
secrecy of the private signing keys. The security
is completely compromised if the private keys
are stolen or get lost. In the real world people do
lose things for various reasons. However, the
damage can be reduced to minimum if the
disclosure of the private keys is detected as soon
as possible so that the key owners can cancel the
compromised keys and replace them with new
ones.

The detecting task is not trivial since in the
existent digital signature schemes, there is no
difference between the signatures signed by the
key owners and the signatures signed by the
hackers who have stolen the private keys. A
trivial solution is that the signer records all the
messages and the signatures he has signed
before. Apparently, such a solution introduces
cost in memory and the checking of the
suspected signature needs the comparison with
all the previous record. A stateless solution is
desired that has no such record.

Our method generates differences that
distinguish the real signatures by owners from
the signatures signed by hackers. It is obviously
that the users must know something which the
hackers do not have. We also want to limit the
size of such unique secrets owned only by users
such that they can be remembered by human­
being and hence need not be stored in user's
machines. Otherwise, it makes no sense as the
hacker could steal both of the keys. In our
methods, those secrets can be taken as
memorable passwords as short as 4 digits only.

Our method is very generic, which can be
applied to all the practically being used digital
signature schemes. The detecting procedure is
very simple and easy to implement. The methods
are aimed at helping users to determine whether

1

ziglio
Typewritten Text
CHINACOM 2010, August 25-27, Beijing, China
Copyright © 2011 ICST 973-963-9799-97-4
DOI 10.4108/chinacom.2010.138

their signing keys are compromised or not,
rather than helping the users to prove to other
people that their keys are compromised.

The first paper in detecting key disclosure is [4],
where the method is to update the private key
periodically. That is the so-called time-divided
manner in which time is divided into many
intervals and a different private key is used for
each interval. The techniques employed in [4]
are similar to the forward-secure signature
schemes. The basic idea of that scheme is that
the private key is updated periodically, say, SKo,
SKI. SK2, ••• , SKn, where SKi is used only for the
i-th period. The private key update algorithm is a
randomized algorithm in the sense that different
people would obtain different SKi+! even if they
update the same SKi. If a hacker succeeds in
stealing SKj, he will still have a different SKi+ I
and hence be caught if he signs with SKi+1• But
this method cannot be used to distinguish the
signatures generated by the hacker from the
signatures generated by the owner in the i-th
period. Another drawback of the method is that
it cannot be applied to existent signature
schemes. Users must give up the schemes they
are using and turn to the time-divided schemes,
which have not been proved to be accepted by
practical users. Our methods can be applied
directly to the existent schemes. In other words,
the users can still use their private keys and
signature schemes they have been using in our
approach. But in the method of [4], they must
change their private keys and the signature
schemes.

The basic idea of our method is to utilize a
memorable password, which is not stored in any
of user's devices. It is remembered by the user.
Hence the password must be short enough. In
that case, it could be subject to dictionary attack.
The research on the password-based
authentication key exchange (P AKE) against
dictionary attack has been studied for many
years, see [1, 2, 3, 5, 6, 7, 8, 9]. Our purpose is
to achieve the same security as PAKE schemes,
i.e., the password cannot be compromised by
dictionary attack. As a result, an attacker has to
try many times with a server in order to catch the
user's password. The security can be guaranteed
by limiting the number of times of false trials.

As an analogy, our method is like to attach a
unique gene to a private key. The gene is the
password that is remembered by the user. Such a
gene makes the signature signed by the user

different from the signature by others with the
same private key. However, the difference can
only be detected by DNA test, which can only
be conducted by a trusted centre.

The paper is organized as follows. We describe
the model of our schemes in Section 2. We
describe the new generic method in Section 3. In
Section 4, we present some concrete examples of
the signature schemes. Section 5 concludes the
paper.

II. The Model of Detecting Key Disclosure

Entities involved
Users - there are multiple users, each user has a
unique id
TP - trusted party

Keys involved
User with id x has a pair of public/private keys
(PKx, SKx) for signature verification and
generation respectively; in addition, he has a
memorable password PWx, which is not stored
anywhere except in his brain. TP has a
public/private key pair (PKt, SKt) for public key
encryption.

Signing
When user x wants to sign message M, he inputs
his password PWx into his machine, the
signature s is computed by the signing function
sign:

s=sign(M, SKx, PKt, PWx)
The password PWx is removed from the
machine after signing while SKx is still stored in
the machine.

