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Abstract—Recently, lattice-reduction (LR) has been proposed to 

improve the performance of linear and successive interference 

cancellation (SIC) detectors and precoders in MIMO systems. It 

is proved that LR-aided linear detectors collect the same 

diversity order as that exploited by the ML detector but with 

much lower complexity when perfect channel state information 

(CSI) is assumed to be available. However, in practice, CSI is 

always contaminated by channel estimation error and feedback 

quantization error. In this paper, we proposed MMSE based LR-

aided robust linear and SIC detectors and MMSE based LR-

aided (robust) linear precoder and (robust) Tomlinson-

Harashima precoder (THP) which are capable of improving the 

BER performance in the context of imperfect CSI. Furthermore, 

we find that the performance improvement of LR-aided 

nonlinear method in SIC detectors at receiver is more 

pronounced than that in THP at transmitter. 

Keywords-MIMO; lattice reduction; robust design; channel 

state information; Tomlinson-Harashima precoding. 

I.  INTRODUCTION 

Recently, lattice-reduction (LR) has attracted a lot of 
attention for its potential in improving performance of linear 
and successive interference cancellation (SIC) detectors and 
precoders in MIMO systems. LR-aided linear detection was 
first proposed by Yao and Wornell to transform the system 
model to an equivalent one with better conditioned channel 
matrix [1]. In [2], the LR-aided linear and SIC detection 
schemes have been extended with respect to minimum-mean-
square-error (MMSE) criterion. It is proved in [3][4] that LR-
aided linear detectors collect the same diversity order as that 
exploited by the maximum-likelihood (ML) detector (i.e., the 
number of receive antennas) but with much lower complexity. 
LR-aided zero-forcing (ZF) precoder was put forward in [5] 
and was shown its superiority in transmit power reduction. It is 
also illustrated in [6] that their proposed LR-aided Tomlinson-
Harashima precoding (THP) can achieve the same diversity 
order as a maximum-likelihood signal generation at the 
transmitter would offer.  

However, the above conclusions are based on the 
assumption that perfect channel state information (CSI) at 
receiver (CSIR) or transmitter (CSIT) is available, i.e., there is 
no channel estimation error and feedback quantization error. 
The assumption doesn’t exist in practical systems. Channel 
estimation error is inevitable due to the presence of background 

noise in the estimated signal. In some cases CSIT can be 
obtained if there is reciprocity between the forward and 
reverse channels, but more often channel state information 
needs to be quantized and sent to the transmitter over a limited-
rate feedback channel [7]. We can see from the simulation 
results in [8] and the following section V that even a very small 
channel error will lead to pronounced performance degradation 
for LR-aided detection and precoding. So, the channel error 
should be considered in practical design. In the present work, 
we proposed MMSE based LR-aided robust linear detector and 
precoder, nonlinear SIC detector and THP with the help of 
complex Lenstra-Lenstra-Lovász (CLLL) algorithm [9], which 
involve channel estimation error (and feedback quantization 
error) as an integral part of the LR-aided detector (/precoder) 
design. 

The remainder of the paper is organized as follows. In 
Section II, we present the system description and the channel 
error model. In Section III, CLLL algorithm is first introduced, 
then MMSE based LR-aided robust linear and SIC detection 
are developed. In Section IV, MMSE based LR-aided (robust) 
linear precoder and nonlinear THP are brought forward. 
Simulation results are presented in Section V, and we conclude 
our work in Section VI. 

Notation: Upper (lower) case boldface letters are for 

matrices (vectors); ( )
H

⋅  denotes complex conjugate transpose 

(Hermitian) and 
†

( )⋅  stands for Moore-Penrose inverse; 
a

I  is 

the a a×  identity matrix and 0  is the zero-matrix; a    is the 

largest integer not exceeding a and ( )diag R  is a diagonal 

matrix with elements from the main diagonal of R . 

