
Enabling Dynamic Workflow for Disaster Monitoring and Relief Through

Service-Oriented Sensor Networks

Lu Liu
1
, David Webster

2
, Jie Xu

2
, Kaigui Wu

3

1
School of Engineering and Information Sciences, Middlesex University, London, NW4 4BT, UK

2
School of Computing, University of Leeds, Leeds, LS2 9JT, U.K.

3
College of Computer Science, Chongqing University, Chongqing, China

l.liu@mdx.ac.uk, {d.e.webster, j.xu, k.wu}@ leeds.ac.uk

Abstract

Natural and man-made disasters can significantly

impact both people and environments. Sensor networks

have the potential to revolutionize the capture, processing

and communication of critical data for use of disaster

rescue and relief [1]. In order to provide a dependable

rescue capability through dynamically integrating newly

developed and legacy sensor systems with other systems

and computing, new methodologies are required for the

dependable integration of services in heterogeneous

environments. In this paper, we present a new

architectural model which can proactively self-adapt to

changes and evolution occurring in the provision of

search and rescue capabilities in a dynamic environment.

This approach has been demonstrated through developing

and testing a demonstration system for a scenario of

disaster area monitoring.

Keywords – Service Oriented Architecture, sensor

networks, disaster relief

1. Introduction

Natural and man-made disasters can significantly

impact both people and environments. For example, in the

2010 Haiti Earthquake, the Haitian Government reports

that between 217,000 and 230,000 people had been

identified as dead, an estimated 300,000 injured, and an

estimated 1,000,000 homeless. Rescue efforts began in

the immediate aftermath of the earthquake with great

support from international communities. Real-time

monitoring data and information is crucial for the success

of disaster relief efforts from international communities.

In order to provide a dependable rescue capability

through dynamically integrating systems and computing,

new methodologies are required for the dependable

integration of services in heterogeneous environments. A

rescue capability is the operation of integrated services to

fulfil a rescue mission objective. For example, in the

analysis of floods, a number of different services provide

information about - meteorology, topography, soil

characteristics, vegetation, hydrology, settlements,

infrastructure, transportation, population, socio-

economics and material resources – that needs to be

integrated to deliver a rescue capability for decision-

making of disaster management agents.

Sensor networks have the potential to revolutionize the

capture, processing and communication of critical data for

use of disaster rescue and relief [1]. The functions of

sensors need to be integrated to provide a joint service to

meet different search and rescue requirements. For the

provision of a dependable rescue capability in a dynamic

and unpredictable disaster area, the networked sensors

should have ability to autonomously support and co-

operate with each other to quickly configure any services

available on the disaster area to deliver a real-time

capability, self-adaptability to modify their behaviours to

deliver a sustainable capability according to

environmental changes, and ability to share information,

generate access and protect information throughout the

network.

In this paper, we present a new architectural model

which can proactively self-adapt to changes and evolution

occurring in the provision of search and rescue

capabilities in a dynamic environment. The rest of the

paper is organised as follows. Section 2 discusses related

work on service-oriented architecture (SOA) and service

composition. The dependable dynamic service integration

for delivery of rescue capability is discussed in Section 3.

The demonstration system for disaster area monitoring to

demonstrate the use of the architectural model for disaster

relief is introduced in Section 4. In Section 5, conclusions

are drawn and future work is described.

2. Related Work

The use of SOA has been motivated by many

industries changing focus from product delivery to

service-based delivery. The focus on service delivery has

also been apparent in software, where networking has

become faster, more reliable and more available through

reduced cost. The approach to SOA in software enables

business process integration that characterizes business

functions as services, and integrates dynamically across

departments and organizations. The SOA can be used to

ziglio
Typewritten Text
CHINACOM 2010, August 25-27, Beijing, China
Copyright © 2011 ICST 973-963-9799-97-4
DOI 10.4108/chinacom.2010.129

integrate businesses, systems and computing at runtime

[2] by using different levels of abstraction.

Web services are a de facto implementation of SOA. In

the last decade, a number of Web Service composition

frameworks and applications have been developed.

