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Abstract 
 

Natural and man-made disasters can significantly 

impact both people and environments. Sensor networks 

have the potential to revolutionize the capture, processing 

and communication of critical data for use of disaster 

rescue and relief [1]. In order to provide a dependable 

rescue capability through dynamically integrating newly 

developed and legacy sensor systems with other systems 

and computing, new methodologies are required for the 

dependable integration of services in heterogeneous 

environments. In this paper, we present a new 

architectural model which can proactively self-adapt to 

changes and evolution occurring in the provision of 

search and rescue capabilities in a dynamic environment. 

This approach has been demonstrated through developing 

and testing a demonstration system for a scenario of 

disaster area monitoring. 

 

Keywords – Service Oriented Architecture, sensor 

networks, disaster relief 

 

 

1. Introduction 

Natural and man-made disasters can significantly 

impact both people and environments. For example, in the 

2010 Haiti Earthquake, the Haitian Government reports 

that between 217,000 and 230,000 people had been 

identified as dead, an estimated 300,000 injured, and an 

estimated 1,000,000 homeless. Rescue efforts began in 

the immediate aftermath of the earthquake with great 

support from international communities. Real-time 

monitoring data and information is crucial for the success 

of disaster relief efforts from international communities. 

In order to provide a dependable rescue capability 

through dynamically integrating systems and computing, 

new methodologies are required for the dependable 

integration of services in heterogeneous environments. A 

rescue capability is the operation of integrated services to 

fulfil a rescue mission objective. For example, in the 

analysis of floods, a number of different services provide 

information about - meteorology, topography, soil 

characteristics, vegetation, hydrology, settlements, 

infrastructure, transportation, population, socio-

economics and material resources – that needs to be 

integrated to deliver a rescue capability for decision-

making of disaster management agents.  

Sensor networks have the potential to revolutionize the 

capture, processing and communication of critical data for 

use of disaster rescue and relief [1]. The functions of 

sensors need to be integrated to provide a joint service to 

meet different search and rescue requirements. For the  

provision of a dependable rescue capability in a dynamic 

and unpredictable disaster area, the networked sensors 

should have ability to autonomously support and co-

operate with each other to quickly configure any services 

available on the disaster area to deliver a real-time 

capability, self-adaptability to modify their behaviours to 

deliver a sustainable capability according to 

environmental changes, and ability to share information, 

generate access and protect information throughout the 

network. 

In this paper, we present a new architectural model 

which can proactively self-adapt to changes and evolution 

occurring in the provision of search and rescue 

capabilities in a dynamic environment. The rest of the 

paper is organised as follows. Section 2 discusses related 

work on service-oriented architecture (SOA) and service 

composition. The dependable dynamic service integration 

for delivery of rescue capability is discussed in Section 3. 

The demonstration system for disaster area monitoring to 

demonstrate the use of the architectural model for disaster 

relief is introduced in Section 4. In Section 5, conclusions 

are drawn and future work is described. 

2. Related Work 

The use of SOA has been motivated by many 

industries changing focus from product delivery to 

service-based delivery. The focus on service delivery has 

also been apparent in software, where networking has 

become faster, more reliable and more available through 

reduced cost. The approach to SOA in software enables 

business process integration that characterizes business 

functions as services, and integrates dynamically across 

departments and organizations. The SOA can be used to 
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integrate businesses, systems and computing at runtime 

[2] by using different levels of abstraction.  

Web services are a de facto implementation of SOA. In 

the last decade, a number of Web Service composition 

frameworks and applications have been developed. 

Alonso et.al [3] described six different dimensions of web 

service composition models which can make different 

assumptions of the types of components considered. The 

disadvantages of composition models makes composition 

work more involved because of the heterogeneity of the 

components. The Web Services Composite Application 

Framework (WS-CAF) [4] is an open framework 

developed by the OASIS group. The purpose of the 

OASIS WS-CAF is to define a generic and open 

framework for applications that contain multiple services 

used in combination.  

eFlow [5], developed by Hewlett Packard, is a system 

for the specification, enactment and management of 

composite services [6]. Composite services are modeled 

by a graph which defines the flow of service invocations. 

eFlow provides the dynamic features to cope with the 

rapidly evolving business environment where Web 

services are used. BPEL [7] is a standard business process 

execution language which forms the necessary technical 

foundation for multiple usage patterns including both the 

descriptions of the process interface for business 

protocols and executable process models. 

