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Abstract

Security concerns are a substantial impediment to the wider deployment of cloud storage. There are two main
concerns on the confidentiality of outsourced data: i) protecting the data, and ii) protecting the access pattern
(i.e., which data is being accessed). To mitigate these concerns, schemes for Oblivious Storage (OS) have been
proposed. In OS, the data owner outsources a key-value store to a cloud server, and then can later execute get,
put, and remove queries, by collaboration with the server; furthermore, both the data and the access pattern
are hidden from the server. In this paper, we extend the semantics of OS by proposing an oblivious index
that supports nearest neighbor queries. That is, finding the nearest keys to the query in the key-value store.
Our proposed index structure for supporting nearest-neighbor has similar performance bounds to previous
OS schemes that did not support nearest-neighbor, in terms of client storage, server storage and rounds of
communication.
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1. Introduction
The benefits of cloud storage are well documented, but
a significant impediment to larger-scale use is concern
for confidentiality of the data and of access patterns
to the data. Organizations are reluctant to collaborate
with cloud servers for storage when the data involved
is supposed to be kept confidential. Some service
providers offer premium services with features that
mitigate the confidentiality problem, such as servers
that are inside national borders and are “hardened”
against network attacks, system administrators that
have specified characteristics (e.g., of citizenship, levels
of security clearance), etc. Not only are such approaches
expensive, but the sensitive data remains vulnerable to
(e.g.) rogue employees of the cloud service provider,
a break-in or malware/spyware at the remote server,
etc. This paper belongs to the body of work that
seeks to design client-server collaborative schemes
that obviate the need for using the above-mentioned
premium services, even as they provide better security:
They provide clients with access to their data, while
protecting from the server both the data and the
access patterns to it. A case can be made for using
such techniques even when the data is stored at
a trusted server, as a form of compartmentalization
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and “defense in depth” whereby the damage from
compromise of a trusted server is less widespread and
is confined to that server. In addition to the security
advantages to such compartmentalization, there are
also economic advantages: It makes it less necessary
to get high security clearances for individuals at the
trusted server’s end, and also less necessary to spend
money on the expensive physical isolation or tamper-
proofing of hardware and software (because they no
longer have access to the sensitive information – they
“use it without seeing it”).

A well known technique for protecting access
patterns is oblivious RAM (ORAM) [4]. In ORAM, the
server has a sequence of memory locations, and the
client can read or write the content from any of the
memory locations. In ORAM, the data is protected and
the server does not learn the access pattern. That is,
the server learns something was accessed, but does
not know what was accessed; the server doesn’t even
learn when the client accesses the same data repeatedly.
While this work is very promising, many distributed
storage techniques do not take the form of a RAM. To
ameliorate this problem, [2] introduced the concept of
Oblivious Storage (OS), where the storage is that of a
key-value store, which is a more widely used data model
for cloud storage (for example HBase[1] can be viewed
as such a key value store). The operations provided by
OS are: get, insert, and remove.
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The primary goal of this work is to extend the
semantics of oblivious storage. Previous work on OS
has assumed that the client has some information about
the keys that are present in the OS. An exception
to this was the miss-tolerant solution in [7] where a
client could perform lookups for non-existent keys.
In this case the server would not learn that the key
was a miss, and the client learns that the specific
key does not exist. This interface makes it difficult
to answer queries such as “give me all values where
the key is in the range [a, b]”, especially since it is
possible that neither a nor b is in the dataset. This
paper makes a significant step towards solving this
problem, by providing an oblivious index that supports
nearest neighbor queries including directional queries
that are for nearest neighbor larger than (or smaller
than) the query item. The non-directional version is
simply: Given a key, find the keys that are closest to
the given key. Note that the directional version can
easily be used to find all keys in a range [a, b], by
finding the nearest successor to a (let it be x), then
finding the nearest successor to x, etc. (In fact we can
do much better than such a naive “follow the successor”
approach, as will become apparent later in the paper.)

The rest of the paper is organized as follows: Section
2 describes related work. Section 3 gives the problem
definition and defines the building blocks used in the
paper. Section 4 describes the main result of this paper.
Finally, section 5 concludes the paper.

2. Related Work
Oblivious RAM was introduced in [4]. In ORAM, the
server has a sequence of values (pages in memory),
v1, . . . , vn. The client (who is also the data owner) can
access an arbitrary value. Almost all of the solutions for
ORAM provide an amortized performance guarantee.
For example, in one solution proposed in [4] the cost
of an access is O(

√
n) on average, but is O(n) in the

worst case. Many other schemes have been proposed to
improve the efficiency of ORAM, including: [3, 5, 6, 10,
12, 13, 15]. The scheme in [6] is particularly interesting,
because its worst case access time is sublinear.

In [2], a different model for oblivious outsourced
storage was proposed called Oblivious Storage (OS),
and this work was extended in [7]. In OS, the data store
is a key-value store, which is a more natural framework
than the RAM model. Another constraint of Oblivious
Storage is to avoid increasing the server’s storage by a
multiplicative factor, as this will increase the cost of
outsourcing significantly.