Verification
Verification requires only the public key of the
signer. It can be conducted by any party. This is
simply the same as in the ordinary signature
schemes

veri(M, s, PKx)=yes or no

Identifying
When user x sees a signature s which is his
signature on message M, x wants to identify
whether this signature was signed by himself or
by other people. If s is identified as not signed
by himself, x knows that his key SKx must have
been compromised. The identification procedure
is very simple. The user x just sends a request
along with the signature he wants to identify to
the TP. TP returns an answer yes or no. If the

2

answer is yes, the tested signature was signed by
user x. If the answer is no, the tested signature
was generated by someone else and in this case
user x knows that his private key has been
compromised.

Security of identification
The identification procedure is dictionary­
attack-resistant. No one can get the password
PWx by dictionary attack even if he is allowed to
intercept all the communications between user x
and TP. A hacker who has not compromised
user x' s private key cannot produce valid
request. The TP does not answer invalid request.
A hacker who has compromised SKx can
generate valid request but can exclude only one
possibility of PWx by implementing the
identification request once. The TP should
inform the user if the number of requests it
receives that have negative answers exceeds a
small limit. This is to prevent the hacker who
has SKx from fmding PWx by online attack. The
user knows that SKx must have been
compromised if someone else can generate valid
requests with negative answers.

III. Description of Our Method

We describe our method by 4 figures. They
clearly illustrate our method.

PWx

PKt

SKx

M

C=Ecca2(PWxllh(M), PKt)

C

Embed C into signature s

s=embed-sign(M, SKx, C)

s

Figure 1. Flowchart of signing.

FIGURE 1 is a model of signing process, where
Ecca2(M, K) denotes the public key encryption
of M by encryption key K in CCA2 manner and
Esym(M, K) denotes the encryption of M by key
K with a symmetric key cryptosystem, such as
DES or AES and heM) denotes the hash of M.
embed-sign will be illustrated later.

FIGURE 2 depicts the identification process
related to Figure 1.

User x TP

Upon obtaining (s, C) and M
Compute T=Ecca2(PWx, PKt)

(s, C) M, PKx, T
�

veri(M,s,PKx,C)=yes or no

decrypt C, check if it is

in the form of ./tl I h(M)

if both are yes,

the request is valid;

otherwise stops

decrypt T to get P Wx
check if PWx=X

yes or no

Figure 2

FIGURE 3 is an improved version of the scheme
in Figure 1.

In the scheme of Figure 1, everyone can retrieve
C from the signature. This is not a desired
feature in some situations. For example, in this
case the TP can obtain any user's password
without the user's permission. In the improved
version in Figure 3, the TP cannot obtain a
user's password unless the user seeks to proceed
the identification process with TP. We denote by
Esym(M, K) the symmetric key encryption with
secret key K, such as DES, 3-DES, AES etc.

3

M

I h(.) I
h(M)

PWx, B=Ecca2(PWxllh(M), PKt)

Random Iy choose r
P Kt, PKx CI= Esym(r, SKx),

C2=Esym(Bllh(B), r)

,.....
C=CIIIC2

!
Embed C into signature s

Kx S s=embed-sign(M, SKx, C) �

s

FIGURE 3 Flowchart of the signing process

FIGURE 4 depicts the identification process
related to Figure 3.

User x TP

Upon obtaining (s, C), M
decrypt Cl by SKx to get r
decrypt C2 by rand
check if it is in Bllh(B)

Compute T=Ecca2(PWx, PKt)

(s, C), M, PKx, r, T �

check veri(M,s,PKx,C)=yes
decrypt C2 to get B by r

check if it is in Bllh(B)
decrypt B to get XII Y

Check if Y=h(M)
if all yes

the request is valid
otherwise stops

decrypt Tto getPWx
check if PWx=X

yes or no

Figure 4

Security Discussion

Why we need a trusted party. The password
must be protected by a cryptographic key when
it is embedded into the signature. Otherwise the
password can always be found by brute force
search.

Password will not be compromised. Although C
is disclosed to everyone, it is impossible to get B
without knowing the private key SKx. If SKx is
compromised by a hacker, he can find out B. But
he has no chance to find out PWx because the
encryption is CCA2. In other words, even if the
hacker obtains B and he knows PWx is either 0
or 1, he cannot tell from B, M, PKt whether PWx
is 0 or 1. Offline dictionary attack is impossible
due to the adoption of CCA2 public key
encryption.

Replay attack. Suppose a hacker steals the
private key SKx. He can retrieve B from C. If he
reuses the B for the message other than M, the
signature will be identified by TP as forged
signature. This is because M is embedded in B
and it will be checked by TP. If the hacker signs
the same message M with the retrieved B, it is
impossible to distinguish the forged signature
from the real one. But it makes no sense for the
hacker to sign a message which has already been
signed by the owner.