 

3. Design for Evolution 

Service-oriented architecture (SOA) is designed for 

changes. Loose coupling is one of the key architectural 

principles of SOA, and this enables services to maintain a 

relationship that minimises dependencies and only 

requires maintaining an awareness of each other. The 

loose coupling of SOA enables service implementations 

to be inter-changed and modified where integration 

interfaces are developed with minimal assumptions 

between the sending/receiving parties, thus reducing the 

risk that a change in one service will force a change in 

another service. However, service integration is 

dependent on service interface definitions and requires 

management of P2P workflow definitions to minimise 

impact on provision of rescue capability. The changes of 

requirements and workflow definitions could still affect 

the dependability and sustainability of provision for a 

rescue capability through service integration. 

In order to ensure the reliability of provision of rescue 

capabilities, a systematic approach needs to be developed 

which would lead to flexible architectures for through-life 

evolution. Figure 1 illustrates service-oriented 

architecture for the delivery of rescue capabilities. In this 

architecture, each peer node provides a number of 

services, each service performs a set of functions, and 

these can be integrated to form a higher level of 

functionality to deliver a rescue capability. Dynamic 

binding allows common functions to be identified in 

different implementations. The architecture enables 

functions from different services across sensors to be 

integrated to provide rescue capabilities in a loosely 

coupled manner. For example, a remote sensing sensor on 

a rescue helicopter provides services, such as 

surveillance, target recognition and target tracking 

services. The surveillance service includes functions for 

metrological surveillance and situation surveillance. The 

metrological surveillance function may be combined with 

other functions in a workflow to form a higher level 

weather service that contributes to search-and-rescue 

missions.
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Figure 1. Redundant service binding 

 



3.1 Workflows for Disaster Relief 

In this section, a disaster area monitoring scenario is 

used as an exemplar to demonstrate the evolution of 

rescue capabilities and to analyse the potential impact of 

evolution.  
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Figure 2. Workflow of service integration for 

delivery of rescue capabilities 

In a network of sensors, a number of radar sensors 

supply data through services. The network of radar 

sensors is modelled conveniently as a dynamic network of 

services, facilitating ongoing changes. In the modelled 

system, a surveillance user can submit real-time requests 

to the system for information of Points of Interest (POIs) 

in a specified region. A sequence of services (such as 

“Get map information” (FA) and “Get sensor reading” 

(FB), “Display targets on map” (FC) can be operated in a 

workflow in order to provide a regional surveillance 

capability. The service integration can be abstracted by 

using workflow patterns as shown in Figure 2, where 

function FA represents the service of getting map 

information, FB represents the service of getting radar 

reading and FC represents the service of displaying 

targets on map. 

Redundant service binding is a technique to improve 

the reliability of the provision of rescue capabilities [8]. In 

order to deliver a reliable rescue capability, the required 

functions need to be provided by multiple services 

allocated to different peer nodes. The reconfiguration 

algorithm can switch to one of backup services in case of 

failure of initial service. The distributed recovery block 

(DRB) scheme [9] is applied to minimise the recovery 

time of integration. Figure 1 shows an example of 

redundant service binding. As shown in Figure 1, when a 

failure occurs in service A, the required function provided 

by the backup service C can still work for the provision of 

rescue capabilities.  
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Figure 3. A possible evolution  

Apart from failures of services, rescue capability 

evolution could cause potential problems affecting the 

reliability of provision of rescue capabilities. 

Requirements often change during a rescue and search 

operation, in accordance with changes of situation. The 

rescue capability could be evolved according to changes 

of environment and users’ needs. A possible evolution is 

illustrated as an example: it is decided that some POIs are 

more important and a more aggressive monitoring service 

needs to be established. A number of rescue helicopters 

with remote sensing sensors are launched to provide a 

mixed monitoring service in conjunction with the 

deployed radars. The rescue capability is evolved with the 

additional requirement to a new version of capability 

defined with a parallel split workflow pattern and 

synchronizing merge workflow pattern [10] illustrated in 

Figure 3. The parallel split pattern represents a point in 

the workflow process where a single thread of control 

splits into multiple threads of control which can be 

executed in parallel, while synchronizing merge pattern 

represents a point in the workflow process where multiple 

paths converge into one single thread; Synchronization 

needs to take place if more than one path is taken [10]. 