II. SYSTEM MODEL 

We consider a communication system with M  transmit 

antennas and N  receive antennas in a frequency flat fading 

channel. Let H  be the N M× channel matrix with 

independent and identically distributed (i.i.d.) complex 

Gaussian elements (0,1)CN . Let 
1M ×∈s �  represent the 

transmit signal vector. Let n denote an complex additive white 

Gaussian noise vector 
2

( , )
n

CN σ0 I  and 
1N×

∈x �  denote the 

received signal, yielding the following relationship with s  

 = +x Hs n . (1) 

ziglio
Typewritten Text
CHINACOM 2010, August 25-27, Beijing, China
Copyright © 2011 ICST 973-963-9799-97-4
DOI 10.4108/chinacom.2010.102



For open-loop MIMO systems without CSIT, a detector is 

needed to recover s , then the received signal x  is detected by 

use of nulling matrix W  at the receiver, yielding the output 

ŝ = Wx . In this case, the relationship between the transmit 

and detected signals can be written as: 

 ŝ = Wx = WHs + Wn  (2) 

For closed-loop MIMO systems with CSIT, a precoder F  can 

be used to pre-equalize the effect of H  to s , thus the received 

signal at receiver can be expressed as 

 ˆx = s = HFs + n  (3) 

Due to errors introduced by channel estimation and vector 

quantization in limited feedback MIMO systems, we assume 

that the receiver of open-loop MIMO system have only an 

estimate of the true channel response H  denoted by Ĥ . The 

channel estimation error model is 

 ˆ= + ∆H H H , (4) 

where we assume that the estimation error matrix ∆H  has 

N M×  independent elements with zero mean and estimation 

error variance denoted by 
2

σ
∆H

. Moreover, ∆H  is assumed 

independent of the data vector s  and the Gaussian noise vector 

n . The same channel estimation error model was also 

considered in [10]. Then, we assume the transmitter of closed-

loop MIMO system have only an quantized estimate of the true 

channel response H  denoted by H
�

. Thus, the channel error is 

the sum of estimation error and vector quantization error. The 

channel model is as follows.  

 ′′= + ∆ + ∆ = + ∆H H H H H H
� � �

, (5) 

where the vector quantization error matrix ∆H
�

 has N M×  

independent elements with zero mean and error variance 

denoted by 
2

σ
∆H
� . A similar vector quantization error model was 

also considered in [11]. Thus, the variance 
2

σ ′′∆H
 of the 

elements in ′′∆H  is equal to ( )2 2σ σ∆ ∆
+H H

� . Also, ∆H  is assumed 

independent of data vector s , Gaussian noise vector n  and 

estimation error ∆H . 

III. LR-AIDED ROBUST DETECTION FOR OPEN-LOOP MIMO 

SYSTEMS 

Given the system model in (1), if the symbols s  are drawn 

from Gaussian integer ring (e.g., QAM, PAM constellations), 

then Hs  belongs to a lattice spanned by the columns of H  

[12]. Hence, to decode s  becomes to find the nearest point to 

x  on the lattice spanned by H . As we know, when the lattice 

basis H  is orthogonal, i.e., 
H

H H  is diagonal, the decision 

region of linear detectors to find the nearest point is the same as 

that of ML detector. Therefore, in this case, ZF detector has the 

same performance as the ML detector. However, in general H  

is not orthogonal. Thus, linear equalizers induce performance 

degradation.  

The aim of lattice-reduction is to transform a given basis 

(columns of H ) into a new basis (columns of H� ) with vectors 

of shortest length or, equivalently, into a basis consisting of 

roughly orthogonal basis vectors. Usually, H�  is much better 

conditioned than H  and therefore leads to less noise 

enhancement for linear detection.  