Alonso et.al [3] described six different dimensions of web

service composition models which can make different

assumptions of the types of components considered. The

disadvantages of composition models makes composition

work more involved because of the heterogeneity of the

components. The Web Services Composite Application

Framework (WS-CAF) [4] is an open framework

developed by the OASIS group. The purpose of the

OASIS WS-CAF is to define a generic and open

framework for applications that contain multiple services

used in combination.

eFlow [5], developed by Hewlett Packard, is a system

for the specification, enactment and management of

composite services [6]. Composite services are modeled

by a graph which defines the flow of service invocations.

eFlow provides the dynamic features to cope with the

rapidly evolving business environment where Web

services are used. BPEL [7] is a standard business process

execution language which forms the necessary technical

foundation for multiple usage patterns including both the

descriptions of the process interface for business

protocols and executable process models.

3. Design for Evolution

Service-oriented architecture (SOA) is designed for

changes. Loose coupling is one of the key architectural

principles of SOA, and this enables services to maintain a

relationship that minimises dependencies and only

requires maintaining an awareness of each other. The

loose coupling of SOA enables service implementations

to be inter-changed and modified where integration

interfaces are developed with minimal assumptions

between the sending/receiving parties, thus reducing the

risk that a change in one service will force a change in

another service. However, service integration is

dependent on service interface definitions and requires

management of P2P workflow definitions to minimise

impact on provision of rescue capability. The changes of

requirements and workflow definitions could still affect

the dependability and sustainability of provision for a

rescue capability through service integration.

In order to ensure the reliability of provision of rescue

capabilities, a systematic approach needs to be developed

which would lead to flexible architectures for through-life

evolution. Figure 1 illustrates service-oriented

architecture for the delivery of rescue capabilities. In this

architecture, each peer node provides a number of

services, each service performs a set of functions, and

these can be integrated to form a higher level of

functionality to deliver a rescue capability. Dynamic

binding allows common functions to be identified in

different implementations. The architecture enables

functions from different services across sensors to be

integrated to provide rescue capabilities in a loosely

coupled manner. For example, a remote sensing sensor on

a rescue helicopter provides services, such as

surveillance, target recognition and target tracking

services. The surveillance service includes functions for

metrological surveillance and situation surveillance. The

metrological surveillance function may be combined with

other functions in a workflow to form a higher level

weather service that contributes to search-and-rescue

missions.

FA FB FC

In
te

g
ra

ti
o

n

RA

R
e
sc

u
e

C
a
p
a
b
il

it
y

Workflow

<<realizes>>

B
in

d
in

g

FA FB FC

FA FC FB FD

Service A Service B

Sensor A

FA FD FB FC

Service C Service D

Sensor B

FB FA FD FC

Service E Service F

Sensor C

FB FA FD FC

Service G Service H

Sensor D

<<invoked by>>

<<exposed as>>

Figure 1. Redundant service binding

3.1 Workflows for Disaster Relief

In this section, a disaster area monitoring scenario is

used as an exemplar to demonstrate the evolution of

rescue capabilities and to analyse the potential impact of

evolution.

FA FB FCIntegration

RASurveillance

Capability

Workflow

Figure 2. Workflow of service integration for

delivery of rescue capabilities

In a network of sensors, a number of radar sensors

supply data through services. The network of radar

sensors is modelled conveniently as a dynamic network of

services, facilitating ongoing changes. In the modelled

system, a surveillance user can submit real-time requests

to the system for information of Points of Interest (POIs)

in a specified region. A sequence of services (such as

“Get map information” (FA) and “Get sensor reading”

(FB), “Display targets on map” (FC) can be operated in a

workflow in order to provide a regional surveillance

capability. The service integration can be abstracted by

using workflow patterns as shown in Figure 2, where

function FA represents the service of getting map

information, FB represents the service of getting radar

reading and FC represents the service of displaying

targets on map.

Redundant service binding is a technique to improve

the reliability of the provision of rescue capabilities [8]. In

order to deliver a reliable rescue capability, the required

functions need to be provided by multiple services

allocated to different peer nodes. The reconfiguration

algorithm can switch to one of backup services in case of

failure of initial service. The distributed recovery block

(DRB) scheme [9] is applied to minimise the recovery

time of integration. Figure 1 shows an example of

redundant service binding. As shown in Figure 1, when a

failure occurs in service A, the required function provided

by the backup service C can still work for the provision of

rescue capabilities.

FA

FB

FC
Integration

RACapability

FD

And Synchronizing

Merge

Figure 3. A possible evolution

Apart from failures of services, rescue capability

evolution could cause potential problems affecting the

reliability of provision of rescue capabilities.