There is a growing list of papers in the framework
of storage outsourcing (e.g.[8, 14], and others). [14]
introduced the paradigm in which the service provider
hosts the database as a service, and allows clients
to store and access their own databases at the host

site, which is similar to the framework in this paper.
[8] describes several architectures that combine recent
and non-standard cryptographic primitives in order to
build a secure cloud storage service, and surveys the
benefits such an architecture would provide to both
customers and service providers.

The nearest neighbor search problem (also called
the post-office problem by Knuth [9]) is a classic
problem, and here we only review the related work
of this problem in the secure outsourcing setting.
Traditional encryption methods could hide the data
from an untrusted server, but that would also prevent
the client from doing queries like nn search or range
queries, but prefix-preserving encryption (PPE) [11, 16]
could help in handling nn search due to the fact that
the longest common prefix of any two ciphertexts is
of the same length as the longest common prefix of
the corresponding plaintexts. However, the security is
weakened since some prefix information is leaked to the
server if PPE is used to encrypt the dataset.

Another recent work on similarity search [17]
provides solutions for generic distance metrics (Lp
norm) of multidimensional data with interesting trade-
offs between query cost and accuracy, but it does not
consider hiding the access patterns from the server.
Several other related transformation-based techniques
and hierarchy-based searches (using an encrypted R-
tree to represent the database and then searching it for
query point level by level) are proposed in location-
based service (LBS) systems [18] which have the same
issue of leaking access patterns.

3. Preliminaries
In this section, we begin by describing the notation used
in this paper. The interval (x, y) includes all integers
from x to y exclusive, and when the parenthesis are
replaced by brackets (i.e., [ or ]) then the interval
is inclusive. Given a value x ∈ {0, 1}n, we define
P ref ixm(x) to be the m most significant bits of x.

Our schemes utilize a pseudorandom function(PRF)
F : {0, 1}n × {0, 1}n → {0, 1}n. We utilize the textbook
definition for a PRF in that for all PPT distinguishing
algorithms D, |P r[DFk(·)(1n) = 1] − P r[Df (·)(1n) = 1] is
negligible in n where f is a random function. Our
scheme utilizes a PRF that takes in variable length input
tuples. This is easily accommodated by an encoding
scheme that pads all messages to the same length. For
example, all strings up to n bits long can be converted
into a string of length n + logn by pre-pending the
length and padding with 0’s.

Finally, our scheme utilizes CPA-secure encryption
schemes (KeyGen, Enc, Dec) where an adversary cannot
distinguish one of two ciphertexts given oracle access to
Enc.
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3.1. Framework/Problem Definition
We are assuming an honest but curious server, which
means it will collaborate with the client and perform
specified computations, but try to learn information
about the client’s data or access pattern. A data owner
(client) that publishes a data set on the server, and
the data owner wants to be able to query its own
data while protecting the data from the server. This
includes protecting both the content and the data
access pattern. Previous work [2, 7] has introduced
the concept of oblivious storage. In oblivious storage,
the data owner publishes a key-value store on the
server. More specifically, the server stores a set of
tuples S = {(k1, v1), . . . , (kn, vn)} where n ≤ N for some
size threshold N , the keys, ki , are unique and are drawn
from a key domain [0, D − 1], and the values, vi , are
drawn from a domain of values where each value has
the same bit size (alternatively the values could be
padded to have the same size).

The schemes in [2, 7] give protocol for functions:
get(k), put(k, v), and remove(k). In [7] oblivious stores
are described as either miss-intolerant or miss-tolerant.
In a miss-tolerant data store, the server does not learn
whether a query is in the dataset or not, but this
information is revealed to the server in a miss-intolerant
oblivious store.

We seek to extend previous work in oblivious storage
by adding the semantics of a nearest neighbors that
returns the nearest predecessor and nearest successor of
a key. Informally, this takes as input a value in [0, D − 1],
and returns a tuple (np, ns) where np (resp. ns) is the
largest (resp. smallest) key in S that is smaller (resp.
no smaller) than the input. The efficiency goals are to
minimize: i) the communication, ii) the computation,
iii) the number of communication rounds, iv) the server
storage, and v) the client storage.

Formally, our goal is to define an oblivious index
structure that supports the following operations:

1. insert(k) that takes a value k ∈ [0, D − 1] and
inserts it into the structure.

2. remove(k) that removes a value k ∈ [0, D − 1] from
the structure.

3. nn(k) returns (np, ns) where np is the largest value
in the data set such that np < k, and ns is the
smallest value such that ns ≥ k.

In case there is no predecessor (resp. successor) we
want to return special symbols that represent values −∞
(resp.∞), so that there is always an answer to this query.
We also assume that there is an upper bound N on the
number of keys in the oblivious store. The store should
be oblivious in that the server should not learn which
items are being accessed (that is the server should not be
able to tell two access patterns apart). Furthermore, the

insert and remove queries should be miss-tolerant, in
that the server should not learn when an item is actually
inserted or removed.