A. Complex Lenstra-Lenstra-Lovász (CLLL) algorithm 

In theoretical aspect, finding an optimal basis in a lattice is 

computationally expensive [12]. Two LR methods Korkine-

Zolotareff (KZ) reduction [13] and Lenstra-Lenstra-Lovász 

(LLL) algorithm [14] are widely used. The KZ algorithm can 

find the optimal basis for a lattice, but it is highly complex and 

thus infeasible for practical implementation. The LLL 

algorithm does not guarantee to find the optimal basis, but it 

guarantees to find a basis within a factor to the optimal one in 

polynomial time [14]. A reduced basis for a real lattice is 

defined in [14], in which the maximum number of arithmetic 

operations needed by the LLL algorithm to find a new basis is 
4

( )O K , where K  is the size of the basis. Most of existing 

results in [2] [5] adopt the real LLL (RLLL) algorithm in [14] 

and use the real LR-aided detectors, while [4] and [9] provide a 

complex LLL (CLLL) algorithm which greatly reduces the 

RLLL’s complexity without sacrificing any performance. Since 

complexity is a major practical concern, the CLLL algorithm is 

adopted in this paper. 

Following the CLLL algorithm, we find a “better” channel 

matrix =H HT� from the original channel matrix H , where T  
is a unimodular matrix, which means that all the entries of T  
and 

1−
T  are integers and the determinant of T  is 1±  or j± . 

B. Robust Linear MMSE Detection Algorithms 

As we know, the MMSE detector takes the noise term into 

account and thereby leads to an improved performance. As 

shown in [15], MMSE detection is equal to ZF detection with 

respect to an extended system model. To this end, the  

( )N M M+ ×  extended channel matrix H  and the 

( ) 1N M+ ×  extended receive vector x is defined as 

 

M
α

=
 
 
 

H
H

I
        and        

,1M

=
 
 
 

x
x

0
 . (6) 

where 
2 2

/
snα σ σ= . Then, the output of the MMSE detector 

can be written as 

( )
1

H H

MMSE M
α

−

= +s H H I H x�  (7) 

           ( )
1

†H H
−

= =H H H x H x . (8) 

Thus, the MMSE detector is equivalent to a ZF detector with 

respect to the extended system model and consequently the 

orthogonality of columns of H  determines the effective noise 

amplification. 



When considering the error introduced by channel 

estimation, we assume that the receiver knows the channel 

response estimation value Ĥ  and the statistics of the channel 

estimation error 
2

σ
∆H

. Then, the robust MMSE detector takes 

the channel estimation error and also noise term into account, 

leading to an improved performance in the environment with 

channel estimation error. Similarly, the robust MMSE detection 

is equal to ZF detection with respect to a modified 

( )N M M+ ×  extended channel matrix Ĥ  [16] expressed as 

 
2

ˆ
ˆ

M
Mσ α

∆
+

=
 
 
 H

H
H

I
. (9) 

Then, the output of the robust MMSE detector can be 

calculated as 

        
†ˆ

R MMSE−
=s H x� . (10) 

This result will be extremely important for incorporating the 

robust MMSE method in the following LR-aided detection 

algorithms. 

 

Figure 1.  Block diagram of a LR-aided detector for MIMO systems.  

C. LR-Aided Robust Linear MMSE Detection 

As already mentioned, linear detection is optimal for an 

orthogonal channel matrix. Now, with ˆ ˆ ˆ=H HT
�

and the 

introduction of 
1ˆ −

=z T s  the receive signal vector (1) can be 

rewritten as 

ˆ( )+ + ∆ += =x Hs n H H s n  

 
1ˆ ˆ ˆ( )

−
= + ∆ +H H TT s n ˆ + ∆ += Hz Hz n

� � . (11) 

The idea behind LR-aided robust detection is to consider 

the equivalent system model in (11) and perform the nonlinear 

quantization on z  instead of s . For LR-aided robust MMSE 

detection this means that first performing the LR for the 

extended channel matrix (9), i.e., ˆ ˆ ˆ=H HT
�

. Then, 

 
† 1ˆ ˆ

R MMSE R MMSE
−

− −= =z H x T s
�

��  (12) 

is calculated, where the multiplication with 
†

Ĥ
�

usually causes 

less noise amplification and interference amplification caused 

by channel estimation error than the multiplication with 
†

Ĥ  in 

(10) due to the roughly orthogonal columns of 
†

Ĥ
�

. Therefore, 

a hard decision based on 
R MMSE−

z�  is in general more reliable 

than one on R MMSE−s� . Then, the real and imaginary part of 

R MMSE−
z�  is independently quantized to the nearest 

unconstrained integer point in integer space 
M
� , i.e., 

[ ]ˆ
M

M

R MMSE R MMSE
Q

− −
= ∈z z

�

� � , where [ ]
M

Q ⋅
�

 denotes the 

simple quantization to integer space operation. Finally, the 

receiver calculates ˆˆ ˆ
R MMSE R MMSE− −

=s Tz  and restricts ˆ
R MMSE−

s  

to the original constellation. The block diagram for a LR-aided 

detector is shown in Fig. 1. 

