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Abstract-To achieve full cooperative diversity gains while still 
obtaining spectral and energy efficiency, cooperative communi­
cations with relay selection schemes, i.e., only the best relay is 
selected from multiple relaying candidates to cooperate with the 
communication, have been extensively studied in recent research. 
In this paper, we review the recent research on optimal relay 
assignment for cooperative communications, and investigate the 
use of cooperative communications with adaptive relay selection 
for soft QoS provisioning in resource-constrained wireless sensor 
networks. We propose EEARS, an energy-efficient adaptive relay 
selection scheme, which is based on a multi-agent reinforcement 
learning framework. In EEARS, optimal relays, in terms of 
outage probability, spectral and energy efficiency, are selected 
distributedly from multiple relaying candidates to participate in 
the communication, without the needs of prior knowledge of 
the wireless network model and centralized control. Simulation 
results show that EEARS fits well in dynamic environments, 
and is effective in improving the satisfying level of soft QoS 
provisioning for WSNs, i.e., increasing the spectral and energy 
efficiency, and reducing the amount of time that QoS violation 
occurs, by exploiting spatial and time diversities. Furthermore, 
compared with schemes using fixed transmitting power, EEARS 
can achieve a higher energy efficiency by varying the transmission 
power level according to wireless channel conditions. 

I. INTRODUCTION 

Due to low-cost node platforms, self-organizing manner and 
ease of deployment, wireless sensor networks (WSNs) have 
numerous potential applications, e.g., medical care, battle­
field surveillance, wildlife monitoring, and disaster response. 
In these mission-critical applications, a set of QoS (quality 
of service) requirements (e.g., delay, packet delivery ratio, 
network lifetime, throughput and communication bandwidth) 
on network performances must be satisfied. However, provid­
ing guaranteed QoS is almost impossible in dynamic WSNs 
[1], [2], due to the dynamic network topology, time-varying 
wireless medium, and severe constraints on power supply, 
computation power, and communication bandwidth. Therefore, 
it is more practical to provide soft QoS than guaranteeing 
hard QoS, especially in multi-hop WSNs [3]. In soft QoS 
provisioning framework, when a data flow with certain QoS 
requirements is in connection, there may exist transient amount 
of time that the QoS requirements cannot be met. The level 
of soft QoS provisioning can be quantified by the fraction of 

total QoS violation time over the total connection time, and 
the ratio should not be higher than an application-determined 
threshold. 

For a QoS-support route, QoS violations may occur because 
the intermediate routers cannot fulfill the QoS attributes that 
they have been assigned or promised in the QoS route dis­
covery and establishment procedure, which might be caused 
by network topology changes, concurrent transmission inter­
ferences, thermal noise, shadowing, and multi-path fading. 
For instance, as shown in Fig. 1, for two adjacent routers, 
e.g., nz and nm, along the established route, the link between 
nz and nm may experience severe channel fading and thus 
cannot meet the assigned QoS requirements. Retransmitting 
the packet, e.g., using the ARQ mechanism, from nl to nm 
might not be effective in this case, as the link between nl and 
nm may remain in deep fading for a long period because of 
strong time correlation in a slowly varying wireless medium 
[4]. 
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Fig. 1. Cooperative communications with relay selection in multi-hop WSNs 

As nodes in WSNs are often spatially deployed, the channel 
fading gains for different links are assumed to be statistically 
independent in WSNs [5]. Therefore, there might exist some 
nodes, which are neighboring nodes of both nl and nm, 
overhear the packet transmission between nz and nm, due to 
the broadcast nature of the wireless medium. Among these 
multiple neighboring nodes, a node, e.g., rei, can be selected 
to help in the packet delivering between nl and nm by 
retransmitting the overheard packet to nm, even it has not 
been assigned any routing tasks in the route discovery and 
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establishment procedure. By doing so, the receiver nm may 
receive two copies of the original signal, which are transmitted 
over the two independent paths (nl - nm, nl - rCi - nm) and 
experience different channel fading. Node nm can combine the 
signals received from node nl and rCi, e.g., by applying MRC 
(maximum-ratio-combining) [6] for optimal packet decoding, 
or simply choose the signal with higher SNR (signal-to-noise­
ratio) and decode it. Therefore, channel diversity gains can be 
achieved, i.e., a packet transmission failure occurs only when 
both of the two independent links experience deep channel 
fading simultaneously. This is known as cooperative commu­
nications with relay selection (or optimal relay assignment), 
that only one node is selected among multiple candidates 
as an optimal relay to help in the packet transmission, and 
other nodes remain silent. By exploiting the diversities of 
the wireless medium, cooperative communications with relay 
selection can be applied in soft QoS provisioning for WSNs 
to assure the QoS attributes and increase the satisfying level 
of soft QoS provisioning. 