Online dictionary attack. The hacker with SKx
may impersonate the key owner and go to TP
repeatedly to request Identification. He can
guess the password and try one by one. Each
time the TP would have an invalid request. The
TP can set up an uplimit on the number of
invalid requesst. Once the number of invalid
requests succeeds the limit, offline resolution
will be sought.

IV. Concrete Embed-Sign Implementation

Embodiment of embed-sign
There are many ways to embed a message C into
a signature. The most general method is to
concatenate h(C) to the signed message M and
sign Mllh(C) instead of M only. The C is
attached to the signature s such that (s, C) is the
final signature. The new signature is tamper­
resistant in the sense that no one can modify the
signature (e.g., to change C or remove C) such
that it is still valid.

4

For the signature schemes which are converted
from interactive Zero-Knowledge Proof, a better
method of embedding is to embed the C into the
hash function. In this sort of signature schemes,
the random challenge is replaced by the hash
value of message, public key and a randomly
chosen number. The detailed description is as
follows.

Preferred embodiment of embed-sign
Let user x take Schnorr signature or any other
signature schemes which are transferred from a
zero-knowledge proof based on the random
oracle of hash function. The message C can be
embedded into the hash function. The concrete
construction by Schnorr signature is as follows.

C - the message to be embedded
M - the message to be signed
P - the prime modulo in Schnorr

signature
Q - a large prime factor of P-l,

IQI>160
G - a number of order Q
SKx - the private key of x, a random

number from {1,2 ... ,Q-l }
PKx - the public key of x,

P Kx=GSKx mod P

Embed-sign:
Randomly choose w from {l,2 ... ,Q-l}, set
W=GwmodP
Set r=h(C, M, W) and s=w+rSKx mod Q

(s, r, C) is the signature of M.

Verification:
Given (s, r, C), M and PKx, check if r=h(C,
M, GS(PKxl' mod P)

V. Conclusions

In this paper we propose a new approach to
detect whether a private signing key has been
compromised. Of course the assumption is that
the hacker signs new messages with the stolen
private key. There is no solution if the hacker
keeps the private key without using it. Our
approach is different from the previous solutions
by taking a different model. The advantage of
our solution is that we do not need key update
and there is no time-division. The proposed
method applies to practically used signature
schemes. The scheme needs a trusted party,
which is unable to compromise user's private
key and password from the signature. The

trusted party can be a service to users, who can
choose from which trusted party to request the
service.

References

[1] S. M. Bellovin and M. Merritt, "Encrypted
key exchange: password based protocol
secure against dictionary attack",
Proceedings of 1992 IEEE Symposium on
Security and Privacy, pp. 72-84, IEEE
Computer Society, 1992.

[2] M. Bellare, D. Pointcheval and P. Rogaway,
"Authenticated key exchange secure
against dictionary attack", Proceedings of
Eurocrypt 2000, LNCS, Springer-Verlag,
2000.

[3] V. Boyko, P. MacKenzie and S. Patel,
"Provably secure password-authenticated
key exchange using Diffie-Hellman",
Proceedings of Eurocrypt 2000, pp. 156-
171, LNCS, Springer-Verlag, 2000.

[4] Gene Itkis, "Analysis and verification:
Cryptographic tamper evidenceT",
Proceedings of the 1 Oth ACM conference
on Computer and communication security
(ACM CCS), pp. 355 - 364, Oct 2003.

[5] D. P. Jablon, "Strong password-only
authenticated key exchange", Computer
Communication Review, ACM, 26(5), pp.
5-26, 1996.

[6] J. Katz, R. Ostrovsky and M. Yung,
"Efficient password-authenticated key
exchange using human memorable
passwords", Proceedings of Eurocrypt
2001, LNCS 2045, Springer-Verlag, 2001.

[7] S. Lucks, "Open key exchange: How to
defeat dictionary attacks without
encrypting public keys", Proceedings of the
security Protocols Workshop, LNCS 1361,
pp. 79-90, Springer-Verlag, 1997.

[8] P. MacKenzie, S. Patel, and R.
Swaminathan, "Password-authenticated key
exchange based on RSA", Proceedings of
Asiacrypt 2000, pp. 599-613, LNCS,
Springer-Verlag, 2000.

[9] T. Wu, "The secure remote password
protocol", Proceedings of 1998 Internet
Society Symposium on Network and
Distributed System Security, pp. 97-111,
1998.

5

