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Abstract
Virtual private networking (VPN) has become an increasingly important component of a collaboration 
environment because it ensures private, authenticated communication among participants, using existing 
collaboration tools, where users are distributed across multiple institutions and can be mobile. The majority 
of current VPN solutions are based on a centralized VPN model, where all IP traffic is tunneled through 
a VPN gateway. Nonetheless, there are several use case scenarios that require a model where end-to-end 
VPN links are tunneled upon existing Internet infrastructure in a peer-to-peer (P2P) fashion, removing the 
bottleneck of a centralized VPN gateway. We propose a novel virtual network — TinCan — based on peer-
to-peer private network tunnels. It reuses existing standards and implementations of services for discovery 
notification (XMPP), reflection (STUN) and relaying (TURN), facilitating configuration. In this approach, trust 
relationships maintained by centralized (or federated) services are automatically mapped to TinCan links. In 
one use scenario, TinCan allows unstructured P2P overlays connecting trusted end-user devices — while only 
requiring VPN software on user devices and leveraging online social network (OSN) infrastructure already 
widely deployed. This paper describes the architecture and design of TinCan and presents an experimental 
evaluation of a prototype supporting Windows, Linux, and Android mobile devices. Results quantify the 
overhead introduced by the network virtualization layer, and the resource requirements imposed on services 
needed to bootstrap TinCan links.
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1. Introduction
Virtual private networking (VPN) has become an
increasingly important component of a collaboration
environment because it ensures private, authenticated
communication among participants, using existing
collaboration tools, where users are distributed across
multiple institutions and can be mobile. VPNs also
allow groups from different organizations to create
transient virtual networks thereby facilitating trusted
resource sharing across the public Internet. The
majority of VPN solutions are based on a centralized
VPN model, where all IP traffic is tunneled through a
VPN gateway. This model focuses primarily on one of
these three goals: 1) secure network access to a private
corporate network, 2) circumvention of a firewall
restricting complete access to the global Internet, or
3) one-hop anonymity on the Internet. Nevertheless,
there are several use case scenarios that require a
model where end-to-end VPN links are tunneled upon
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existing Internet infrastructure in a peer-to-peer (P2P)
fashion removing the bottleneck of a centralized VPN
gateway, so called peer-to-peer virtual private networks
(P2PVPNs).

The availability of P2PVPNs also help address the
growing privacy concerns caused by recent NSA reve-
lations through programs such as PRISM [1] because
P2PVPNs create an environment where computing
devices have end-to-end encrypted P2P tunnels which
are used to route IP packets without the involvement
of a middleman. This end-to-end encryption makes
digital monitoring more challenging because there is no
overseer that has direct access to all IP traffic flowing
through the VPN, as is the case in most centralized
VPN implementations. The main challenge to address
is architecting an open VPN technology that is efficient,
robust, easy to deploy and manage in a P2P fashion
without compromising trust and while making it prac-
tical for common use in today’s Internet.

This paper presents TinCan, a P2PVPN that allows 
flexible V PN o verlays o f d ifferent t opologies t hat can 
be instantiated atop Internet infrastructure with low
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configuration and management overhead 1. TinCan
integrates with existing online social networking
(OSN) services for peer discovery and notification
to allow deployments that bootstrap private peer-to-
peer tunnels using relationships established through
intuitive OSN interfaces. The overlay implied by
private end-to-end TinCan links exposes IP endpoints,
allowing existing applications to work unmodified, and
providing a basis for overlay peer-to-peer routing in
the virtual network. The TinCan design also supports
tunneling of both IPv4 and IPv6 packets within
the VPN, which is implemented as IPv6 packets
encapsulated within UDP packets and sent over IPv4
P2P tunnels, as well as IPv4 packets within IPv6 UDP
packets.

A key goal in the design is to minimize the amount
of configuration and infrastructure necessary to sustain
these virtual private networks. Because TinCan runs on
endpoints (e.g. VMs or personal devices), it requires
little additional infrastructure for maintaining the
network. TinCan links make it possible for VMs
and mobile devices to tunnel IP traffic directly to
each other — even when constrained by NATs —
while simultaneously giving end users the flexibility
to define the IP address ranges, subnets, and access
control policies for their private network. TinCan
integrates with ubiquitous messaging overlays that use
the XMPP protocol for signaling, along with well-
adopted technologies for NAT traversal (STUN, TURN,
and ICE [2–4]) to bootstrap encrypted TinCan links. In
one use case, social peers can run TinCan to deploy
VPNs comprised of their personal devices (including
mobile) and their social peers’ devices by leveraging
existing Internet services for discovery and reflection
(e.g. Google Hangouts, Jabber.org XMPP and STUN
servers). The only requirement for deploying a TinCan
VPN is an XMPP server; therefore, end users can use
any freely available XMPP service on the Internet,
or deploy their own private XMPP server such as
ejabberd [5].

The novel design of TinCan is logically divided in
two key layers — reminiscent of the OpenFlow model,
but applied to tunnels over UDP/TCP links: 1) a
datapath packet capture/forwarding layer, responsible
for capturing/injecting packets from a virtual NIC,
and maintaining TinCan links (over UDP or TCP) to
neighboring peers, and 2) a control layer, responsible
for implementing policies for the creation and tear-
down of TinCan links. Each TinCan peer runs the two
layers; communication across modules that implement
each layer within a node is achieved through a JSON-
UDP RPC interface. The available API allows for the

1The name is inspired by tin can phones that provide private, ad-hoc
communication links between friends

control of TinCan link creation and deletion, mapping
IP addresses to identities and TinCan links, and
configuring virtual networking interface. Coordination
among endpoints and overlay routing is possible
through message forwarding along TinCan virtual IPv6
links, supporting user-defined overlay topologies and
routing policies implemented as a separate module
from the core datapath.

To demonstrate its applicability in different use cases,
TinCan implements a common datapath based on
Google’s libjingle P2P library [6], and two different Tin-
Can controllers: a “group” controller (which provides a
private subnet with a flat address space for group col-
laboration), and a “social” controller (which automati-
cally creates VPN links from social networking relation-
ships established through an external OSN provider,
for user-to-user collaboration). With the GroupVPN
controller, nodes bind to the same subnet in the vir-
tual network and can address each other using unique
private IP addresses within the scope of the VPN. In
SocialVPN mode, each user is able to define their own
private IP range/subnet and locally map social peers
to IP addresses within that subnet thus forming an
unstructured social network graph overlay topology.