Requirements often change during a rescue and search

operation, in accordance with changes of situation. The

rescue capability could be evolved according to changes

of environment and users’ needs. A possible evolution is

illustrated as an example: it is decided that some POIs are

more important and a more aggressive monitoring service

needs to be established. A number of rescue helicopters

with remote sensing sensors are launched to provide a

mixed monitoring service in conjunction with the

deployed radars. The rescue capability is evolved with the

additional requirement to a new version of capability

defined with a parallel split workflow pattern and

synchronizing merge workflow pattern [10] illustrated in

Figure 3. The parallel split pattern represents a point in

the workflow process where a single thread of control

splits into multiple threads of control which can be

executed in parallel, while synchronizing merge pattern

represents a point in the workflow process where multiple

paths converge into one single thread; Synchronization

needs to take place if more than one path is taken [10].

The new capability could be delivered only in case that

both the services: FB and FD are implemented

successfully.

3.2 Self-adaptability

The reliability of provision of service integration could

be affected by the evolution of workflows in the case

mentioned above. The proposed reconfiguration algorithm

is able to proactively self-diagnose the evolution, evaluate

the impact of evolution and self-configure services to

adapt to capability evolution. In order to theoretically

investigate the impact of the evolution of capabilities, p is

defined as the probability of failing to connect a service

for integration. By configuring two services which are

independent with each other for performing a required

function as shown in Figure 1, the required function is

delivered if either service is implemented successfully.

The probability of failure of the delivery of a required

function for service integration is
2

p . In the original case

without evolution, three functions are integrated in a

workflow to deliver a rescue capability. Since all three

functions are necessary for the provision of a rescue

capability, the probability of successful service

integration is ()321 p− in the original example.

FA

FB

FC

In
te

g
ra

ti
o
n

RA

R
e
sc

u
e

C
ap

ab
il

it
y

FD

And Synchronizing

Merge

B
in

d
in

g

FA FB FC

FA FC FB FD

Service A Service B

Sensor A

FA FD FB FC

Service C Service D

Sensor B

FB FA FD FC

Service E Service F

Sensor C

FB FA FD FC

Service G Service H

Sensor D

Step 1 Step 2 Step 3

FD

Figure 4. Evolution of rescue capability

In this scenario, the rescue capability could be

delivered only when both FB and FD are available. The

probability of successful provision of rescue capability is

()421 p− . Since () ()3242 11 pp −≤− ()10 ≤≤ p , the

reliability of rescue capability is decreased. For a better

understanding of impact of evolution, the workflow is

divided into three steps as shown in Figure 4. The

theoretical success probabilities of the three steps are:

21 p− , ()221 p− , and
21 p− , respectively in this case.

The step two is the weak point in the workflow. Its

success probability is lower than the original success

probability prior to evolution: () ≥−=
221 pPevo

21 pPorg −= ()10 ≤≤ p . To address this issue, the

reconfiguration algorithm should have self-adaptability to

proactively modify its behaviour to deliver a sustainable

rescue capability according to the environmental changes.

The redundancy of service binding that is the number of

services providing a required function is a key parameter

and designated as R. The redundancy needs to be

dynamically self-justified, in order to adapt to capability

evolution. As discussed above, the success probability of

the second step is evaluated as ()2
1 RR

evo pP −= .

For sustainable provision of rescue capability, more

services (2>R) need to be added and configured to

provide each function FB and FD to enable its

Cumulative Distribution Function (CDF) smaller than the

original CDF prior to the evolution:

 () xdxdxx R

∫∫ −≥−
1

0

2
1

0

2
)1(1 . (1)

The inequality (1) is satisfied only in the case of 4≥R .

The minimum value 4=R is adopted to minimise the

cost of the sustainable provision of rescue capability as

illustrated in Figure 5.

FA

FB

FC

In
te

g
ra

ti
o
n

RA

R
e
sc

u
e

C
ap

ab
il

it
y

FD

And Synchronizing

Merge

B
in

d
in

g

FA FB FC

FA FC FB FD

Service A Service B

Sensor A

FA FD FB FC

Service C Service D

Sensor B

FB FA FD FC

Service E Service F

Sensor C

FB FA FD FC

Service G Service H

Sensor D

Step 1 Step 2 Step 3

FD

Figure 5. Evolution with adaptive service reconfiguration

4. Demonstration System Development

A demonstration system has been developed to

demonstrate the use of the architectural model for the

dynamic service integration of a network of sensors on a

disaster area and to provide a search and rescue

capability. The core of the approach is the process of

mapping high-level requirements for capability onto the

invocation of actual services, allowing the establishment

of a dynamic workflow of service composition and

integration, and dynamic search for services and on the

fly planning through dynamic integration of services. The

competitive advantage, such as timeliness, reliability and

fault tolerance, can be achieved through the dynamic

service discovery, composition and integration.