3.2. Details of Previous Protocol for Oblivious
Storage
In this section we describe the high level details of
previous work for miss-intolerant oblivious store. The
previous work [7] has two phases: i) a query phase,
and ii) a rebuilding phase. During the query phase,
the client asks get, insert, and remove queries, and
after M queries, the rebuilding phase starts. During the
rebuilding phase, query execution is suspended, and
the server’s storage is rebuilt.

The server stores N regular tuples and M dummy
tuples. Each regular tuple corresponds to a key value
pair, (k, v) and has the form (Ff k(k), Encek(v)) where F
is a pseudorandom function and Enc is a CPA-secure
encryption scheme, and f k is a pseudorandom function
key that changes during the rebuilding phase and ek is
a key for the encryption scheme that does not change
during the rebuilding phase. The dummy items are of
the form (Ff k(−i), Encek(FAKE)) for each value i ∈ [1,M]
where FAKE is some padded dummy value. The items
are stored in a random order.

The client has local storage of size O(M) that keeps
track of all queries made during the current query
phase along with the answers to the queries (initially
this local store starts out empty). These are stored in
a data structure that allows O(1) amortized insertions
and searches by key.

To process a query get(q), the client first searches its
local store for q, and then:

• If q is in the local storage: The client sends a
dummy query to the server. That is, the client
sends Ff k(−j) to the server where this is the jth
dummy query sent to the server.

• Otherwise: The client sends Ff k(q) to the server.

In either case the server obtains a value from the
client that is in its dataset that has not been queried
before. The server finds the value in its data set
that matches the query, and sends the corresponding
message back to the client. The server also removes this
key-value pair from its data store. The client then stores
this value in its local store and returns the result.

To process a query insert(k, v), the client first issues a
query get(k) and then changes the value in its local store
associated with key k to v. To process a query remove(k),
the client issues a query get(k), and then removes the
key-value pair from its local storage (note that it was
already removed from the server). In both cases, the
server only sees a get query and all other changes affect
the client’s local storage only. Note that this is for a miss-
intolerant solution, and that this leaks to the server
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when a value was replaced or inserted, and for removals
the server learns when a value was actually removed.

After M queries, the rebuilding phase starts. In
this phase the client reshuffles the values in the
server storage, changes the pseudorandom function
key, and re-encrypts the values. The values are
randomly permuted to prevent the server from
inferring information about the queries between two
different query phases. The details of this shuffling
process are in [7].

During the query phase the client and server perform
O(1) computation and communication per query. The
server storage is O(N ). The cost of the rebuilding phase
is O(N ), but the amortized cost per query is O(NM ). The
client storage is O(M). The number of communication
rounds per query is O(1). The base scheme in [7] sets M
to
√
N , and thus the amortized cost is O(

√
N ) and the

client’s storage is O(
√
N ).

3.3. Observation
Providing a nearest neighbors oblivious index is at
least as hard as providing miss-tolerance for get in the
original data store. That is, suppose we have a miss-
intolerant oblivious store, and a client queries get(k).
Simply call (np, ns)← nn(k) and get(ns) (If ns is∞ then
use get(np)). The get will always be a hit, and the client

can determine if k was a hit by testing if k ?= ns.

4. Nearest Neighbors Oblivious Index
In this section, we present the main result of this paper:
an oblivious index structure for nearest neighbors. We
utilize many of the ideas in the previous work on
obvious storage. Let N denote the upper bound on the
number of keys, let M denote the number of queries
in the query phase, and let [0, D − 1] denote the key
domain.

4.1. A straightforward protocol
The miss-intolerant data store in the previous section
can be used to provide answers to nn queries. The client
builds a balanced binary search tree over the key values
to produce a tree with height h (Clearly h = O(logN )).
Each node in the tree is given a unique label, and the
root node’s label is a known constant. Each node in the
tree has its children’s labels along with the search value.
The client can then perform a binary search to find the
smallest key value that is not less than the query and the
largest key that is not larger than the query. If the client
finds the value in an intermediate node, or reaches a
leaf node with height smaller than h, then the client
performs the appropriate amount of extra queries to
pad the number of queries to h (these extra queries can
be repeated queries from before). This is necessary to

make each query look identical to the server, otherwise
the server would learn something about each query.

Furthermore, if insertions and removals can be
performed while changing at mostO(h) nodes, then this
can support insertion and removals using the insert and
remove queries.

Suppose we set M =
√
N . The tree clearly has at

most N nodes, and thus the server’s storage is O(N ),
the clients storage is O(

√
N ), the query cost and

communication is O(logN ), and the number of rounds
is O(logN ). Finally, the amortized cost/communication
is O(logN

√
N ). The main goal in the rest of this paper

is to reduce the number of rounds to O(1).