The analysis shows that the TinCan design is practical
and scalable. In the experiments, a network of 300
nodes consumes 29 KB/s of bandwidth on the XMPP
server. The management of these TinCan links uses
about 1 KB/s of bandwidth per connection. The
design incurs a 14% network per-packet encapsulation
overhead. This overhead is due to our use of an
MTU of 1280 bytes — selected to minimize packet
fragmentation — rather than the traditional 1500
byte MTU along with the cost of an additional 40-
byte header necessary to encapsulate the virtual IP
packets. To measure system throughput, we conducted
an experiment between two nodes in a 1 Gbps LAN
and ran the iperf networking benchmark to obtain the
bandwidth measurements. The results show a latency
of less than 1 ms and a TCP bandwidth of 64 Mbps;
since our target is to create virtual networks across the
Internet, for most applications, the bottleneck will be
the bandwidth limit imposed by their local ISPs.

The main contribution of this paper is a novel
VPN design that leverages XMPP servers to bootstrap
end-to-end VPN tunnels, supports decoupled con-
troller/datapath model and P2P communication among
controllers to implement different VPN membership,
address mapping and overlay topology/routing poli-
cies, and leverages existing P2P technologies (STUN,
TURN, and ICE) for establishing direct and secure P2P
tunnels for IP connectivity. To the best of our knowl-
edge, this is also the first P2PVPN design that allows
computing devices to maintain their virtual IP address
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as they migrate across different networks while auto-
matically re-establishing P2P connections with other
nodes in the virtual network without the use of a relay.

The rest of the paper is organized as follows. A few
motivating use cases are described in section 2. We
summarize related works in section 3. We follow with
an abstract view of our design choices in section 4
along with our policies in section 4.3. In section 5, we
elaborate on the implementation details. The analysis is
in section 6 and we conclude in section 7.

2. Usage Scenarios
VPNs have a history as a collaboration-enhancing tool.
For instance, the Grid Applicance project [7] relies
on a P2PVPN that allows researchers from different
organizations to pool their virtual machines (VM)
together in a virtual computing cluster. By using
the HTCondor batch scheduling system [8], users are
then able to securely submit computing workloads
which are then dispatched to the geographically
dispersed VMs that form this “virtual organization”.
For a more concrete example, the Archer collaborative
environment [9] has demonstrated a system that
employed a group-oriented VPN to connect cluster
resources from various US universities, as well as
student/researcher laptops and desktops. Collaborators
may also decide to elastically augment their cluster
by adding cloud compute nodes (e.g. Amazon EC2
VMs) to their computing cluster to enhance their
capabilities. Our P2PVPN greatly facilitates this
deployment because each VM instantiated in the
cloud will seamlessly join the virtual cluster because
they will have secure IP connectivity to each other
in a scalable P2P fashion. The strength in our
approach lies in the fact that these resources can
be bridged seamlessly, without the intervention of
university network administrators, because our P2P
NAT traversal techniques allow nodes to connect
from behind university firewalls. Moreover, since these
virtual networking connections are peer-to-peer, the
P2PVPN can be deployed with minimal infrastructure
by using a public XMPP service such as Google
Hangouts to bootstrap the VPN connections. Users can
also run their own private XMPP service in the cloud in
order to have complete control over their deployments.
Through the XMPP service, user authentication and
access control is administered.

The underlying advantage of a VPN is that it
allows computing devices secure access to each other
over the public Internet. A P2PVPN enhances this
model because it ensures that only endpoints are
able to encrypt/decrypt the IP traffic removing the
reliance on a VPN gateway to handle that task. This
can be a powerful tool in collaborative environments
where a group of individuals need to quickly set up

virtual organizations to achieve a common goal. Our
P2PVPN approach makes it trivial for a group of
collaborators to create a virtual network consisting
only of trusted group members. Through this private
network, collaborators are then free to share resources
knowing that the user authentication and access control
is already handled at the networking layer. Our
tool therefore facilitates the creation of these virtual
communities through private network access. The
social aspects of our design also makes our approach
novel because it uses well-known paradigms of social
interactions to establish trust in the P2PVPN.

3. Related Works

Cloud Provider Virtual Networking. Over the past few
years, major IaaS providers have introduced network
virtualization capabilities allowing users to create
their own isolated virtual network and define IP
address ranges and subnets on the cloud. IaaS vendors,
such as Amazon EC2, Windows Azure, and Google
Cloud Engine, also enable additional features such
as specifying DHCP and DNS setting for the private
network. Moreover, users can define routing rules and
network access control for the network and IPSec VPN
gateways which make it possible to combine multiple
different subnets from a private or public clouds. It is
clear that the cloud computing industry understands
that network virtualization is a crucial component for
cloud provisioning; however, there is no open standard
or interoperability, thus placing the entire burden on
users desiring cross-cloud deployments.

Third-Party Commercial Virtual Networking. To
address challenges in network virtualization across dif-
ferent clouds, various third-party commercial solutions
have emerged. VMware NSX [10] is a network virtu-
alization technology that runs at the hypervisor level,
recreates the whole network in software at both layers 2
and 3, and also supports Xen and KVM. It uses a virtual
switch in the hypervisor to connect to other virtual
switches, virtual bridges or virtual routers, while only
requiring an IP backplane for connectivity. It also sup-
ports virtual networking across different data centers
since the virtual networking components connect over
IP. However, this solution is difficult to support across
multiple providers, as it requires privileged access to
the hypervisor. Both VNS3 [11] and RightScale’s Cloud
Management [12] products let users provision virtual
machines in the same virtual private network across dif-
ferent public cloud providers through a common inter-
face. VNS3 runs a virtual appliance manager at each
cloud provider and implements a virtual switch/router,
and a VPN gateway in the appliance; hence, VNS3 is not
dependent on the underlying cloud provider’s virtual
networking technology because it reimplements its own
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in the cloud on top of the IP backplane. RightScale pro-
vides a unified wrapper around the virtual networking
API of various cloud providers and greatly simplifying
the deployment of virtual networks spanning multi-
ple public clouds. However, these third-party solutions
require additional resources to configure and manage
these networks, again placing a significant burden of
configuration and management on end users. While
this burden may be acceptable in environments where
dedicated staff is employed to manage the virtual net-
work components, it becomes a significant barrier for
small/medium-scale deployments — a typical use case
of clouds. TinCan targets the needs of users who are not
willing to afford the configuration and management of
additional virtual network infrastructure.