Compared with conventional multi-node cooperative com­
munication systems, where all the available relays participate 
in the communication by retransmitting signals, cooperative 
communications integrated with adaptive relay selection has 
been demonstrated to have the potential of achieving full 
cooperative diversity gains while still obtaining higher spectral 
and energy efficiency, as well as lower transmission delay. 
However, it is challenging to find optimal relay selection 
policies in dynamic and distributed WSNs (e.g., when to 
cooperate? how to cooperate? and whom to cooperate with?), 
wherein the network state information is inherently imprecise 
and tend to vary. 

A number of adaptive relay selection schemes have been 
proposed recently. In the literature, most of the cooperative 
protocols choose optimal relays based on the network state 
information (e.g., network topology, distance, channel coeffi­
cients, and SNR), and assume that full or partial CSI (channel 
state information) is available at the source, destination and all 
of the potential relays. However, the dynamic and distributed 
nature of WSNs implies that the network state information 
tend to be varying, and the available information is often 
inaccurate and incomplete. Therefore, algorithms relying on 
the network state information cannot achieve optimal network 
performance in dynamic environments. Moreover, significant 
communication overhead will be incurred in acquiring and 
disseminating of such information to all of the cooperative 
participants, especially for the cooperative protocols, as in [7], 
[8], that instantaneous CSI is required at all the potential relays 
for optimal relay selection. Thus, research on distributed, 
lightweight and adaptive relay selection scheme is still needed. 

In this paper, we first review the recent research on optimal 
relay assignment for cooperative communications. Then, we 
investigate the use of cooperative communications with adap­
tive relay selection for soft QoS provisioning in WSNs, and 
propose EEARS, an energy-efficient adaptive relay selection 
scheme for cooperative communications. In EEARS, for each 
pair of adjacent intermediate routers along a multi-hop route, 

an optimal relay in terms of packet outage probability, spectral 
and energy efficiency is distributedly selected from multiple 
relaying candidates. The selected optimal relay participates 
in the communication between the routers by retransmitting 
the overheard packet. To further improve the network perfor­
mance, a power control scheme is integrated with the optimal 
relay selection, i.e., the selected relay retransmits the data 
packet using an adaptive transmission power level according 
to the inter-user channel conditions. 

Simulation results show that EEARS fits well in dynamic 
environments, and is effective in improving the satisfying level 
of soft QoS provisioning for WSNs, i.e., reducing the amount 
of time that QoS violation occurs by exploiting spatial and 
time diversities. Furthermore, compared with schemes using 
fixed transmitting power, EEARS can achieve higher spectral 
and energy efficiency by utilizing the adaptive transmission 
power control scheme. 

The rest of the paper is organized as follows. We review 
the recent research on optimal relay assignment in Section II. 
The background information of reinforcement learning and its 
applications in WSNs are provided in Section III. The system 
model is presented in Section IV. Section V describes the 
algorithm overview and design issues of EEARS. The design 
and implementation of the reinforcement learning based algo­
rithm are illustrated in Section VI. The performance analysis 
is presented in Section VII. Finally, Section VIII concludes 
the paper and discusses the future research directions. 

II. RELATED WORK 

A number of relay selection protocols for cooperative com­
munications have been proposed. Based on the criteria used 
for optimal relay assignment, the schemes can be classified 
into three main categories. 

A. Pre-defined and random relay assignments 

The simplest solutions for optimal relay assignment are as­
signing the relays in advance, or choosing the relays randomly 
in runtime, as the protocols proposed in [9], [10]. The pre­
defined and random schemes can reduce the design complexity 
and network overhead. However, such schemes cannot achieve 
optimal performance in dynamic environments and lack of the 
capacity of dealing with network dynamics. 