The software demonstrator was developed in NetBeans

6.1 IDE on a GlassFish application server, which enabled

our research group members to write, deploy, test and

debug SOA applications using the Extensible Markup

Language (XML), Business Process Execution Language

(BPEL) and Java Web Services. The Software

Demonstrator consists of the following main modules:

• Web Services to simulate capabilities of different

systems;

• A dynamic workflow module for dynamic Web

Services selection and composition for dependable

provision of rescue capability;

• A client interface with sensor information display

and user input.

The workflow dynamically discovers and integrates the

sensor services and is implemented in a Java written Web

Service.

The scenario aim of the software demonstrator was to

model Region Surveillance using dynamic service

integration of sensor networks on a disaster area. The

intent is to demonstrate the architectural approach to

engineering. The main concepts are:

• Use of SOA for disaster relief enhanced with other

architectural styles and patterns;

• Integration of distributed systems in a dynamic

environment;

• Coping with changes in availability of distributed

components;

4.1 Exposing a Legacy Sensor Application to an

SOA Network

As shown in Section 3.1, a legacy sensor application is

exposed as a Web Service in order to allow it be

integrated into an SOA enabled workflow for the

provision of a regional surveillance capability. This

system model can be summarized with UML as in Figure

6. In this model a service provider (“Sensor Service

Provider”) and client “Sensor Client” are defined. The

Web Service (“Sensor Wrapper”) server is hosted within

the “Sensor Service Provider” along with the legacy

application (“readsensor”) that communicates with the

physical sensor hardware. “Sensor Wrapper” acts as both

an external facing Web Service and a wrapper to the

“readsensor” application. The wrapping implementation

of the `readsensor' application to a GlassFish hosted Web

Service was shown in Program 1.

Figure 6. UML diagram of wrapped sensor

System of Systems
--

Program 1 Simple Sensor Wrapper program in Java

--
/**

* Simple Sensor Wrapper

*/

@WebMethod(operationName = "getSensorImage")

public String getSensorImage()

{

/**

* Launch 'readsensor' program and read the output

* represented by plain text with base64 encoding.

*/

Runtime runtime = Runtime.getRuntime();

Process proc;

StringBuffer programOutput

= new StringBuffer();

try

{

proc = runtime.exec("readsensor");

InputStream inputstream = proc.getInputStream();

InputStreamReader inputstreamreader

= new InputStreamReader(inputstream);

BufferedReader bufferedreader

= new BufferedReader(inputstreamreader);

// read the program output

String programOutputLine;

while (

(programOutputLine = bufferedreader.readLine())

!= null)

{

programOutput.append(programOutputLine);

}

} catch (Exception ex) { return null; }

/**

* Return the wrapped program output to the

* Web Service client.

*/

return programOutput.toString();

}

--

4.2 Dynamic Service Integration

The surveillance was based on Points of Interest, PoIs

and physical features within a geographical area that are

detected by a group of simulated sensors. The integration

of sensors was achieved by using a workflow to contact a

sensor service registry and to dynamically discover

sensors for a given region.

The sensor data is then processed to eliminate

duplicates and points outside the region of interest and the

detected feature positions are displayed on a map. The

workflow can be illustrated at a high level in Figure 7.

This diagram can be directly mapped onto the SOA

integration model shown in Figure 7 and illustrates the

implementation technology used in the lower boxes. The

workflow integrates Web Services which were the chosen

demonstration implementation technology for SOA. The

implementation of region surveillance used Google Maps

to display the results from the feature detection workflow.

Figure 7. A high-level overview of the sensor

integration workflow

Figure 8. Disaster monitoring showing PoIs

A screenshot from this interface can be shown in

Figure 8. In the system, a disaster relief volunteer can

submit real-time requests for information of Points of

interest, POIs, in a specified region. The system will

return the related information about the POIs within that

region, e.g., current locations of those POIs (Figure 8).