Overlay Virtual Networking Research. Academic
and industry research have explored applicable solu-
tions for virtual networking that allow geographically-
dispersed nodes to create virtual private networks
across the Internet. IBM researchers have developed
VirtualWire [13] which implements a layer 2 virtual
network tailored to the deployment of legacy applica-
tions and VM migration across different physical net-
works. Virtualwire is a hypervisor-level virtual network
integrated with the Xen-Blanket [14] nested virtualiza-
tion technology, enabling VM migration across public
clouds. VIOLIN [15] uses a very similar approach to
Virtualwire providing layer 2 networking with compo-
nents such as switches and routers implemented purely
in software. A drawback with these approaches is that
users are still required to configure virtual switches,
routers, and deploy their own DHCP and DNS servers
within the virtual network. The TinCan approach does
not necessitate setting up additional DHCP and DNS
servers.

VNET [16] provides layer 2 connectivity across
different physical networks and it is also implemented
at the hypervisor level. This is accomplished through
a layer 2 proxy that bridges two different networks
across the Internet. All of these previous works
do not explicitly deal with NATs and firewalls,
and assume the availability of VPN gateways and
virtual routers with public IP connectivity. As the
pool of IPv4 addresses becomes more scarce —
compounded by recursive virtualization and the
use of containers — establishing end-to-end virtual
network links across NAT-constrained devices becomes
increasingly important. VINE [17] is a layer 3 virtual
networking alternative which supports NAT/firewall
traversal through relaying. However, it requires users to
configure the virtual routers and does not provide end-
to-end tunnels that bypass a relay/router node. Our
work enables direct end-to-end IP tunneling without
the need for a router middleman because each node
runs an IP router locally.

Host-based and Mobile Virtual Networking. Open-
VPN [18] is a solution that is applicable in mobile
virtual networking. However, OpenVPN follows a
client/server architecture where all IP traffic is routed
through a central gateway. This incurs high latency
and creates a resource bottleneck. Many other solu-
tions improve on the OpenVPN model; for instance,
Hamachi [19] uses a proprietary central server to setup
P2P connections between hosts, even through NATs and
firewalls. IP traffic is tunneled over these encrypted
P2P connections. Other approaches such as Tinc [20],
Vtun [21], and N2N [22] all create mesh VPNs where
nodes create direct connections to each other, but they
require nodes to be openly accessible over the Internet.
While these solutions can potentially be used to enable
wide-area virtual networking, they are not currently
supported by mobile platforms, and do not provide a
flexible overlay architecture that supports other VPN
topologies, such as those implied by friend-to-friend
social network graphs. UIA [23] is a closely-related
design aimed at providing ad-hoc virtual networking
for mobile devices. One key difference in TinCan is the
use of existing infrastructure, including OSN providers,
to mediate peer discovery and bootstrapping. Previous
work, IPOP [24], is a peer-to-peer VPN based on a
structured P2P overlay for bootstrapping direct connec-
tion between nodes. While sharing similar goals, Tin-
Can addresses several limitations of the IPOP design:
in IPOP, peer discovery, bootstrapping, reflection, and
relaying are provided by an overlay where peer-to-
peer communication is layered atop a common struc-
tured P2P library (Brunet). TinCan decouples discovery,
reflection, relaying and bootstrapping, decouples data-
path from control modules, and exposes P2P communi-
cation through virtual IP links, allowing multiple over-
lay topologies. Our TinCan design does not depend on a
structured P2P overlay, it uses publicly available STUN
servers and XMPP servers to bootstrap P2P connections.

4. Design
This section describes the core components of the Tin-
Can design which include a packet capture/forwarding
datapath module, a network controller module, a dis-
covery/notification overlay, reflection and relay servers.
TinCan primarily enables an extensible framework
for building P2PVPNs for various types of deploy-
ments. While the TinCan design supports other imple-
mentations, currently TinCan uses XMPP for discov-
ery/notification, STUN for reflection, and TURN for
relaying, and leverages the libjingle P2P library (devel-
oped by Google) to establish and maintain P2P TinCan
links using the aforementioned services. The Session
Traversal Utilities for NAT (STUN) protocol specifies
how nodes behind network address translators (NAT)
can discover their public IP address and port. Such
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Figure 1. TinCan Components and Overview

information is crucial for establishing P2P connec-
tions with remote social peers over the Internet. The
Traversal Using Relays around NAT (TURN) protocol
describes how nodes behind restrictive (symmetric)
NATs and firewalls can connect to each other through
an intermediary relay node. Both of these protocols
are widely used by SIP and WebRTC technologies (e.g.
Google Hangouts). Figure 1 gives a general overview
of the services involved in deploying the system. In
figure 2, we demonstrate how unmodified applications,
such as SSH, communicate through TinCan routers
installed on each device. Through the TinCan frame-
work, collaborators can reuse existing tools via their
trusted P2PVPNs.

4.1. Endpoint-Hosted Components

Datapath packet capture/forwarding module. This
component is a user-level module that runs on the end
user device. It creates a virtual networking interface
(vNIC) on the local operating system to capture and
inject IP packets to/from local applications. It also
possesses the mechanics of creating, maintaining, and

tearing down encrypted TinCan links to peers, and
manages a local routing table that maps a virtual IP
address of an appropriate TinCan P2P link. In a typical
packet flow scenario, this module reads an IP packet
from the vNIC on the local OS, uses the destination
IP address to lookup whether a mapping to a TinCan
P2P link exists. If a TinCan link exists, the IP packet
is encapsulated and sent directly over this link to the
receiving data path module at the other endpoint node.
Upon receiving the IP packet, the receiver decapsulates
and injects it in the local vNIC (see figure 2).