The new capability could be delivered only in case that 

both the services: FB and FD are implemented 

successfully. 

 

3.2 Self-adaptability 

The reliability of provision of service integration could 

be affected by the evolution of workflows in the case 

mentioned above. The proposed reconfiguration algorithm 

is able to proactively self-diagnose the evolution, evaluate 

the impact of evolution and self-configure services to 

adapt to capability evolution. In order to theoretically 

investigate the impact of the evolution of capabilities, p is 

defined as the probability of failing to connect a service 

for integration. By configuring two services which are 

independent with each other for performing a required 

function as shown in Figure 1, the required function is 

delivered if either service is implemented successfully. 

The probability of failure of the delivery of a required 

function for service integration is 
2

p . In the original case 

without evolution, three functions are integrated in a 

workflow to deliver a rescue capability. Since all three 

functions are necessary for the provision of a rescue 

capability, the probability of successful service 

integration is ( )321 p−  in the original example.  
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Figure 4. Evolution of rescue capability 

In this scenario, the rescue capability could be 

delivered only when both FB and FD are available. The 

probability of successful provision of rescue capability is 

( )421 p− . Since ( ) ( )3242 11 pp −≤−  ( )10 ≤≤ p , the 

reliability of rescue capability is decreased. For a better 

understanding of impact of evolution, the workflow is 

divided into three steps as shown in Figure 4. The 

theoretical success probabilities of the three steps are: 

21 p− , ( )221 p− , and 
21 p− , respectively in this case. 

The step two is the weak point in the workflow. Its 

success probability is lower than the original success 

probability prior to evolution: ( ) ≥−=
221 pPevo  

21 pPorg −=  ( )10 ≤≤ p . To address this issue, the 

reconfiguration algorithm should have self-adaptability to 

proactively modify its behaviour to deliver a sustainable 

rescue capability according to the environmental changes. 

The redundancy of service binding that is the number of 

services providing a required function is a key parameter 

and designated as R. The redundancy needs to be 

dynamically self-justified, in order to adapt to capability 

evolution. As discussed above, the success probability of 

the second step is evaluated as ( )2
1 RR

evo pP −= .  

For sustainable provision of rescue capability, more 

services ( 2>R ) need to be added and configured to 

provide each function FB and FD to enable its 

Cumulative Distribution Function (CDF) smaller than the 

original CDF prior to the evolution:   

  ( ) xdxdxx R

∫∫ −≥−
1

0

2
1

0

2
)1(1 .  (1) 

The inequality (1) is satisfied only in the case of 4≥R . 

The minimum value 4=R  is adopted to minimise the 

cost of the sustainable provision of rescue capability as 

illustrated in Figure 5.  
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Figure 5. Evolution with adaptive service reconfiguration 



4. Demonstration System Development 

A demonstration system has been developed to 

demonstrate the use of the architectural model for the 

dynamic service integration of a network of sensors on a 

disaster area and to provide a search and rescue 

capability. The core of the approach is the process of 

mapping high-level requirements for capability onto the 

invocation of actual services, allowing the establishment 

of a dynamic workflow of service composition and 

integration, and dynamic search for services and on the 

fly planning through dynamic integration of services. The 

competitive advantage, such as timeliness, reliability and 

fault tolerance, can be achieved through the dynamic 

service discovery, composition and integration. 

The software demonstrator was developed in NetBeans 

6.1 IDE on a GlassFish application server, which enabled 

our research group members to write, deploy, test and 

debug SOA applications using the Extensible Markup 

Language (XML), Business Process Execution Language 

(BPEL) and Java Web Services. The Software 

Demonstrator consists of the following main modules: 

• Web Services to simulate capabilities of different 

systems; 

• A dynamic workflow module for dynamic Web 

Services selection and composition for dependable 

provision of rescue capability; 

• A client interface with sensor information display 

and user input. 

The workflow dynamically discovers and integrates the 

sensor services and is implemented in a Java written Web 

Service. 