D. LR-Aided Robust MMSE-SIC Detection 

As Ĥ
�

 is only roughly orthogonal, the mutual interference 

of the transformed signals 
i

z (the i-th element of z ) is small, 

but still present. Thus, successive interference cancellation 

techniques may result in additional improvements. As shown in 

[15] MMSE-SIC can be well described in terms of the QR 

decomposition of the expanded channel matrix H  in (6). 

Similar to the previous LR-aided robust MMSE detection, we 

can develop the LR-aided robust MMSE-SIC detection 

according to the modified  extended channel matrix Ĥ  in (9). 

Firstly, the QR decomposition ˆ =H QR
�

 is performed. Then,  

 
H

R MMSE SIC− −
= = +z Q x Rz η�  (13) 

is computed. Where, the newly defined noise term η  also 

incorporates residual interference. Due to the upper triangular 

structure of R , the M-th element �
M

z is free of interference 

and can be used to estimate 
M

z . Proceeding with 
1 1

, ,
−
�� �

M
z z  

and assuming correct previous decision in each step, the 

interference can be perfectly cancelled. After getting 

ˆ
− −

z
R MMSE SIC

, Similarly, the receiver calculate 
ˆˆ ˆ

− − − −
=s Tz

R MMSE SIC R MMSE SIC
 and restrict ˆ

− −
s

R MMSE SIC
 to the 

original constellation for next-step demodulation. 

IV. LR-AIDED ROBUST PRECODING FOR CLOSED-LOOP 

MIMO SYSTEMS 

The above detection schemes have their corresponding dual 
forms at the transmitter side, i.e., precoding schemes. Here we 
propose MMSE based LR-aided precoding and MMSE based 
LR-aided robust precoding for limited feedback MIMO 
systems. 

A. (Robust) Linear MMSE Precoding 

When =N M , the optimal MMSE precoder given perfect 

CSIT was derived in [17] with output of the precoder written as 

( )
1

H H

MMSE N

N

ρ

−

= +s H HH I s�  (14) 

         ( )
1

†H H
−

= =AH HH s AH s , (15) 

where ρ  is the ratio of total transmit power to noise power. 

( )N M N× +  extended channel matrix H  and the 

( )M M N× +  matrix A   is defined as 

 , N

N

ρ

 
 
 
  

=H H I         and        ,M M N×
  =A I 0  . (16) 



Note that 
H

M=AA I , so the term A  in precoding matrix 
†

AH  doesn’t result in transmit power amplification. When 

considering the error introduced by channel estimation and 

vector quantization, we assume that the transmitter knows the 

quantized estimation value Ĥ , error variance 
2

σ
∆H

 and 
2

σ
∆H
� . 

Then, the robust MMSE precoder [11] takes the channel error 

and noise term into account, leading to an improved 

performance in the environment with imperfect CSIT. The 

robust MMSE precoding is equal to ZF precoding with respect 

to a modified ( )N M M+ ×  extended channel matrix Ĥ  

expressed as 

 ( )2 2 1ˆ ˆ ,
N

N σ σ
ρ

∆ ∆

 
+ + 

 
=
 
 
 

H HH H I�i . (17) 

Thus, the output of the robust MMSE precoder can be 

calculated as 

        
†ˆ

R MMSE−
=s AH s� . (18) 

The above results will be used to incorporat MMSE method in 

the following LR-aided (robust) precoding algorithms. 