4.2. Server Storage
We are now ready to describe one of the main ideas of
our proposed approach. Given S, the client partitions
the key domain into a set of unique prefixes. Specifically
a prefix, p, is interesting if all key values that share
the prefix have the same nearest neighbors, but this
is not true for any shorter prefix of p. More formally,
p is interesting if |{nn(m) : P ref ix|p|(m) = p}| = 1 and
|{nn(m) : P ref ix|p|−1(m) = P ref ix|p|−1(p)}| > 1. For each
interesting prefix p with nearest predecessor np and
nearest successor ns, the client creates a key value pair
(p, (np, ns)). The client stores all such pairs on the server
just as the key value pairs are stored in a miss-intolerant
OS. That is the client stores (Ff k(p), Encek((p, np, ns))
on the server where f k is a key for a pseudorandom
function and ek is a key for a CPA-secure encryption
scheme.

Let d denote the number of bits used to represent a
value in the dataset. The following theorem places an
upper bound on the number of interesting prefixes (and
hence on the size of server storage).

Theorem 1. There are at mostNd + 1 interesting prefixes.

Proof: Let T (n, k) denote the maximum number of
interesting prefixes if there are n values and k bits. First
note that T (n, k) is well defined if and only if 2k ≥ n
(otherwise there are not n values with k bits).

Obviously, T (0, k) = 1 and the claim holds.
Now, we show that T (1, k) ≤ k + 1. Obviously, this

is true for k = 0. Now consider, T (1, k). The value is
either starts with a 0 or a 1. The half that does not
contain the value all have the same nearest neighbors.
Thus T (1, k) ≤ 1 + T (1, k − 1), and the claim follows by
induction.

Consider T (2, k). Now, T (2, 1) = 2 and so the claim
holds for the base case. Now either both values
start with the same bit, or they are both differ-
ent. Hence, T (2, k) ≤ max{2T (1, k − 1), T (2, k − 1) + 1}.
By induction, T (2, k) ≤ max{2k, 2(k − 1) + 1} ≤ 2k + 1,
and the claim holds.
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Now consider T (n, k) for n ≥ 3. Now, T (n, dlogne) ≤
2dlogne < 2n + 1 (the last part assumes n ≥ 3. Now
considering larger values of k, for some constant c,
there will be c values with a 0 prefix and n − c values
with a 1 prefix. Thus T (n, k) = T (c, k − 1) + T (n − c, k −
1). By induction, T (n, k) ≤ c(k − 1) + 1 + (n − c)(k − 1) +
1 = nk − n + 2 ≤ nk + 1. The claim follows. 2

The server will thus store Nd + 1 + 2M tuples. If
there are ` interesting prefixes, there will be ` tuples
for these prefixes, Nd + 1 − ` dummy prefixes (so that
the server does not learn how many interesting prefixes
there are), and 2M dummy prefixes that will be used
to generate fake hits (the full details are described in a
later section).

The main idea to process a query q is to issue
a query for each prefix of q (i.e., to issue the
query P ref ix1(q), . . . , P ref ixd(q) i.e. by sending
Ff k(P ref ix1(q)), . . . , Ff k(P ref ixd(q)) to the server.
Exactly one of these queries will result in a hit and
thus revealing the number of hits to the server does
not reveal anything. The server will find the one tuple
that is a match and send the value back to the client.
Note that the above interaction can be done in a single
communication round.
Example Suppose d = 4 (i.e., the keys consists of

4 bit values) and that N = 4. Suppose that following
four keys are in S: 2, 6, 7, and 11. In Figure 1 we
show the tree based representation of the key space
and have highlighted the nodes corresponding to the
interesting prefixes. In this case, the server would
store the following key-value pairs: (000, (−∞, 2)),
(0010, (−∞, 2)), (0011, (2, 6)), (010, (2, 6)), (0110, (2, 6)),
(0111, (6, 7)), (10, (7, 11)), and (11, (11,∞)). The server
would also store 9 dummy values so that the server is
storing 17 values. If the client issued the query nn(8),
then the client would issue queries 1, 10, 100, and 1000.
Notice that the query 10 is a match, and that the client
would learn that prefix 11 is a match, and the nearest
predecessor is 7 and the nearest successor is 11.

However, these values should be permuted before
sending them to the server to prevent leaking which
prefix length is a match. There are some complications
including: i) over M queries many prefixes will be
queried repeatedly and this will leak information to
the server, ii) it is possible that two different queries
will result in the same hit and thus we need to avoid
this leakage, and iii) insertions and removals need to be
handled.

We finish by giving the details of a pair of
algorithms that will be used later. The first algorithm,
PREFIXSPLIT (x, y), partitions the interval [x, y] into its
set of prefixes that minimally cover the entire interval.
The main idea is that if you view the interval as part
of a tree where the leaves range form [0, D − 1] then the
minimum number of nodes in the tree that covers the
interval correspond to the off path vertices on the paths

from the nearest common ancestor of x and y to x and
y. The straightforward details for splitting an interval
into interesting prefixes are presented in Algorithm 1.