B. Distance-based relay assignment 

An intuitive scheme of optimal relay assignment is using 
distance, either towards the source or the destination, as the 
criterion of optimal relay selection. In distance-based cooper­
ative protocols, [10] chooses a node which is the closest one 
to the destination as the optimal relay. In contrast, a relaying 
candidate which is the closest one to the source, will be chosen 
as the optimal relay in [11]. 

However, it is well understood that the communication 
between senders and receivers with similar distances may have 
significant differences in terms of received signals' strengths 
and SNRs, due to the interferences, shadowing and multi-path 
fading effects on the wireless links. Therefore, the use of 



distance as the criterion of optimal relay assignment cannot 
reflect the channel state appropriately. 
C. SNR (or channel gain)-based relay assignment 

The most intuitive solution of optimal relay assignment is 
that choosing relays, which have the highest SNRs or the 
maximum wireless channel gains with both the source and 
destination. 

A cooperative relay framework which accommodates the 
physical, MAC and network layers for wireless ad-hoc net­
works was proposed in [12]. In the network layer, for a link 
between a source and a destination, two relaying candidates 
which have the two highest of the minimum SNR of the relay 
channels (from the source to the relay, and from the relay to 
the destination) are selected as the optimal relays. 

The authors in [7] proposed an adaptive relay selection 
scheme for cooperative communication protocols, based on 
the CSI at the source and the relays. The optimal relay is the 
node which has the maximum instantaneous scaled harmonic 
mean function of its source-relay and relay-destination channel 
gains. 

In [9], the source chooses N relays among all the relaying 
candidates, whose received signals' SNRs are the N highest, 
to participate in the communication between the source and 
destination. 

In [8], each relaying candidate distributedly assesses the 
link qualities between the source-relay and relay-destination, 
by using the signaling messages, e.g., RTS (request-to-send) 
and CTS (clear-to-send) signals. The optimal relay is selected 
based on the instantaneous channel measurements. 

The optimal relay assignment scheme [13] is integrated with 
a power control mechanism in the physical layer. The relaying 
candidates also use RTS and CTS signals to assess the link 
qualities and individually compute the required transmission 
power that can meet the desired link qualities. Different from 
[8], the source also participate in the competition procedure 
of relay selection. 

Opportunistic single relay selection protocols under an 
aggregate power constraint were presented in [14]. For decode­
and-forward (DaF) [15] protocol with reactive relay selection, 
the optimal relay is the candidate which has the maximum 
instantaneous channel gain between the relay and destination. 
For DaF protocol with proactive relay selection (the optimal 
relay is chosen prior to the transmissions of source-destination 
and relays-destination), the optimal relay is the candidate that 
can maximize the minimum of the weighted channel strengths 
between the source and destination. 

However, the use of SNR as the unique relay selection 
criterion is not sufficient in dynamic WSNs. It has been shown 
in [9] that received SNR based selection schemes behave 
similarly to random selection schemes, or even slightly worse 
in some scenarios. 
III. REINFORCEMENT LEARNING AND ITS ApPLICATIONS 

IN WSNs 
Reinforcement learning provides a framework in which 

agents learn control policies in dynamic environments based 

on experiences and rewards. In a standard reinforcement 
learning model, an agent is connected to the environment via 
perception and action, as shown in Fig. 2. On each step of 
interaction, the agent receives an input, i, some indication of 
the current state, s, of the environment; the agent then choose 
an action, a, to generate as output. The action changes the 
state of the environment, and the value of the state transition 
is communicated to the agent through a scalar reinforcement 
learning signal, r. The agent's behavior, B, should choose 
actions that tend to increase the long-term sum of values of 
the reinforcement signal [16]. 
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Fig. 2. A standard reinforcement learning model 

The underlying concept of reinforcement learning is Markov 
Decision Process (MDP). A MDP models an agent acting in 
an environment with a tuple (S,A,P,R), where S is a set of 
states, A denotes a set of actions. P(s'ls,a) is the transition 
model that describes the probability of entering state s' E S 
after executing action a E A at state s E S. R(s,a,s') is 
the reward obtained when the agent executes a at s and enter 
s'. The goal of solving a MDP is to find an optimal policy, 
7r : S H A, that maps states to actions such that the cumulative 
reward is maximized. Detailed information on reinforcement 
learning can be found in [16]. 