B. LR-Aided (Robust) Linear MMSE Precoding 

For traditional ZF based LR-aided precoding [5][6], LR is 

performed on H
T

. Instead of performing CLLL reduction on 

H
H

, we perform CLLL reduction on H
H

 and Ĥ
H

 

respectively for LR-aided precoding and LR-aided robust 

precoding, because the orthogonality of rows of H  and Ĥ  

determine the effective transmit power amplification. 

 

Figure 2.  Block diagram of  a LR-aided precoder for limited feedback 

MIMO systems.  

For LR-aided precoding given perfect CSIT, with =H TH�  
by preprocessing the transmit signal with 

†
H� , we obtain the 

receive signal 

 
†

= +x HAH s n� , (19) 

and the estimate for s  is given by 

 [ ]ˆ
M

Q=s T x
�

. (20) 

The property of H�  consisting of close-to-orthogonal rows 

leads to a significant reduction in required transmit power of 

preequalized transmit signal 
†

H s�  compared with that of linear 

preequalization via 
†

H  in (15). 

For LR-aided robust precoding in limited feedback MIMO 

systems, with ˆ ˆ ˆ=H TH
�

 by preprocessing the transmit signal 

with 
†

Ĥ
�

, we obtain the receive signal 

 
†ˆ= +x HAH s n
�

, (21) 

and the estimate for s  is given by 

 [ ]ˆˆ
M

Q=s T x
�

. (22) 

The block diagram for a LR-aided precoder in a limited 

feedback MIMO system is shown in Fig. 2. 

C. LR-Aided (Robust) Tomlinson-Harashima Precoding 

As aforementioned, SIC detector can further improve the 

performance of linear detector, so THP may also be combined 

with LR to enhance the performance of LR-aided linear 

precoder. LR-aided ZF THP was proposed in [6]. Here we 

propose MMSE based LR-aided THP and MMSE based LR-

aided robust THP. 

It is claimed that MMSE based THP first proposed in [18] 

can be implemented through QR decomposition of the 

following product of matrices expressed as 

 ( )1 H N
ρ

−
+ =H HH I QR . (23) 

However, we perform QR decomposition on H�
H

 for MMSE 

based LR-aided THP 
H H

=H R Q� . Then, using successive 

interference precancellation and modulo operation of THP, the 

output of the precoder is 

 ( )H
MMSE THP L

diag−
−

 
  

=s AQ R R Ts� iΓΓΓΓ . (24) 

where modula arithmetic operation [ ]
L
iΓΓΓΓ  is used to bound the 

value of the transmitted signal [6][20] layer by layer and L  is 

the size of modulation. At receiver, we obtain the estimate of s  

given by  

 1( )ˆ
M

LMMSE THP
Q diag −

−

  
    

=s R x
�

ΓΓΓΓ . (25) 

Similarly, QR decomposition is performed on 
†ˆ H

H
�

 for 

MMSE based robust LR-aided THP expressed as ˆ H H
=H R Q
�

. 

Then, using successive interference precancellation and 

modulo operation, the output of the precoder is 

 ( ) ˆH
R MMSE THP L

diag−
− −

 
  

=s AQ R R Ts� iΓΓΓΓ . (26) 

At receiver, the estimate of s  is obtained by 

 1( )ˆ
M

LR MMSE THP
Q diag −

− −

  
    

=s R x
�

ΓΓΓΓ . (27) 

V. SIMULATION RESULTS 

In this section, computer simulation results are presented to 

evaluate the performance of the MMSE based LR-aided robust 

detection and (robust) precoding schemes proposed in this 

paper. In the simulation, we use the channel model presented in 

Section II. The SNR is defined as symbol energy per transmit 

antenna versus noise power. 



The simulation results are based on 
6

10  Monte Carlo 

realizations of H
�

, ∆H  and ∆H
�

. In Figure 3, we assume a 

QPSK modulation and plot the average BER of the proposed 

robust LR-aided MMSE detection as a function of the SNR at 

three different channel estimation errors. For comparison, on 

the same figure we plot the performance of the traditional LR-

aided MMSE detection. As we can see from the figure, for 

relative high SNR, the proposed robust LR-aided MMSE 

detection outperforms the traditional LR-aided MMSE 

detection, and the improvement increases with the SNR in a 

certain SNR range. We can see the ceiling effect that the 

average BER of both detection schemes flattens at high SNR 

and does not improve by increasing the SNR. However, using 

the proposed robust detection the error floor has been pulled 

down by, for 0.15σ
∆

=
H

 about 30 percent, for 0.1σ
∆

=
H

 

about 43 percent and for 0.05σ
∆

=
H

 about 73 percent. 