The datapath module tracks the state of the local
P2P links, and maintains a connection to one or
more notification overlays (e.g. XMPP servers). TinCan
links are typically tunneled over UDP — as it is
most amenable to NAT traversal — and use DTLS for
privacy, authentication, and integrity. DTLS stands for
Datagram Transport Layer Security and it is the UDP
version of the TLS protocol. The design also uses keep-
alive messages to determine the state of P2P links,
and uses the notification overlay to verify that online
peers that are available to accept TinCan connections
requests. This module is responsible for implementing

5 EAI Endorsed Transactions on 
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e4EAI for Innovation
European Alliance



P. St Juste et al.

Operating System 1

Kernel
tap0

tap0
Kernel

Operating System 3

Operating System 2

Kernel
tap0

172.31.0.100 172.31.0.102

p2p_link1

p2p_link2

IP Address P2P Link

172.31.0.101 p2p_link_1

172.31.0.102 p2p_link_2

172.31.0.0/24 127.0.0.1:5801

Routing Table

Unmodified applications send IP packets to SocialVPN data module through
the VNIC (tap0) and the routing table determines which P2P link is used to
route IP traffic. Unmapped IP packets are forwarded to controller on the
localhost (127.0.0.1:5801).

Figure 2. Applications Communication through TinCan Routers

the mechanisms to maintain TinCan links; however,
it does not prescribe the policies associated with link
creation and tear-down. To this end, it exposes an
RPC interface to the controller module, decoupling
mechanism from policy. The RPC API exposes the
following functionality: 1) configuration of the virtual
network interface, 2) creation and deletion of TinCan
links, 3) registration into the notification overlay, and 4)
adding a mapping for a destination virtual IP address
(see figure 3).

Network Controller. The controller module imple-
ments different policies for managing TinCan links and
the overlay topology. Through the API exposed by the
datapath module, the controller determines the criteria
for TinCan link creation, deletion, and the mapping of
IP addresses. For example, a controller may implement
a policy to create P2P connections when a node joins
the network for a small-scale VPN with a proactive link
creation policy, or only create connections on demand
when virtual IP traffic is detected between endpoints.
The controller also manages the configuration of the
vNIC, including the IP address and network mask.
Moreover, it maintains the necessary credentials to con-
nect to the discovery overlay for certificate exchanges
with peers in setting up private TinCan links. Figure 5
shows an example configuration for a controller.

In addition to programming local forwarding tables,
the controller is also responsible for routing virtual IP
packets not mapped to local TinCan links through one

or more hops. This mechanism is used to route packets
when a direct TinCan link is not available, for instance
while a link is being initialized. Controllers bind to an
IPv6 vNIC that allows it to communicate to neighboring
controllers over TinCan links; this private IPv6 address
is configured with a unique node ID which can be used
for identifier-based routing. In doing so, the controllers
can use this mechanism to implement different overlay
topologies and routing algorithms without requiring
changes to the core datapath (see figure 4). Finally,
the controller also determines the policies for various
network events such as node arrival and departures,
TinCan connection requests, and link failures.

4.2. Internet-Hosted Components
Notification/Discovery Overlay. As stated above, the
datapath module maintains a communication link with
a notification overlay (e.g. XMPP server) that allows
for the advertisement of network-wide events such as
node arrivals and departures. The notification overlay
plays the role of the trusted out-of-band channel
for bootstrapping encrypted TinCan connections (see
figure 5). When two nodes decide to create a
TinCan connection, they exchange a list of candidate
endpoints (i.e. public and private IP addresses and
ports) and security credentials (i.e. X.509 certificate
fingerprints). The notification overlay provides the
following primitives: 1) multicast notification to peers
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connected to the overlay (e.g. XMPP buddies), 2) unicast
message delivery to a specific node, and 3) node
authentication and message integrity guaranteeing
trusted node identity and message delivery.

Reflection and Relay Servers. There are two
services needed in the public network to enable the
bootstrapping of TinCan links through NATs and
firewalls. First, reflection servers are used to inform
nodes of their public-facing IP addresses and ports.
Nodes are then able to exchange their public IP
information with other nodes through the notification
overlay to bootstrap TinCan connections. While most
NATs are amenable to UDP NAT traversal, around
8% of the time [6], nodes behind symmetric NATs or
some restrictive firewalls cannot create direct TinCan
connections (see figure 1). In those cases, they require
the assistance of a relay server with a public IP address.
A relay service serves as an indirect communication
path when a direct TinCan link cannot be established.

4.3. Controller Policies

A key aspect of the TinCan design is extensibility,
accomplished through decoupling of the controller and
data path. This approach is inspired by OpenFlow [25],
but applies at the IP layer over tunneled links, rather
than at layer 2 flows over physical links. To illustrate
the extensibility of the design, this section describes
two different controller models: a “group” VPN for
virtual private clusters, and a “social” VPN connecting
personal (and mobile) devices of social peers (see
figure 4). For the former use case, the controller creates
a VPN where nodes join the same virtual subnet (e.g.
10.10.0.0/16) and IP addresses are assigned by the VPN
network creator. Virtual IP addresses are bound to node
identifiers within the scope of this VPN by configuring
the node ID to be a cryptographic hash function of
the virtual IP address. TinCan links are created on-
demand in response to IP packets being captured by the
datapath module; while links are setup, packets may
be dropped by a controller, or routed through overlay
hops. In the “social” VPN model, the controller creates
VPNs where per-endpoint virtual network address
spaces are created at each node, peers are mapped
dynamically to IP addresses within this namespace,
and address translation is handled transparently. For
instance, Alice has friends Bob and Carol; her VPN
binds virtual IP addresses of Bob and Carol to a local
private subnet (e.g 172.31.x.y). Bob and Carol have their
own mappings of friends to virtual IP addresses within
the local IP address space (e.g. Bob uses 10.15.x.y, Carol
uses 192.168.5.y). Alice may link to Bob and Carol,
while Bob and Carol may not have a direct link to
each other if they are not friends. So far, we have only
implemented two different types of controllers but we

envision other controllers with various IP allocation and
management policies.