Multi-agent systems (MASs) are systems that multiple 
agents are connected to an environment and all the agents 
may take actions to change the state of the environment. In 
MASs, from an agent's perspective, the agent itself can take 
actions and change the state of the environment. Furthermore, 
other agents in the system can also change the environmental 
state by taking their actions. Therefore, when an agent chooses 
its actions, the agent should consider other agents' possible 
actions. WSNs can be regarded as multi-agent systems, where 
sensor nodes can be considered as agents, the wireless medium 
and data flows can be regarded as environment. The agents 
may take actions (e.g., packet sending, receiving and forward­
ing) to change the state of environment. Moreover, the agents 
interact (contend and/or collaborate) with others due to the 
shared and contention nature of the wireless medium. 

IV. SYSTEM MODEL 

We consider a WSN in which sensor nodes are uniformly 
and randomly distributed in a certain area. Source and destina­
tion nodes are randomly chosen to establish a multi-hop route, 
which might be used for multiple data session communication. 



AODV (Ad hoc On-Demand Distance Vector) and CSMA/CA 
are employed as the underlying network and MAC layer proto­
cols, respectively. DaF is used as the cooperative transmission 
scheme. To achieve optimal decoding performance, MRC is 
utilized at the receiver for packet decoding by combining 
the multiple signals received from the sender and relay. We 
assume that the nodes can adjust their transmission power level 
dynamically, i.e., nodes can choose transmission power levels 
within the range of [Po, Pl, ... , Pfl ... , PTj. 

We consider two QoS metrics, i.e., end-to-end delay Tend 
and packet delivery ratio Pend, that should be satisfied by the 
underlying communication network. QoS violation occurs if 
any of the two metrics measured cannot meet the desired QoS 
constraints, when a data session is in connection. 

The wireless channel model is assumed to be a narrow band 
Raleigh block fading channel with additive white Gaussian 
noise (AWGN) [17]. For any two nodes, e.g., i and j, the 
channel gain hij is modeled as zero-mean circular symmetric 
complex Gaussian random variables with zero mean. For 
the links between a pair of nodes, the channel fading gain 
coefficients are assumed to be reciprocal, i.e., hij = hji' 
and the expectation E(lhij 12) = 1. The channel fading gain 
coefficients are constant for a given transmitted block, or a 
codeword, but are independent and identical distributed (Li.d.) 
for different blocks [9]. For different links, the channel fading 
gain coefficients are statistically i.i.d., which is a reasonable 
assumption as the nodes are usually spatially deployed [4]. 

V. COOPERATIVE COMMUNICATIONS WITH ADAPTIVE 

RELAY SELECTION 

A. Algorithm Overview 

In EEARS, first, for a data session with certain QoS require­
ments, a multi-hop route is discovered and established by using 
the AODV routing protocol. Then, for each pair of adjacent 
intermediate routers (a pair of I-hop sender and receiver) along 
the established route, a number of nodes will be selected as 
a set of relaying candidates for the communication between 
the sender and receiver. If the link between the sender and 
receiver cannot meet the desired qualities, an optimal relay will 
be chosen from the set of relaying candidates to help in the 
packet delivering by retransmitting the packet. The selection of 
relaying candidates is valid for the lifetime of the established 
route. While the optimal relays are selected in a session-by­
session manner for the communication between the source and 
destination, as the wireless medium is assumed to be slowly 
varying, as well as for the purpose of reducing the computation 
overhead and design complexity. 

The cooperative transmission scheme operates in two 
phases, namely, direct transmission and relaying transmission 
phases. If a packet transmission fails in the direct transmission 
phase, the relaying transmission phase will be invoked, and 
an optimal relay among the relaying candidates is selected 
to retransmit the packet to the receiver using an appropriate 
transmitting power level. Then, the receiver combines the 
signals received from both the sender and relay for optimal 
packet decoding. 