Algorithm 1 SP LIT (x = x1 · · · xd , y = y1 · · · yd))

1: P ← {}
2: c← 0
3: {Find common prefix}
4: while xc = yc do
5: c← c + 1
6: end while
7: {Since x < y, xc+1 = 0 and yc+1 = 1}
8: i ← d + 1
9: while xi−1 = 0 do

10: i ← i − 1
11: end while
12: I ← I ∪ {x1 · · · xi−1}
13: for j = i − 2 to c + 2 do
14: if xj = 0 then
15: I ← I ∪ {x1 · · · xj−11}
16: end if
17: end for
18: i ← d + 1
19: while yi−1 = 1 do
20: i ← i − 1
21: end while
22: I ← I ∪ {y1 · · · yi−1}
23: for j = i − 2 to c + 2 do
24: if yj = 1 then
25: I ← I ∪ {y1 · · · yj−10}
26: end if
27: end for
28: return I

We now turn our attention to generating all
interesting intervals for a set of key values K =
{k1, . . . , kn}. If we assume these keys are sorted, then
this partitions the key space into intervals [0, k1], [k1 +
1, k2], . . . , [kn−1 + 1, kn], [kn + 1, D − 1]. Notice that all
points in the interval [ki + 1, ki+1] all share the same
nearest predecessor and successor. This algorithm
simply sorts the points and calls the previous
algorithms to find all interesting prefixes. The details
are in Algorithm 2.

4.3. Data Structure 1: Avoiding duplicate queries
Two problems with the previous approach involve
the client asking duplicate queries when processing
two distinct nn queries. To be able to overcome the
problems, the client needs to be able to determine (for
the current query): i) the longest common prefix with
any previously issued nn query in the query phase, and
ii) has the prefix group of the current query already
been obtained.

5 EAI Endorsed Transactions on 
Collaborative Computing

06 -10 2014 | Volume 01 | Issue 2 | e3EAI for Innovation
European Alliance



Figure 1. Interesting prefixes for {2,6,7,11} shown as the grey nodes

Algorithm 2 ALLPREFIXES({k1, . . . , kn}))
1: sk1, . . . , skn ← sort{k1, . . . , kn}
2: A← {}
3: S ← SP LIT (0, sk1)
4: A← {(s, (−∞, k1)) : s ∈ S}
5: S ← SP LIT (skn + 1, D − 1)
6: A← {(s, (skn,∞)) : s ∈ S}
7: for i = 1 to n − 1 do
8: S ← A ∪ SP LIT (xi + 1, xi+1)
9: A← {(s, (ski , ski+1)) : s ∈ S}

10: end for
11: return A

Specifically, we desire a data structure with the
following three operations:

1. insert(q,mp, np, ns) this inserts the results of a
previous query nn(q). This stores: i) mp: the
matching prefix of q, ii) np the nearest predecessor
of q, and iii) ns the nearest successor of q.

2. get(q) this returns a tuple (L, nn) where L is the
length of the longest common prefix between q
and any previous query, and nn is null if the prefix
group containing q has not been queried, but is
the nearest neighbors, (np, ns), for q if the query
group has been found.

3. initializeCommonQuery() This initializes the data
structure to an empty structure.

The following theorem states this requires the ability
to find the nearest successor and predecessor of the
current query over all previously asked queries.

Theorem 2. Given a set of queries S = {s1, . . . , sn} and
a query q, the longest common prefix of q to any
query in S is either q’s nearest predecessor or successor.
Furthermore, if any query in S is in the same prefix
group of q, then q’s nearest successor or predecessor is
also in the same prefix group as q.

Proof: Given two bit sequences x and y, let LCP (x, y)
denote the longest common prefix between x and

y. First we show that if x ≤ y < z, that |LCP (x, y)| ≥
|LCP (x, z)|. Denote LCP (y, z) as c1 · · · cp. Now since
y < z, it must be that y starts with c1 · · · cp0 and
z with c1 · · · cp1. Since x ≤ y, x cannot start with
the prefix c1 · · · cp1, and thus |LCP (x, z)| ≤ p. Now
consider, LCP (x, y), there are two cases to consider: i)
|LCP (x, y)| ≤ p, in which case LCP (x, y) = LCP (x, z), and
ii) |LCP (x, y)| > p, in which case LCP (x, y) > LCP (x, z).
In either case, the claim holds.

A symmetrical argument can be made that when
x < y ≤ z, that |LCP (y, z)| ≥ |LCP (x, z)|. Combining these
two things together implies that the longest common
prefix in the set is either the nearest successor or the
nearest predecessor of the query. This proves the first
part of the theorem. The second part follows because if
two queries belong to the same prefix group, then the
longest common prefix in the set must also be in the
same prefix group. 2

The client maintains a local data structure that stores
values of the form (q,mp, np, ns) where q is the query,
mp is the prefix of the q’s prefix group, np is q’s nearest
predecessor, and ns is q’s nearest successor. These values
are stored in a balanced binary search tree organized
by query. Given this structure the client can find the
nearest neighbors of a specific query in O(logM) time.
Example Suppose that we use the example in Figure