Network Admission. Nodes joining the network
advertise themselves and exchange connection infor-
mation for bootstrapping P2P links through a trusted
notification overlay. Hence, admission to the network
is controlled by establishing identities and member-
ship (e.g. friend-to-friend, or groups) in the notifica-
tion overlay. In the group VPN scenario, each node in
the network is given the following network settings:
a private IP address and netmask, the network ID,
the address of the notification overlay service, and a
username/password for accessing the group through
the overlay (see figure 5). For example, suppose Trent
is a trusted user responsible for creating a VPN. Trent
creates a personal VPN and distributes credentials for
authentication and network access for each endpoint
to join the notification overlay. Alternatively, Trent may
establish relationships (e.g. XMPP buddies) with other
users who are authorized to join the VPN. Trent would
then determine the IP address range and netmask for
the network and distribute these settings to each VM
that joins the virtual network. In the social VPN case,
users have their own customized view of the network
and thus define their own peer-to-peer trust relation-
ships in the notification overlay, and select their own
local private IP address and netmask. In social mode,
users are not required to share XMPP credentials to
other members of the VPN because TinCan leverages
existing social relationships to determine admission
into the P2PVPN; therefore, only a user’s XMPP buddies
will be part of a user’s social VPN.

Proactive Link establishment. If the controller
implements a “proactive” link policy, it triggers a
connection request as soon as a node joins the
notification overlay and proactively creates TinCan
P2P links to peers even if no IP packets are flowing.
This policy has the benefit of reducing latency for
packets, but comes at the cost of increased resource
utilization (ports and bandwidth). The proactive link
policy implied by this approach may be applicable for
small overlays [26], but is not scalable (see figure 4).

On-Demand Links. An alternative controller policy
is “on-demand connections” where TinCan links are
formed when the controller receives a packet with a
destination IP address that is not currently mapped to a
TinCan link. This event triggers a connection request
through the notification overlay, which results in a
new TinCan link being mapped to the destination IP
address. Such a policy causes a delay when connecting
to new IP addresses. The controller with this policy also
limits the number of connections, and can expire links
with inactive IP flows.

Social Profile Links. Another connection policy
deals is one where nodes are only interested in con-
necting with social peers rather than every node in a
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APPS:
(ssh,browser,
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PNIC
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connect_to_overlay

set_local_vnic_ip

create_connection

map_ip_to_p2p_link

get_connection_state

destroy_p2p_link

node_join_network_event

node_leave_network_event

3. Virtual IP packet is
encapsulated and sent
inside a UDP packet
over the Internet

1. Network controller
uses JSON-RPC to tell
datapath module which
overlay to use, local 
configuration for vnic0,
creation and setting routes
for P2P connections

2. Datapath module
captures IP packets from
user apps from tap0

Routing Table
10.10.0.1 => link1
10.10.0.2 => link2
10.10.0.3 => link3

XMPP:
talk.google.com

STUN: 
stun.google.com

local ipv4:
10.10.0.1/24

local_ipv6:
fd50:::41f2/64

p2p_conn_limit: 50

Kernel

Figure 3. Interaction between TinCan Modules

particular group. In this model, peers create proactive
links with friends that they have frequently communi-
cated with in past sessions, and on-demand or multi-
hop routing through common friends for nodes for
which communication is infrequent. Other policies may
include a combination of on-demand and proactive con-
nections, and create overlay topologies that attempt to
match communication patterns expected (or observed)
by applications (see figure 4).

IP Addressing and Translation The controller has
the flexibility to assign an IP address to the device
and map friends to IP addresses in a subnet range
that does not conflict with the local network. Each
controller is able to select its own subnet range
without coordinating with a centralized entity or
other controllers. Therefore, in “social vpn” mode,
each controller can select a different subnet for their
network; meaning that IP addresses are only valid
locally. This is of crucial importance for IPv4 addresses
where the virtual address space is limited and can
lead to IP conflicts. Since each user defines their own
network, they can freely select IP addresses without
fear of network subnet collisions. The datapath module
performs IP packet translation on incoming packets
which ensures no IP conflict following the approach
described in previous work [27]. For example, Alice
maps her mobile phone to 172.31.0.1 and maps Bob
to 172.31.0.2. On his mobile device, Bob’s controller
maps his mobile device to 192.168.0.1 and maps Alice
to 192.168.0.2. Hence, Alice is able to reach Bob’s
mobile phone using the 172.31.0.2 IP address and the IP
translation performed by the datapath module on Bob’s
phone would make it seem as if the request came from
192.168.0.2. The proposed design also readily creates

a private IPv6 address space and pseudo-randomly
assigns IPv6 addresses to nodes in the network. Since
the IPv6 address space is so vast, no IP translation is
necessary due to much lower probabilities of collisions
in the virtual IP space.

5. Implementation
The current TinCan implementation reuses existing
technologies and infrastructures that enable P2P
connections for both SIP and WebRTC standards
by leveraging Google’s libjingle [6] P2P library to
create private TinCan links. XMPP servers (possibly
federated) serve as the discovery/notification overlay.
By using STUN and TURN servers for reflection and
relaying, which are Internet services already freely
accessible, users can deploy their own VPNs without
any additional infrastructure.

5.1. Endpoint-Hosted Components
Packet capture/forwarding. The datapath packet
capture/forwarding module is written in C/C++ and
currently runs on Linux, Android, Windows and
OpenWRT. Through the TUN/TAP kernel driver,
TinCan is able to receive and send Ethernet frames
to the vNIC. TinCan uses libjingle [6], leveraging
its adoption in existing software (e.g. the Chrome
browser). While the typical use of libjingle is for
audio/video streaming in WebRTC, TinCan uses it to
tunnel virtual IP packets.

Controllers. The controllers are written in Python
and run as a separate process on the local machine.
Controllers access the datapath module’s API through a
JSON-RPC interface over a UDP socket. The controller
uses the API exposed by the datapath module to:
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Centralized VPN
Only one connection created to
gateway and all traffic sent through it

Social VPN
P2P connections are created only to
social peers resulting in a social graph

Group VPN
P2P connections created to all peers in
the same network n(n-1)/2 connections

Figure 4. VPN Topologies

• Register with credentials to the XMPP overlay

• Setup the local vNIC with IPv4/IPv6 addresses,
and netmask

• Create/Delete a TinCan link over jingle

• Map an IP address to a TinCan link

• Query the state of a TinCan link

• Handle notifications received through the XMPP
overlay (e.g. new node presence, request to
connect)

• Handle notifications received from the data path
module (e.g. to forward virtual IP packets to other
controllers when the destination is not mapped to
a local TinCan link)

Through the API, one can extend TinCan to support
various combinations of policies and deployments
based on anticipated use cases.