When a data session starts, each relaying candidate assesses 
it capabilities of being an optimal relay, and may choose to 
participate in the communication, or decide to remain silent. 
When the data session completes, each candidate will get 
a feedback from the corresponding receiver. The feedback 
contains the QoS information of the link between the sender 
and receiver, e.g., I-hop delay and packet delivery ratio, which 
represents the quality of the cooperative communication, and 
can be regarded as an immediate reward (could be positive 
or negative) given by the environment. The candidates then 
use the immediate reward and the expected long-term reward 
in the remaining path to update the decision policy, i.e., the 
optimal decision of relay assignnlent will be strengthened; 
and the sub-optimal decisions will be weakened by a series 
of trial-and-error interactions with the dynamic environment. 
From the updated policy, the candidates can decide whether it 
should participate in the communication with an appropriate 
transmitting power level, or remain silent, according to the 
environmental state. 

Once the algorithm reaches convergence, the relaying can­
didates are able to use the learned policy to take appropriate 
actions, i.e., the candidate which can make the most contri­
butions in terms of outage probability, spectral and energy 
efficiency will be more likely to be selected as the optimal 
relay in the following data sessions. 

B. Relaying Candidate Selection 

In EEARS, the relaying candidate selection is integrated with 
the route finding mechanism, and the selection is valid during 
the route's lifetime. The route finding mechanism in EEARS 

is based on the AODV routing protocol with QoS extension, 
i.e., using the mechanism of route request (RREQ), route reply 
(RREP) and route error (RERR) messages to discover and 
maintain an initial QoS-support route. 

As shown in Fig. 1, a node determines that it is a relaying 
candidate rc for the adjacent routers nl and nm, if it has heard 
both of the RREQ transmitted by nl and the RREP replied 
by nm, and has not been selected by nl as the next hop router 
in the route discovery procedure. 

Formally, the set of relaying candidates RCs =Nl n Nm, 
where Nl and Nm are the sets of the immediate neighboring 
nodes of nl and nm, respectively. Thus, for each relaying 
candidate rCi E RC s, rCi is a common immediate neighboring 
node of both nl and nm. Ideally, all of the relaying candidates 
are connected to both nl and nm. However, the link qualities 
tend to vary over time, and the relaying candidates may 
have different duty cycles, processing and queuing delays, 
and mobility patterns, which have significant impacts on the 
performance of the cooperative communication. 

If the network topology changes due to node mobilities, 
channel interferences, shadowing, and multi-path fading, the 
re-selection of the relaying candidates will be invoked by the 
error messages passed from the network layer protocol. Then, 
the sets of relaying candidates are either re-selected for all the 
intermediate routers, or only re-selected at the area where link 
failure occurs. 



C. Optimal Relay Assignment 

Based on the mathematical properties, the QoS attributes of 
the end-to-end delay Tend and packet delivery ratio Pend are 
additive and mUltiplicative metrics, respectively. For instance, 
for a H -hop route, the end-to-end delay is the accumulated 

H 
delay of each link along the route, i.e., Tend = L Ti, where 

Ti is the delay experienced at link i. The end-i;"�nd packet 
delivery ratio is a product of the packet delivery ratio of each 

H 
link along the route, i.e., Pend = I1 Pi, where Pi is the packet 

delivery ratio at link i. 
i=O 

For simplicity, we assign identical QoS constraints on each 
link along the multi-hop route. That is, to meet the end-to­
end QoS requirements on Tend and Pend for a H -hop route, 
each link should sati�fy the metrics of link qualities that Ti ::::: 
-kTend and Pi ;::: Pe"!d' 

The optimal relay assignment scheme is based on a multi­
agent reinforcement learning algorithm, i.e., each node is 
implemented with a Q-Iearning algorithm [18], a model-free 
method which learns the value of a function Q( s, a) to find the 
optimal decision policy. In EEARS, the Q-value represents the 
quality of cooperative communication, i.e., the contribution 
that the selected relay may make in terms of packet outage 
probability, spectral and energy efficiency. 

The feedback can be regarded as an immediate reward 
from the environment in the context of reinforcement learning, 
which represents the quality of the cooperative communica­
tion, i.e., the contribution that the selected relay has made 
in terms of outage probability, spectral and energy efficiency. 
Each relay then uses the immediate reward and the long­
term expected reward to update the corresponding Q-value, 
which has influence on the future decisions on optimal relay 
assignment. 