1. Suppose that in a query phase a client first issues
a query for 8, then the the client searches for prefixes
1, 10, 100, and 1000. It finds a match at prefix 10,
and learns the nearest neighbors are (7, 11). Suppose
that the client then asks query ns(13). In this case the
prefixes would be 1, 11, 110, and 1101. The client must
avoid asking for the query 1, since the client has already
asked this query in this phase. Thus the client asks for
11, 110, and 1101 along with a fake miss. The prefix 11
is the only match, and the client learns that 13’s nearest
neighbors are (11,∞). Finally, suppose that the client
issues query ns(9). The prefix groups would then be
1,10,100,1001. The first three of these groups have been
asked by the client. Furthermore, the prefix group 10 is
in the set S, and it indicates the nearest neighbors of 9
are (7, 11). Thus the client issues queries 1001, two fake
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misses, and a fake hit. The fake hit is necessary to ensure
that the server sees exactly one match in its dataset.

4.4. Data Structure 2: Handling Changes
The purpose of this data structure is to keep track of
changes that have been made during a query phase.
There are two main challenges: i) returning the correct
answers in the rest of the query phase, ii) including the
updates in the stored data in the rebuilding phase.

The main idea is that the client will keep track of
all intervals where it knows the answer. That is, for
every nn(q) query, the client learns an interval (np, ns]
that contains q, and each value in (np, ns] has the same
nearest neighbors. Furthermore, all points outside of
the interval (np, ns] do not have the exact same nearest
neighbors. This data structure will keep track of all such
intervals that the client learns during the query phase.
When modifying the dataset, the client will modify the
local data structure, but leave the server’s data (and its
data from the first data structure unchanged). Hence, if
this second data structure contains information about
a specific interval. then this is considered more current
than the values stored at the server. One could think
of this data structure as a change log during the query
phase.

We now give the details of insert and delete at a
high level. To process a query insert(q), first the client
performs a nn(q) query. Thus the interval containing
this value will be in the local storage. Suppose that
this interval is (np, ns]. The inserted value splits this
interval into at most two intervals, and these intervals
will replace the previous interval. That is, the process
creates the intervals (np, q] and (q, ns].

To process remove(q), the client will query the server
for the removed value, and will thus have the interval
containing the removed value in its local storage.
Suppose this interval is (np, ns]. If q , ns, then nothing
has to be done. However, if q = ns, then the client will
have to mark the value ns as removed. A difficulty
arises when a client queries a point inside of an interval
where the end point has been removed, e.g., if the client
later issued a query in the interval (np, ns] after ns was
removed. In this case, the client would know that the
answer provided by the server is stale, but would not
know the correct answer. To overcome this problem,
the client first checks the second data structure to
determine if this will be a problem. If so, then the
client issued a query for the next interval. That is, in
our example, the client would issue a query nn(ns + 1)
instead of nn(q), and this will return the new nearest
successor.

Specifically, the data structure will keep track of a
set of intervals. An interval [x, y] means that any point
in the interval (x, y] has x as its nearest predecessor
and y as its successor. An interval is either marked

valid or invalid. An interval is valid if y has not been
removed and is invalid otherwise. Note that we ensure
that the only points that are removed are endpoints of
some interval in the client’s structure. There are several
operations that we want to perform with this structure,
including:

1. (ns, np, valid)← lookup(x): This searches the
interval list to find the interval containing x in the
structure. If no such interval exists, then return
null. Otherwise, if x is in a valid interval [y, z],
then return (x, y, true). Otherwise, if x is in an
invalid interval [y, z], then return (x, y, f alse).

2. insertP oint(x): This has a precondition that there
exists a valid interval containing x, let this interval
be (y, z]. This interval is replaced with two valid
intervals (y, x] and (x, z].

3. removeP oint(x): This has a precondition that there
exists a valid interval containing x, let this interval
be (y, z]. If x , z, then do nothing. Otherwise,
mark this interval as invalid.

4. insertInterval(x, y) This assumes that the interval
(x, y] does not overlap any current interval. If
there is an invalid interval (z, x], then this replaces
this interval with a single valid interval (z, y].
Otherwise, this adds a single valid interval (x, y].

5. The existence of an iterator function that
allows us to iterate over all intervals in the
structure (touching each interval once). This is
encapsulated by the functions f irst() which starts
the iterator, and next() which returns the next
interval (and null if no such interval exists).

6. An initialization method, initIntervalDS() that
initializes an empty data structure.

The above data structure is straightforward to
build using a balanced binary search tree (sorted by
interval end point). If there are M intervals, then
this structure has size O(M). In this case lookup,
insertions, and removals can be processed in O(logM)
time. Furthermore, iterating over all intervals requires
O(M) time.

4.5. Putting Pieces Together
We are now ready to put all of the pieces together and
give a detailed description of the system. We begin by
highlighting the main ideas:

1. The data owner stores all interesting prefixes
and their nearest predecessors and successors
for that prefix, using similar techniques as [7].
That is, for the tuple (p, (p, np, ns)) we store
(Ff k(p), Encek(p, np, ns)) at the server. To process a
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query, the data owner will query all prefixes of the
query in parallel.