The blue rectangle is the region of interest. The lists on

the right of the image show the detected features and the

sensors that have been accessed in the workflow. The

system is built on a dynamic and changing environment,

where sensor services in region may fail to respond with

information about the POIs as shown in Figure 8. By

using the approach proposed in Section 3, multiple sensor

services are contacted to receive the data about POIs in

the requested region.

The demonstration system incorporates the following

innovations to achieve competitive advantage:

• Information-Rich Information Services: provide

description of services, composition templates with

candidate composed services, application workflows,

architectural patterns, application patterns, evaluation

information [11].

• Evolving Ontology: ontology available for

dependability, capability, system assessment [12].

• Service Interoperability: advanced techniques for

dynamic authentication and run-time negotiation [13].

• Optimisation for On-the-Fly Planning: based on a tool

[13] that supports the use of a variety of optimization

techniques and their combination.

5. Conclusion

In this paper, an architectural approach that facilitates

through-life system evolution has been presented, using

the concepts of dynamic workflow management to enable

dynamic service integration for reliable and sustainable

provision of rescue capabilities. This approach is able to

indentify evolution, evaluate the impact of evolution and

self-configure services to adapt to evolution.

This approach has been demonstrated through

developing and testing the demonstration system for a

scenario of disaster area monitoring. The wrapping of

legacy sensor systems to a SOA network has been

discussed. The development of the demonstration system

has been used to ascertain that the implementation the

architecture is fit for use. Further development of the

demonstration system will be used for further evaluation

of disaster management systems.

Acknowledgment

The work reported in this paper has been supported by

Major Program of the National Natural Science

Foundation of China, under contact No.90818028.

References

[1] E. Cayirci and T. Coplu, "SENDROM: Sensor networks for

disaster relief operations management," Wireless Networks, vol.

13, pp. 409-423, June 2007.

[2] W.-T. Tsai, X. Zhou, and Y. Chen, "PESOI: Process

Embedded Service-Oriented Architecture," Journal of Software,

vol. 17, p. 1470−1484, June 2006.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web

Services Concepts, Architectures and Applications: Springer

Verlag, 2004.

[4] OASIS, "Web Services Composite Application Framework

(WS-CAF)," [Accessed: Available from: http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=ws-caf.

[5] F. Casati, S. Ilnicki, LiJie Jin, V. Krishnamoorthy, and M.-C.

Shan, "Adaptive and dynamic service composition in eFlow," in

12th International Conference on Advanced Information

Systems Engineering(CAiSE), 2000.

[6] F. Casati and M.-C. Sha, "Dynamic and adaptive

composition of e-services," in 12th International Conference on

Advanced Information Systems Engineering (CAiSE 00), 2001.

[7] T. Andrews, F. Curbera, H. Dholakia, J. Klein, F. Leymann,

K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S.

Weerawarana, "Specification: Business Process Execution

Language for Web Services Version 1.1," [Accessed: Available

from:http://www-106.ibm.com/developerworks/library/ws-bpel/.

[8] L. Liu, D. Russell, D. Webster, Z. Luo, C. Venters, J. Xu,

and J. Davies, "Delivering Sustainable Capability on

Evolutionary Service-oriented Architecture," in IEEE

International Symposium on Object/component/service-oriented

Real-time distributed Computing (ISORC 2009), Tokyo, Japan,

2009.

[9] K. H. Kim and H. Welch, "Distributed Execution of

Recovery Blocks: An Approach for Uniform Treatment of

Hardware and Software Faults in Real-Time Applications,"

IEEE Transactions on Computers, vol. 38, pp. 626-636, 1989.

[10] W. v. d. Aalst, A. t. Hofstede, B. Kiepuszewski, and A.

Barros, "Workflow Pattern," Distributed and Parallel

Databases, vol. 14, pp. 5-51, 2003.

[11] W.-T. Tsai, X. Zhou, Y. Chen, and X. Bai, "On Testing and

Evaluating Service-Oriented Software," IEEE Computer, vol.

41, pp. 40-46, 2008.

[12] D. Webster, N. Looker, D. Russell, L. Liu, and J. Xu, "An

Ontology for Evaluation of Network Enabled Capability," in

Realising Network Enabled Capability (RNEC'08), Leeds,

United Kingdom, 2008.

[13] P. Townend, J. Huai, J. Xu, N. Looker, D. Zhang, J. Li, and

L. Zhong, "CROWN-C: A High-Assurance Service-Oriented

Grid Middleware System," IEEE Computer, vol. 41, pp. 33-38,

2008.