D. Cooperative Transmission Scheme 

In the two phase operations of EEARS, the relaying trans­
mission phase will be invoked only when the packet transmis­
sion fails in the direct transmission phase. 

In the direct transmission phase, the sender transmits a 
data packet to the receiver and all of the relays, then the 
receiver and all the relays attempt to decode the packet. If 
the receiver can decode the packet successfully, it will send 
an AC K packet to the sender and all the relaying candidates, 
and the packet transmission is finished; otherwise, the receiver 
stores the received signal and defers the decoding to the 
relaying transmission phase, and sends a N AC K packet to 
the sender and all the relaying candidates, notifying the packet 
transmission failure in this phase. 

The relaying transmission phase will be invoked in case 
a N AC K is received by the relaying candidates in the 
direct transmission phase, or neither an AC K nor a N AC K 
is received within a certain amount of time. The relaying 
candidates are then aware of the failure of packet transmission 
in the direct transmission phase, and one of the relays, among 
those which successfully received and decoded the data packet 

in the direct transmission phase, will re-encode and retransmit 
the packet to the receiver. The receiver combines the signals 
received in both of the direct transmission and the relaying 
transmission phases and applies MRC for packet decoding. If 
the receiver can decode the combined signal successfully, it 
sends an AC K to the sender and all the relaying candidates; 
otherwise, it sends a N ACK packet. 

VI. ALGORITHM DESIGN OF OPTIMAL RELAY SELECTION 

A. Design Objective: Analysis on Benfjits and Costs of Co­

operative Communication 

One of the main benefits of utilizing cooperative commu­
nications is combating the multiple fading effects in wire­
less networks, and thus improve the network performance, 
in terms of transmission reliability, robustness, adaptivity, 
network throughput and lifetime. 

However, the use of cooperative communications also asso­
ciates with certain costs because of conducting extra tasks of 
signal processing, packet receiving and transmitting. For the 
overhead introduced, the relays' transmission is a major con­
cern in designing cooperative communication protocols, as the 
nodes are often battery-powered and WSNs usually encounter 
severe resource constraints on power supply. Furthermore, the 
relays' transmission also increases the network's background 
noise, and thus has negative effect on other nodes' decoding 
performance, even those nodes are out of the communication 
range of the relay. Thus, using a lower transmitting power is 
not only for energy saving, but also for the purpose of reducing 
the concurrent transmission interferences may caused. 

Therefore, the relaying candidate which can make the most 
contribution in improving the network performance, in terms 
of transmission reliability and spectral efficiency, and requires 
the minimal transmitting power, should be chosen as the 
optimal relay. 

B. Algorithm Design 

In the context of the multi-agent reinforcement learning 
framework, for an agent, the state, action, and reward are 
defined as follows. 

a) State: From an agent's perspective, the state is the 
locally observed network configuration and events (data flows 
in connection). The state evolves with the actions taken by the 
candidates and the state spaces are defined as 

S = {Vrc, VI}, (1) 

where Vrc = {reo, rel, ... , rei, ... , reM} is the set of relay­
ing candidates, and VI = {io, il, ... ,ji, ... , is} is the set of 
data flows in connection. 

b) Action: When a relaying candidate observes data 
flows in connection, the candidate can either remain silent or 
choose an appropriate transmitting power level to partici�ate 
in the communication. The action spaces are defined as 

A = {(Ii, ai)} , i = 0, 1, .. , i..., S, (2) 



where a i = (ee, Pt). For an action a i , ee = 0 stands for 
that the candidate rCi does not cooperate with the communica­
tion of the data flow Ii, and ee = 1 represents that rCi coop­
erates with the data flow Ii with the transmitting power level 
Pt, which is chosen from the range of [Po, Pl, ... , Pt, ... , PTj. 

c) Reward function: The reward function is designed to 
reflect the contribution (improvement on link qualities) made 
by the relay, as well as the costs associated (energy consumed 
by the relay). The reward function is defined as 

(3) 

where PzE and PzR are the experienced and required I-hop 
packet delivery ratio, respectively. Nd is the total number of 
packets received by the receiver in the data session. Tl� and 
Tl� are the required and experienced I-hop delay for packet 
i, respectively. Pm is the medium power level and Pm = 

PotPT. Pt is the selected transmission power level for relaying 
transmission. L� is the length of the packet i in bits (including 
overhead), and Rd is the bit transmission rate of the transceiver 
in bps (bits per second). 