2. The data owner uses the data structure outlined
in section 4.3 to maintain information about
previous queries. This is used to prevent the data
owner for asking about the same prefix multiple
times, and to know when a dummy record needs
to be queried (i.e., has the interesting prefix for
the query already been queried).

3. The data owner uses the data structure outlined
in section 4.4 to maintain information about the
changes that have been made during the query
phase. This is used during the query phase to
ensure that the responses include the recent
changes.

4. During the rebuild phase, all of the changes
in the second data structure are stored on the
server. Like [7] all of the values are randomly
permuted (using the Buffer Shuffle techniques)
to obfuscate the relationship between queries in
different query phases.

Table 1 describes the notation used in the protocols.
It is worth discussing the various input values for the

PRF that are used. Specifically, we use a PRF F : {0, 1}κ ×
{REAL,DUMMY ,MISS, PAD} × ∪Qi=1{0, 1}

i → {0, 1}κ. That
is, the PRF takes a message type and a variable
length message (up to Q bits) as its second input.
Here the value of Q is chosen such that 2Q ≥
max{D,N logD,M,M logD}. Such a PRF can be con-
structed with an appropriate encoding scheme. We
assume that encryption pads message of variable length
to the same size (in this case 3 logD is sufficient), and we
assume the existence of a fake messageFAKE that can be
used for padding and dummy values.

We begin with the initialization algorithm. This
algorithm is done once when the system is setup. The
details are in Algorithm 3. The first steps (lines 1-2) is
to set up the long-term encryption key and the query
phase pseudorandom function key. In lines 3-13, the
client generates the values that the server will store,
which will consist of the PRF of a key and an encrypted
message body. Specifically, lines 3-7, add all interesting
prefixes to the server storage set. Since there will be at
most N items, then there will be at most N logD + 1
interesting prefixes (see Theorem 1), and thus lines 8-
10 add padding to the list. Finally, 2M dummy values
are added to the server set in lines 11-13. A random
permutation of these values is stored in line 15. Finally,
lines 15-18 initialize global variables used by the rest of
the algorithms.

We now turn to the server’s main algorithm (we also
require the server can stream all tuples in its data store
to the data owner M at a time). This algorithm receives

Algorithm 3 INIT (K = {k1, . . . , kn})
1: f k ← {0, 1}κ
2: ek ← KeyGen(1κ)
3: S ← {}
4: {Store values on server}
5: Let IP ← ALLPREFIXES(k1, . . . , kn)
6: for all (p, (np, ns)) ∈ IP do
7: S ← S ∪ {Ff k(REAL, p), Encek((p, np, ns))}
8: end for
9: for i = 1 to N logD + 1 − |IP | do

10: S ← S ∪ {Ff k(PAD, i), Encek(FAKE)}
11: end for
12: for i = 1 to 2M do
13: S ← S ∪ {Ff k(DUMMY , i), Encek(FAKE)}
14: end for
15: Permute S and send to server.
16: DS1← InitalizeCommonQuery()
17: DS2← InitalizeIntervals()
18: queries, dumUsed,misUsed ← 0

a set of keys (key values that have the PRF applied to
it). The server simply looks up all matching keys that
are in S, and returns the messages associated with the
keys. The server also returns the query index for each
match, so that the client knows which queries were a
match. Note that this leaks to the server the number of
hits, so this can only be used when the number of hits
is controllable (i.e., always the same). The details are in
Algorithm 4.

Algorithm 4 SERVERPROCESS(`1, . . . , `m)

1: R← {}
2: for i = 1 to m do
3: if ∃(`i , ri) ∈ S then
4: R← R ∪ {(i, ri)}
5: remove (`i , ri) from S
6: end if
7: end for
8: return R

We now turn to a nearest neighbor algorithm for
static data. This is used as a building block by the
actual nearest neighbor algorithm. The details are in
Algorithm 5. The first step is to determine the longest
common prefix with previous queries and to determine
if the answer is known already. This is done using DS1
in line 1. Line 2 creates the list of the longest L prefixes
that have not been queried before. Lines 4-8, handle
the case where the prefix group containing the query
is already known. In this case, one of the misses must
be a hit (in order to ensure that the server always sees
a single hit), and so a dummy is added to Q, and the
number of misses is decremented. Lines 9-10 add the
appropriate number of misses to the query set, so that
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Table 1. Notation

Name Description
N Upper bound on number of keys (constant)
M Queries in the query phase (constant)
κ Security parameter (constant)
D Key domain size (constant and power of 2)
DS1 Reference to Data Structure in section 4.3
DS2 Reference to Data Structure in section 4.4
f k Key for pseudorandom function F
ek Encryption key for CPA-secure encryption
queries # of queries made during query phase.
dumUsed # of dummy queries used during query phase.
misUsed # of fake misses used during query phase.

|Q| = logD. Lines 11-12 permute the queries and send
the PRF values for each query in Q to the server. If the
query answer was unknown before asking the query,
then lines 15 sets the nearest neighbor as the decrypted
result from the server. Otherwise, line 17, uses the
previous value fromDS1. In either case,DS1 is updated
and the nearest neighbors are returned.