The scenario aim of the software demonstrator was to 

model Region Surveillance using dynamic service 

integration of sensor networks on a disaster area. The 

intent is to demonstrate the architectural approach to 

engineering.  The main concepts are: 

• Use of SOA for disaster relief enhanced with other 

architectural styles and patterns; 

• Integration of distributed systems in a dynamic 

environment; 

• Coping with changes in availability of distributed 

components; 

 

4.1 Exposing a Legacy Sensor Application to an 

SOA Network 
 

As shown in Section 3.1, a legacy sensor application is 

exposed as a Web Service in order to allow it be 

integrated into an SOA enabled workflow for the 

provision of a regional surveillance capability. This 

system model can be summarized with UML as in Figure 

6. In this model a service provider (“Sensor Service 

Provider”) and client “Sensor Client” are defined. The 

Web Service (“Sensor Wrapper”) server is hosted within 

the “Sensor Service Provider” along with the legacy 

application (“readsensor”) that communicates with the 

physical sensor hardware. “Sensor Wrapper” acts as both 

an external facing Web Service and a wrapper to the 

“readsensor” application. The wrapping implementation 

of the `readsensor' application to a GlassFish hosted Web 

Service was shown in Program 1. 

 
Figure 6. UML diagram of wrapped sensor 

System of Systems 
------------------------------------------------------------------ 

Program 1 Simple Sensor Wrapper program in Java 

------------------------------------------------------------------ 
/** 

* Simple Sensor Wrapper 

*/ 

@WebMethod(operationName = "getSensorImage") 

public String getSensorImage() 

{ 

/** 

* Launch 'readsensor' program and read the output 

* represented by plain text with base64 encoding. 

*/ 

Runtime runtime = Runtime.getRuntime(); 

Process proc; 

StringBuffer programOutput 

= new StringBuffer(); 

try 

{ 

proc = runtime.exec("readsensor"); 

InputStream inputstream = proc.getInputStream(); 

InputStreamReader inputstreamreader 

= new InputStreamReader(inputstream); 

BufferedReader bufferedreader 

= new BufferedReader(inputstreamreader); 

// read the program output 

String programOutputLine; 

while ( 

(programOutputLine = bufferedreader.readLine()) 

!= null ) 

{ 

programOutput.append(programOutputLine); 

} 

} catch (Exception ex) { return null; } 

/** 

* Return the wrapped program output to the 

* Web Service client. 

*/ 

return programOutput.toString(); 

} 

------------------------------------------------------------------ 



 

4.2 Dynamic Service Integration 
 

The surveillance was based on Points of Interest, PoIs 

and physical features within a geographical area that are 

detected by a group of simulated sensors. The integration 

of sensors was achieved by using a workflow to contact a 

sensor service registry and to dynamically discover 

sensors for a given region.  

The sensor data is then processed to eliminate 

duplicates and points outside the region of interest and the 

detected feature positions are displayed on a map. The 

workflow can be illustrated at a high level in Figure 7. 

This diagram can be directly mapped onto the SOA 

integration model shown in Figure 7 and illustrates the 

implementation technology used in the lower boxes. The 

workflow integrates Web Services which were the chosen 

demonstration implementation technology for SOA. The 

implementation of region surveillance used Google Maps 

to display the results from the feature detection workflow.  

 
Figure 7. A high-level overview of the sensor 

integration workflow 

 
Figure 8. Disaster monitoring showing PoIs 

A screenshot from this interface can be shown in 

Figure 8. In the system, a disaster relief volunteer can 

submit real-time requests for information of Points of 

interest, POIs, in a specified region. The system will 

return the related information about the POIs within that 

region, e.g., current locations of those POIs (Figure 8). 

The blue rectangle is the region of interest. The lists on 

the right of the image show the detected features and the 

sensors that have been accessed in the workflow. The 

system is built on a dynamic and changing environment, 

where sensor services in region may fail to respond with 

information about the POIs as shown in Figure 8. By 

using the approach proposed in Section 3, multiple sensor 

services are contacted to receive the data about POIs in 

the requested region. 

The demonstration system incorporates the following 

innovations to achieve competitive advantage:   

• Information-Rich Information Services: provide 

description of services, composition templates with 

candidate composed services, application workflows, 

architectural patterns, application patterns, evaluation 

information [11]. 