5.2. Internet-Hosted Components
XMPP Notification Overlays. The messaging overlays
play a crucial role in providing access to the
network and as well as serving as a trust anchor
for signaling and bootstrapping private TinCan links.
The XMPP protocol accomplishes this role by securely
routing XML messages through user authenticated TLS
connections (see figure 5). Hence, TinCan-based VPNs
are able to utilize public XMPP providers (such as
Google Hangouts or Jabber.org), as well as use their own
XMPP service (e.g. an ejabberd server) if they desire that
level of control.

STUN and TURN Servers. For the reflection and
relay servers, the STUN and TURN protocols are
used, respectively. These technologies are used in the
SIP/WebRTC communities to enable P2P connections

for audio and video conferencing; as a result, there
are many publicly available STUN servers that TinCan
can utilize when creating P2P connections. For some
nodes behind symmetric NATs or restrictive firewalls,
an XMPP server and STUN server may not be enough to
bootstrap a TinCan link; therefore, less than 10% of the
time [28], these nodes require the assistance of a relay
server to help proxy their TinCan connections. The
TURN standards [3] provide such a relaying capability.
Google Hangouts is an example of an existing service
that already provides such a capability for its users;
therefore TinCan links can leverage that for connection
relaying through libjingle. There are also many open-
source implementations of TURN relays. This work uses
one of those implementations [29] for experimentation.

5.3. Bootstrapping Private TinCan Links
TinCan assumes that the XMPP server is a third party
trusted for peer discover, notification, and exchange
of X509 certificate fingerprints. Users can connect to
servers they trust, or deploy their own private XMPP
server. All communication from TinCan modules to the
XMPP server is encrypted at the socket layer using
transport layer security (TLS). A user authenticates
herself with the XMPP server and broadcasts a presence
probe to all peers (or buddies in XMPP terminology)
that are part of their group. Therefore, all of the nodes
within the group that are connected to the XMPP server
receive the presence probe. Each node in the network
periodically broadcasts a ping message to all other
nodes in the network every two minutes. The datapath
module maintains a list of online peers along with the
timestamp of their last XMPP broadcast message. Once
peers are able to discover and notify each other through
the XMPP server, they can proceed to create trusted
TinCan links.

To this end, a connection request is created
containing the requester’s X.509 fingerprint, a list of
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Node Configuration
Name = Bob
UID = sha1(10.10.0.2)
Virtual IP = 10.10.0.2
Public IP = 137.23.45.123
Public port = 34532
XMPP Host = talk.google.com
XMPP user = bob@gmail.com
XMPP password = bob1234

1
Maintain SSL connection
to XMPP server to receive
events (node join/leave)

2
Exchange X.509 fingerprint and
public IP:port via XMPP when
new nodes join the network

3
Form encrypted P2P tunnel
and send all IP packets with
destination 10.10.0.2 to Bob

Node Configuration
Name = Alice
UID = sha1(10.10.0.1)
Virtual IP = 10.10.0.1
Public IP = 24.95.145.45
Public port = 40581
XMPP Host = talk.google.com
XMPP user = alice@gmail.com
XMPP password = alice1234

Figure 5. Bootstrapping TinCan Connections

endpoints containing private/public IP addresses with
port numbers, and security credentials to ensure access
control for the connection. The request is then sent
to the peer over the XMPP overlay. The recipient
replies to the request with a query response mirroring
the contents of the request: X.509 fingerprint, list of
endpoints, and security credentials. Once both sides
have the necessary information, they initiate a TinCan
link with each other by sending packets directly to
these public IP addresses until a response is received
(see figure 5). This process follows the Interactive
Connectivity Establishment (ICE) RFC [4].

As mentioned earlier, nodes exchange their X.509
certificate fingerprint as part of the connection
request/reply messages. To encrypt the link, the
libjingle library uses the OpenSSL Datagram TLS
(DTLS) protocol with peer certificate verification. Once
the certificates have been successfully verified and
a symmetric key is derived from the Diffie-Hellman
exchange, the DTLS protocol can proceed to encrypt
data flowing through the P2P channel between the
peers. IP packets picked by the vNIC interface are
encapsulated into data packets sent over the link, and
thus protected by DTLS. It is possible to apply IPsec-
layer end-to-end security atop of the virtual network
overlay as well.

6. Analysis
Various experiments were conducted to understand
the resource requirements of the TinCan design. This
analysis also focuses on measuring the overhead of
maintaining the VPN, packet processing, and the power

consumption on mobile devices. In order to make these
experiments reproducible, all of the source code is
open on Github at http://github.com/ipop-project. To
test scalability, we setup a 300-node deployment on
FutureGrid [30] using a mix of virtual machines and
Linux containers (LXC). FutureGrid is an experimental
Infrastructure-as-a-Service (IaaS) cloud environment
that is available for academic research.

By running a 300-node experiment, we are able to
analyze the bandwidth usage on the XMPP server, as
well as the maintenance cost of managing TinCan P2P
links. Rather than reuse existing infrastructure such as
Google XMPP and STUN servers, for these experiments,
independent ejabberd XMPP and STUN servers were
deployed in order to have greater control over the
testing environment. This experiment consisted of 8
virtual machines (VMs) running Ubuntu 13.10. One
VM ran the notification overlay service, we used the
ejabberd [5] open-source XMPP server implementation.
Another VM hosted the reflection and relay servers, we
also used another open source implementation of the
TURN protocol to enable these services [29]. For these
two deployments, the bandwidth load on the XMPP,
STUN and TURN servers is summarized in Table 1.

Each of the remaining 6 VMs ran 50 instances
of our TinCan implementation through the use of
Linux containers (LXC [31]) which is a lightweight
virtualization technology. Using LXC allows for more
efficient utilization of resources because it makes
it possible to simulate a 300-node network without
needing to use 300 VMs or personal devices. The
LXC environment is configured to create an isolated
virtual network for the containers residing in the
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LXC1

VM1 on FutureGrid

LXC2 LXC3 LXC4

VM2 on FutureGrid

LXC5 LXC6

Iptables NAT Iptables NAT

XMPP STUN TURNVM3 on FutureGrid VM4 on FutureGrid

Cloud Infrastructure: FutureGrid
Firewall/NAT: IPTables
Virtualization: Linux Containers

Infrastructure Details
VM OS: Ubuntu 13.10
XMMP Software: ejabberd
Number of Containers: 50 per host

Experiment Setup Details

Figure 6. Experimental Setup Details

same VM; these containers are then able to connect
to the outside world through the IPtables symmetric
NAT (see figure 6). Therefore, the nodes running on
different VMs have to rely on the relaying service
(TURN) because the symmetric NATs do not allow for
UDP hole-punching thus precluding direct TinCan P2P
connections. In practice, typical usage scenarios are
unlikely to be as constrained by symmetric NATs, nor
is the use of a proactive all-to-all policy recommended
for all but small-scale VPNs, since it does not scale well.