Wl, W2, and W3 are the weighting factors for the metrics of 
packet delivery ratio, delay, and energy efficiency, respectively. 
The values of the weighting factors can be adjusted to adapt 
to the data session's QoS requirements. 

In Eq. 3, the first term represents the improvement on the 
metric of packet delivery ratio made by using the relaying 
transmission. The second term stands for the improvement 
on the metric of I-hop transmission delay. The third term 
represents the metric of energy efficiency, compared with using 
a fixed transmission power level. 

The reward represents a weighted quality of the cooperative 
communications, when rCi is chosen as the optimal relay to 
participate in the communication with the transmission power 
level of Pt in the data session. 

The updating of Q-value iterates in each relay assignment 
procedure. Distributed value function - distributed reinforce­
ment learning algorithm (DVF-DRL) [19] is used in the 
updating iteration. 

For the I-hop communication between nl and nm, at 
iteration t, a relaying candidate rCi is selected as the optimal 
relay to retransmit the data packet to the receiver nm. The 
Q-value is updated as in (4). 

Q��/ (S�Ci ,a�cJ = (1 - a )Q�Ci (S�Ci ,a�cJ + a ( r��/ (s��/) + 
'Yw(rci, nm) max Q�,Js�"" a�,J + anm, EAnm, 

where a is the learning rate, which models the updating rate 
of the Q-value. r denotes the immediate reward of execution 

TABLE I 
SIMULATION PARAMETERS 

Parameters Value 
Number of sensor nodes 100 
Simulation area 200 m x 200 m 
Wireless channel model Raleigh shadowing wireless model 
Path loss exponent 2.4 
Collision model Additive interference model 
Physical and MAC layer IEEE 802.15.4 standard 
Packet length 40 bytes 
Transmitting power level [-25, -15, -lO, -7, -5, -3, -1, 0] dbm 
Node's initial energy 12 J 
Data transmission rate 250 kbps 
Simulation time 400 s 
Number of simulation runs 10 

WI 0.4 

W2 0.4 

W3 0.2 
a 0.1 

'Y 0.5 
w (rc,nm ) 0.5 
w (rci,rci ) -:IT, I is the number of routers. 

of the action, i.e., the contribution that the selected relay has 
made. The weight of future reward is defined by 'Y. V;Ci is 
the set of nodes within rCi'S neighborhood which are selected 
as routers by other data flows in the network. w(rci' nm) 
and w(rci' rc/) are the weighting factors for modeling the 
expected reward at the receiver, and the values of the routers 
in V;Ci' respectively. 

Eq. 4 shows that the candidate rCi'S Q-value is a weighted 
sum of rCi 's Q-value at the current state, the action's immedi­
ate reward, the maximum Q-value of the receiver nm, and the 
values of all the nodes selected by other data flows as routers 
within rCi'S neighborhood. 

VII. PERFORMANCE EVALUATION 

To study the network performance of EEARS, We compare 
it with CRP [12], a cooperative routing protocol which selects 
two relays from the neighboring nodes based on the link SNR 
and two-hop neighborhood information. 

A. Simulation Environment 

We simulate a WSN where 100 sensor nodes are randomly 
distributed in a 200m x 200m area. A CBR (constant bit rate) 
traffic with 5p / s is used as the communication pattern, and 
the source and destination nodes are chosen randomly in each 
simulation run. The number of background traffic data flows 
varies from 1 to 10 in the simulations. We define the lifetime 
is the time when the first node exhausts its battery's energy. 

Castalia [20] wireless sensor network simulator (the data 
link layer is modified to facilitate MRC combining and decod­
ing), which is built based on OMNeT++ [21] discrete event 
simulation platform, is used as the simulation environment. 