• Evolving Ontology: ontology available for 

dependability, capability, system assessment [12]. 

• Service Interoperability: advanced techniques for 

dynamic authentication and run-time negotiation [13]. 

• Optimisation for On-the-Fly Planning: based on a tool 

[13] that supports the use of a variety of optimization 

techniques and their combination. 

 

5. Conclusion 

In this paper, an architectural approach that facilitates 

through-life system evolution has been presented, using 

the concepts of dynamic workflow management to enable 

dynamic service integration for reliable and sustainable 

provision of rescue capabilities. This approach is able to 



indentify evolution, evaluate the impact of evolution and 

self-configure services to adapt to evolution. 

This approach has been demonstrated through 

developing and testing the demonstration system for a 

scenario of disaster area monitoring. The wrapping of 

legacy sensor systems to a SOA network has been 

discussed. The development of the demonstration system 

has been used to ascertain that the implementation the 

architecture is fit for use. Further development of the 

demonstration system will be used for further evaluation 

of disaster management systems. 

Acknowledgment 

The work reported in this paper has been supported by 

Major Program of the National Natural Science 

Foundation of China, under contact No.90818028. 

 

References 

[1] E. Cayirci and T. Coplu, "SENDROM: Sensor networks for 

disaster relief operations management," Wireless Networks, vol. 

13, pp. 409-423, June 2007. 

[2] W.-T. Tsai, X. Zhou, and Y. Chen, "PESOI: Process 

Embedded Service-Oriented Architecture," Journal of Software, 

vol. 17, p. 1470−1484, June 2006. 

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web 

Services Concepts, Architectures and Applications: Springer 

Verlag, 2004. 

[4] OASIS, "Web Services Composite Application Framework 

(WS-CAF)," [Accessed:  Available from: http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=ws-caf. 

[5] F. Casati, S. Ilnicki, LiJie Jin, V. Krishnamoorthy, and M.-C. 

Shan, "Adaptive and dynamic service composition in eFlow," in 

12th International Conference on Advanced Information 

Systems Engineering(CAiSE), 2000. 

[6] F. Casati and M.-C. Sha, "Dynamic and adaptive 

composition of e-services," in 12th International Conference on 

Advanced Information Systems Engineering (CAiSE 00), 2001. 

[7] T. Andrews, F. Curbera, H. Dholakia, J. Klein, F. Leymann, 

K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. 

Weerawarana, "Specification: Business Process Execution 

Language for Web Services Version 1.1," [Accessed:  Available 

from:http://www-106.ibm.com/developerworks/library/ws-bpel/. 

[8] L. Liu, D. Russell, D. Webster, Z. Luo, C. Venters, J. Xu, 

and J. Davies, "Delivering Sustainable Capability on 

Evolutionary Service-oriented Architecture," in IEEE 

International Symposium on Object/component/service-oriented 

Real-time distributed Computing (ISORC 2009), Tokyo, Japan, 

2009. 

[9] K. H. Kim and H. Welch, "Distributed Execution of 

Recovery Blocks: An Approach for Uniform Treatment of 

Hardware and Software Faults in Real-Time Applications," 

IEEE Transactions on Computers, vol. 38, pp. 626-636, 1989. 

[10] W. v. d. Aalst, A. t. Hofstede, B. Kiepuszewski, and A. 

Barros, "Workflow Pattern," Distributed and Parallel 

Databases, vol. 14, pp. 5-51, 2003. 

[11] W.-T. Tsai, X. Zhou, Y. Chen, and X. Bai, "On Testing and 

Evaluating Service-Oriented Software," IEEE Computer, vol. 

41, pp. 40-46, 2008. 

[12] D. Webster, N. Looker, D. Russell, L. Liu, and J. Xu, "An 

Ontology for Evaluation of Network Enabled Capability," in 

Realising Network Enabled Capability (RNEC'08), Leeds, 

United Kingdom, 2008. 

[13] P. Townend, J. Huai, J. Xu, N. Looker, D. Zhang, J. Li, and 

L. Zhong, "CROWN-C: A High-Assurance Service-Oriented 

Grid Middleware System," IEEE Computer, vol. 41, pp. 33-38, 

2008. 

 

 

 