For this experiment, we utilized the “social vpn”
controller to represent the use case where end users
would like their personal devices (e.g. desktops,
laptops, tablets, smartphones) along with their friends’
devices to belong to the same SocialVPN and thereby
having secure network access to each other. In this
model, social relationships are mapped to TinCan VPN
connections; for example, if Alice has a friend Bob, then
if they run TinCan in SocialVPN mode on their devices,
these devices will automatically join each other’s social
virtual private network. Hence, the TinCan P2P links
in the SocialVPN mode will resemble the edges of
a social graph because each VPN link represents a
social link (see figure 4). To simulate this social graph
environment, we used the Barabasi-Albert model from
the NetworkX graph library [32] and generated 300-
node graph with 1475 edges (or TinCan links).

Table 1. Experimental Setup Summary

Parameter Value
Number of VMs 6
Number of Containers per node 50
Number of nodes 300
Number of connections 1475
Bandwidth Cost for TinCan connection 1 KB/s
Average Traffic at XMPP server 19 KB/s
Average Traffic at STUN server 27 KB/s
Average Traffic at TURN server 145 KB/s

6.1. Bandwidth Costs
During this deployment, the average bandwidth
consumption at the XMPP server is about 19 KB/s;
this shows that our protocol incurs very little traffic
on the XMPP server. This traffic is primarily the
periodic ping messages that each node in the network
send to each other to indicate that they are still
alive. In the case of the reflection (STUN) server,
the TinCan implementation running on the end-nodes
sends a 64-byte STUN binding request and receives
a 72-byte STUN binding response every 15 seconds
per connection. Therefore, the bandwidth cost on the
STUN server for supporting our deployment of 1475
TinCan connections is about 27 KB/s (or 0.18 KB/s per
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Table 2. VPN Network Performance

Latency TCP UDP
LAN 0.5 ms 325 Mbps 320 Mbps
TinCan DTLS 1.07 ms 64 Mbps 47 Mbps
TinCan no DTLS 1.07 ms 84 Mbps 128 Mbps

connection). Also there are numerous freely accessible
STUN servers on the web hosted by Google and others
meaning that these resources can also be leveraged
for the reflection service. Table 1 summarizes the
bandwidth costs of the deployment.

In order to calculate the bandwidth cost on the
TURN relay server, it is important to understand the
maintenance cost of each TinCan connection. Libjingle
sends a STUN user request every 500 ms and expects a
Success Response; the average size of these packets is 130
bytes. These ping packets help libjingle keep track of
the state of the TinCan link in terms of latency, jitter,
and link failure. Therefore, each TinCan connection
consumes about 1040 bytes per second as connection
maintenance overhead. When a TURN server is used
for relaying, these ping messages are routed through
the relay. According to Google research, about 10% of
P2P connections require a TURN relay and therefore,
supporting a 300-node network with 1450 edges would
necessitate a relay service for about 145 connections
costing about 145 KB/s for connection maintenance.
It is important to note that the TURN service would
also have to relay IP traffic between the nodes that
it supports and therefore deploying a TURN service
requires thoughtful planning and proper access control.
TURN implementations provide user authentication
making it possible to identify different connections and
apply bandwidth limitations per user. For instance, it
is possible to configure a TURN server to only allow a
maximum of 50 KB/s throughput per connection and
limit the number of connections. However, since the
relay service is required in the face of symmetric NATs
(i.e. less 10% of the time) it is possible to support up to
1000-node network on a single TURN server. There are
also commercial offerings such as turnservers.com that
provide this relay service for a fee if users do not want
to deploy their own TURN service.

6.2. Network Performance
One of the drawbacks of the TinCan design is that,
instead of dedicated virtual switches and routers, each
node runs their own virtual router that tunnels IP
packets to the appropriate TinCan links. Therefore,
every IP packet has to be encrypted, decrypted, and
translated. This user-level packet processing can greatly
constrain network performance. In this experiment,

the iperf network benchmarking suite measured the
maximum bandwidth achievable by TinCan between
two nodes in the same gigabit LAN. As shown in
table 2, TinCan achieves 64 Mbps for TCP and 47
Mbps for UDP with DTLS encryption, but without
encryption the bandwidth increases to 84 Mbps for
TCP and 128 Mbps for UDP. A possible optimization
for LAN environments is to bypass the overlay and
allow TinCan nodes in the same LAN to directly route
packets to each other without encryption, as described
in [33]. TinCan supports this router-mode of operation;
in this mode, containers or VMs on the same host
can all share a single instance of the TinCan router.
Local nodes can therefore communicate directly with
each other and only use the TinCan pathway to private
connect with remote nodes outside of their LAN. It
is also possible to run TinCan in OpenWRT-enabled
routers, this approach would also make it possible
for local nodes to communicate directly without the
overhead of the local processing and they would also
have connectivity to nodes in the P2PVPN since the
OpenWRT router would now have a connection into the
network.

Understanding the time it takes to create a TinCan
connection is crucial in designing a controller when
considering a proactive connection policy versus an on-
demand connection policy. As shown in figure 7, the
median connection setup time is about 6.3 seconds,
with the 75% percentile at 7.8 seconds but in the worst
case, it may take up to a few minutes to bootstrap
a connection due to dropped connection requests.
Therefore, it may not be ideal to use an on-demand
connection policy if an application generates bursty
traffic that is sensitive to high latency start-up times.
For the proactive connection policy, this connection
setup only occurs once when a node joins the network;
afterwards, TCP/IP connections through this TinCan
link will not be subject to this long setup time. For the
on-demand policy, the controller has to determine when
to create or trim TinCan connections. For instance,
one option might be to trim a TinCan connection if a
link has been idle for five minutes; in this case, nodes
will have to re-experience the connection setup-time in
order to re-establish a connection with a trimmed link.