Table I lists the detailed simulation parameters. 
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B. Comparison with CRP 
The average end-to-end delay and packet delivery ratio with 

a background traffic of 4 CBR data flows are shown in Fig. 3 

and Fig. 4, respectively. 
The simulation results show that EEARS outperfonns CRP 

in both of the two metrics. The reason is that EEARS utilizes 
cooperative communications only in case the direct transmis­
sion fails, i.e., the relays will be involved in the cooperative 
transmission only when the link between the sender and the re­
ceiver is of poor quality. In contrast, CRP selects two relays for 
each packet transmission, which increases the probabilities of 
channel access contention and packet collision, and thus leads 
to lower spectral efficiency. Moreover, CRP considers SNR 
as the unique relay selection criterion, which is not sufficient 
in dynamic WSNs. For instance, a relay with high SNR to 
both the sender and the receiver may suffer severe channel 
access contention and/or processing and queuing delay, or 
it may operate in a low duty cycle for energy conservation. 
For EEARS, the relay which can improve the perfonnance on 
both of the outage probability and spectral efficiency will be 
selected as the optimal relay, by strengthening the optimal 
decision and weakening the sub-optimal decisions of relay 
assignment. Furthennore, the use of adaptive transmission 
power level in EEARS effectively reduces the interferences 
caused by concurrent transmissions, and thus nodes in EEARS 

can achieves a better decoding perfonnance. 
The aggregated network throughput and network lifetime 
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with a varying number of CBR data flows are shown in Fig. 5 
and Fig. 6, respectively. 

We can observe that EEARS and CRP behave similarly on 
both of the two QoS metrics when the number of data flows 
is low (from the number of 0 to 5 CBR data flows). However, 
when the number of data flows increases, EEARS perfonns bet­
ter than CRP, i.e., EEARS has a higher network throughput and 
a longer network lifetime. The reason is that when the number 
of data flows increases, the channel access contention becomes 
higher (nodes are more likely to contend with other nodes to 
access the channel), as the wireless medium is shared by all the 
nodes in the network. Moreover, the network background noise 
also becomes higher when more nodes transmit signals. In this 
situation, efficient allocation of network resources and optimal 
relay assignments are more important than WSNs with lighter 
traffic load. By adaptive selecting optimal relays and varying 
the transmission power level, EEARS can reduce concurrent 
transmission interferences, probability of packet collision, and 
energy consumption, and thus achieves better overall network 
perfonnance than CRP. 

Fig. 7 illustrates the satisfying level of soft QoS provision­
ing for the measured route, when the background traffic varies. 

The result shows that EEARS can achieve a higher satisfying 
level than CRP, especially when the number of background 
data flows increases. This is because that for EEARS, the 
use of reinforcement learning based algorithm allows a more 
efficient handling of network dynamics. When the background 
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traffic increases, nodes are more likely to contend with others 
to access the channel, or being selected as routers/relays by 
other data flows, due to the shared and contention nature of 
the wireless medium. In CRP, the source explicitly assigns 
optimal relays based on the measured signal's SNR without 
consideration of the states of the candidates, thus the scheme 
lacks of the flexibility of handling network dynamics. In 
comparison, EEARS is more adaptive in relay selection since 
the optimal relay is distributedly determined by each pair 
of adjacent routers along the route through experiences and 
rewards, and thus achieves the capability of handling network 
dynamics. The simulation results also verify that EEARS is 
more adaptive and flexible than CRP in dynamic environments. 

VIII. CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we have reviewed the recent research on 
optimal relay assignment for cooperative communications, 
and investigated the use of cooperative communications with 
adaptive relay selection for soft QoS provisioning in resource­
constrained WSNs. To further improve the network per­
formance, the proposed optimal relay assignment scheme, 
EEARS, is integrated with a power control scheme, which 
is based on a multi-agent reinforcement learning framework. 
Simulation results have shown that EEARS can effectively 
improve the network performance on transmission reliability, 
spectral and energy efficiency, and thus increase the satisfying 
level of soft QoS provisioning for WSNs. In dynamic envi­
ronments, EEARS also performs well in terms of a number of 
QoS metrics. 

In future research, adaptive assignment of QoS constraints 
will be considered in the route discovery and establishment 
procedure. Moreover, we will examine the joint use of re­
inforcement learning and cooperative game theory in efficient 
allocation of network resources for differential QoS provision­
ing and network optimization in WSNs, and achieving system 
fairness in assigning optimal relays as well. 
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