 
Figure 3.  BER comparison for traditional LR-aided MMSE detection and 

robust LR-aided MMSE detection using QPSK with 4, 4N M= = .  

In Figure 4, we observe that both the traditional and the 

robust LR-aided MMSE-SIC detection have a better 

performance than pure MMSE detection without SIC. Because 

SIC further remove the mutual interference of the transformed 

signals 
i

z . For relative high SNR, the proposed robust LR-

aided MMSE-SIC detection outperforms the traditional LR-

aided MMSE-SIC detection when there exists channel 

estimation error. For LR-aided MMSE-SIC detection, the 

proposed robust scheme has pulled down the ceiling by, for 

0.15σ
∆

=
H

 about 35 percent, for 0.1σ
∆

=
H

 about 52 percent 

and for 0.05σ
∆

=
H

 about 80 percent. 

In Figure 5, the BER performance of traditional MMSE 

based linear precoding, MMSE based LR-aided linear 

precoding and MMSE based LR-aided robust linear precoding 

is compared. We can see the curve of MMSE based linear 

precoding and MMSE based LR-aided robust linear precoding 

coincides when 0σ
′′∆

=
H

, which is evident from the equations 

in  section III.  Moreover,  the  MMSE  based LR-aided  robust 

 

Figure 4.  BER comparison for traditional LR-aided MMSE-SIC detection 

and robust LR-aided MMSE-SIC detection using QPSK with 4, 4N M= = .  

linear precoding outperforms MMSE based LR-aided  linear 

precoding in a relative high SNR region. The error floor has 

been pulled down by, for 0.05σ
∆

=
H

 about 70 percent. Note 

that both LR-aided precoding schemes have some 

performance loss in low SNR region compared with 

traditional MMSE based linear precoding, because when noise 

power is relatively high, there exists some performance loss in 

the process of decision on a parallelogram lattice rigion. 

 

Figure 5.  BER comparison for LR-aided MMSE based  linear precoding and 

LR-aided MMSE based robust linear precoding using QPSK with 

4, 4N M= = .  

In Figure 6, we plot the BER curves of MMSE based LR-

aided THP and MMSE based LR-aided robust THP. 

Comparing Figure 5 with Figure 6, It can be seen that when 

0σ
′′∆

=
H

, the curve of MMSE based LR-aided robust THP is 

lower than MMSE based linear precoding at SNRs higher than 

20dB , while when 0.05σ
′′∆

=
H

, the curve of MMSE based 



LR-aided (robust) THP is almost the same as that of MMSE 

based LR-aided (robust) linear precoding. The performance 

improvement of the LR-aided nonlinear sequential 

interference cancellation in detection at receiver is more 

pronounced than that in precoding at transmitter. 

 

Figure 6.  BER comparison for LR-aided MMSE based  THP and LR-aided 

MMSE based robust THP using QPSK with 4, 4N M= = .  

VI. CONCLUSIONS 

In this paper, we proposed MMSE based LR-aided robust 

linear and SIC detection schemes, and MMSE based LR-aided 

(robust) linear precoding and (robust) THP with the help of 

complex Lenstra-Lenstra-Lovász (CLLL) algorithm. LR is 

applied to an extended channel matrix, with which we consider 

channel error as an integral part of the LR-aided detector and 

precoder design. Simulation results show that for relative high 

SNR, the proposed robust LR-aided MMSE based linear and 

nolinear algorithms outperform the non-robust counterparts 

respectively, pulling down the error floors to some extent. 

Furthermore, we observe that the performance improvement of 

LR-aided nonlinear method in SIC detectors at receiver is more 

pronounced than that in THP at transmitter.  
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