6.3. Encapsulation Overhead

The proposed design incurs packet overhead due to
the additional headers necessary for IP encapsulation.
Another source of overhead is the selection of a
relatively small MTU for the vNIC. Ethernet devices
typically have an MTU of 1500 bytes, but using an MTU
of 1280 bytes minimizes the probability of UDP packet
fragmentation. Moreover, the TinCan implementation
uses a 40-byte header for each packet consisting of a
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Figure 7. CDF of 1450 Connection Times. 75% of connections
take less than 8 seconds.

Figure 8. File Transfer Percentage Overhead. Due to MTU of
1280 and extra 40-byte header for IP encapsulation, there is a
14% overhead in the extra number of bytes sent over the network
for the same file size when compared to WiFi.

20-byte source unique identifier (UID) and another 20-
byte destination UID. The 160-bit UIDs creates an extra
level of indirection which facilitates packet routing in
the network. Consequently, a small MTU and the extra
header has an adverse impact on network performance.

The following experiment quantifies the network
overhead. For this setup, there is a TinCan network
of just two nodes, a Samsung Galaxy Tab 10.1 and an
Ubuntu 12.04 workstation. The tablet has a 1GHz dual-
core Nvidia Tegra 2 processor and 1GB of RAM and
the workstation is a 3.0GHz Intel Core 2 Duo with 8GB
of RAM. By performing file transfers of different sizes
as shown in figure 8 over both WiFi and TinCan, the
results show an average network overhead of 14%. This
overhead can be reduced by choosing a higher MTU
closer to 1500 bytes and by using a smaller header size
(e.g. 128-bit UIDs instead of 160-bit).

6.4. Mobile Power Consumption
Mobile computing support is an important aspect of the
TinCan design; hence, an experiment on the Android
tablet, with the number of connections scaled up from
1 to 23, provides insight in the power costs of TinCan

Figure 9. CPU Engergy Consumption on Mobile

Figure 10. WiFi Energy Consumption on Mobile

P2P connections. PowerTutor [34], a software-based
power measuring app available for Android, calculated
both the WiFi and CPU energy consumption. In terms
of CPU energy consumption, figure 9 shows a steady
increase in energy cost which averages about 0.13
Joules (J) per 5-minute interval ranging from 4.3 J
for one connection to 7.2 J for 23 connections. For
comparison, the LinPack for Android benchmark on
the same tablet consumes 64.7 J for the same time
interval. The WiFi energy consumption in figure 10
shows a different pattern where there is a sharp
energy increase from 1 to 3 connections followed by a
steady state. As mentioned earlier, a TinCan connection
generates about 8 network packets with sizes around
130 bytes per second consuming about 1 KB/s of
bandwidth. The mobile WiFi card is able to handle
the bandwidth requirements of one connection in low-
power mode. However, once there is more than a
single P2P connection, the WiFi enters high-power
mode which increases the energy consumption by 1.5x
from 144 J to 220 J (for a 5-minute period). Since the
WiFi card remains in high-power starting with two
connections, there is no significant change in energy
consumption as the number of connections increases.

6.5. Zero Infrastructure Experiments
The key advantage of the TinCan design is the ability
for a user to create their own virtual private network
by simply running the software on their end devices or
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cloud instances and configuring it to use existing XMPP
services (e.g. Google.com or Jabber.org). To demonstrate
this, a virtual network consisting of two Android
devices was created: a Motorola Photon Q smartphone
and a Samgsung Galaxy Tab 7. The smartphone was
connected via the Sprint 4G network while the tablet
connected via WiFi network. Using the Google XMPP
servers, the two devices created a SocialVPN and
therefore had private IP access to each other as if they
are connected on the same LAN. Using the CSipSimple
Android app, the two devices could perform SIP calls
between each other. The call was performed by simply
using the devices’ virtual IP addresses as the SIP
address (i.e. sip@172.31.0.101). Consequently, secure
SIP calls were conducted over TinCan IP links through
both the 4G ISP firewall and WiFi NAT without
any registration or signaling through a SIP server.
By leveraging Google’s XMPP service along with the
dozens of publicly available STUN servers on the web,
users can easily get private IP connectivity to each other
at no cost.

7. Conclusion and Future Work
Collaborative environments are evolving to include
more mobile and cloud resources that are geograph-
ically dispersed and mobile. The increased use of
cloud and mobile computing as ad-hoc collaborative
tools have created a need for more user-defined over-
lay virtual networks which enable both node mobility
and information security. The proposed TinCan design
leverages existing overlay and P2P technologies such as
XMPP, STUN, and TURN thereby creating a solution
where users can define and deploy their virtual net-
works without needing additional infrastructure. Addi-
tionally, unlike other existing solutions, this approach
does not require special access to the hypervisor, nor do
users have to configure virtual switches and routers. To
provide layer 3 connectivity, each node in the network
runs their own virtual router which maps IP addresses
to TinCan connections. Analysis of the TinCan design
shows that a network of 300 nodes incur acceptable
bandwidth loads on the XMPP, STUN, and TURN
servers. The experiments also show that it takes less
than 10 seconds to create 75% of TinCan P2P connec-
tions. The additional headers for IP encapsulation and
smaller vNIC MTU cause a 14% network overhead. In
terms of mobile power consumption, it seems ideal to
only maintain one TinCan connection at a time to avoid
running the WiFi card in high-power mode.

The evaluations consider the overheads associated
with a single link, and for small-scale VPNs that
could be deployed with a very simple topology and
connection policy. These are feasible for small-scale
VPNs, e.g. for small virtual clusters; for VPNs scaling
to larger number of nodes (100s to 1000s), it is

clearly a requirement to reduce the number of links
in order to reduce traffic at the notification/discovery
and reflection services. One approach that scales
well and has been used in previous work is to
use a structured P2P routing overlay with on-
demand shortcut connections [24]. The choice of a
scalable overlay approach can be encoded in the
logic embedded in the controller. Future work will
consider different topology options (e.g. different
structured P2P approaches, as well as social and
random graphs) and different policies for on-demand
link establishment/tear-down. We will also explore
bootstrapping TinCan connections through friends of
friends in the mobile device deployments rather than
the XMPP server to facilitate more ad-hoc private
networking.
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