Algorithm 5 LOOKUP (q)

1: (L, nn)← DS1.get(q)
2: Q← {(REAL, P ref ixd−i(q)) : i ∈ [0, L − 1]}
3: misses← logD − L
4: if nn , null then
5: dumUsed ← dumUsed + 1
6: Q← Q ∪ {(DUMMY , dumUsed)}
7: misses← misses − 1
8: end if
9: Q← {(MISS,misUsed + i) : i ∈ [1, misses]}

10: misUsed ← misUsed +misses
11: Permute Q
12: Send to server {Ff k(r) : r ∈ Q} and receive QR.
13: {QRwill contain one encrypted tuple, let it be (i, r).}

14: if nn = null then
15: (p, np, ns)← Decek(r)
16: else
17: Parse nn into (p, np, ns)
18: end if
19: DS1.insert(q, p, np, ns)
20: return (np, ns)

We now introduce the main algorithm, i.e., the
nearest neighbor algorithm. This takes a query, and
returns the nearest predecessor and successor of the
query; the details are in Algorithm 6. In line 1, this looks
up the query in the interval data structure to determine
if the interval of the query is already known. Note that
it may be that this value is more recent than the values
stored in the server, since all updates affect only DS2

until the rebuild phase. If the interval is known, but
the interval is invalid, then this means that the nearest
successor has been removed. Thus, the answer returned
from the server from q will be stale, and DS2 does not
contain the correct nearest successor. To resolve this
problem, line 3 changes the query to the one more than
the stale nearest successor. Then line 5 either looks up
the query or the modified query, using Algorithm 5.
This new interval is added to DS2, which means that
a valid interval containing q is now in DS2. Thus we
lookup q in DS2 (in Line 7). Finally, we increment the
number of queries and return the appropriate nearest
predecessor and successor.

Algorithm 6 NN (q)

1: (np, ns, valid)← DS2.lookup(q)
2: if (np, ns, valid) , null AND valid = f alse then
3: q← ns + 1
4: end if
5: (np′ , ns′)← LOOKUP (q)
6: DS2.insertInterval(np′ , ns′)
7: (np′ , ns′ , valid)← DS2.lookup(q)
8: queries← queries + 1
9: return (np′ , ns′)

The algorithm for insertion (resp. removal) are given
in Algorithm 7 (resp. 8). In both algorithms, the client
uses the nearest neighbor algorithm. Then insertion
simply inserts the new point into DS2, and removal
simply removes the query from DS2. Note that in both
cases the precondition is met, because NN (q) ensures
that a valid interval containing q is in DS2.

Algorithm 7 Insert(q)

1: NN (q)
2: DS2.insertP oint(q)

9

We now turn our attention to the rebuilding phase 
(this is triggered when queries = M). We first present
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Algorithm 8 Remove(q)

1: NN (q)
2: DS2.removeP oint(q).

a helper algorithm that ensures all intervals in the
interval structure, DS2, are valid. This is important,
because any invalid interval corresponds to a situation
where an endpoint has been removed, but the client
doesn’t know what the actual endpoint should be. Lines
1-6 iterate through all intervals in DS2 and for every
invalid interval, it adds a query to Q that will make
the interval valid (once we know the interval for the
query). To hide the number of invalid intervals from the
server, lines 8-10, pad the query set with to contain M
points (there are at most M invalid intervals, because
each remove can invalidate at most one interval). The
padded points are dummy points, because they need
to be hits on the server. This is the reason for needing
2M dummies, M to answer queries and and M for the
rebuild phase. The client computes the PRF of all points
in Q and sends them to the server in a random order in
line 11. Lines 12-15, process each non-dummy return
value by adding it toDS2. This will validate all intervals
in DS2.

Algorithm 9 V alidateAllIntervals()

1: DS2.f irst()
2: Q← {}
3: while ((x, y, valid)← DS2.next()) , null) do
4: if valid = false then
5: Q← Q ∪ {(REAL, y + 1)}
6: end if
7: end while
8: for i = 1 to M − |Q| do
9: Q← Q ∪ {(DUMMY , dumUsed + i)}

10: end for
11: Send {Ff k(q) : q ∈ Q} to server in random order.
12: for all Entry (i, ri) corresponding to non-dummy do
13: (p, np, ns)← Decek(ri)
14: DS2.insertInterval(np, ns)
15: end for

The main idea of the rebuild phase is to rewrite
all N logD + 1 + 2M values to the server and then to
reshuffle all of the buffers (the reshuffling is the same
as in traditional OS). The client suspends execution of
queries, and then chooses a new PRF key (lines 1-3).
The client initializes some values, including: pref ixSet
which is a set of prefixes to be written and padWrite
which is how much padding has been written (lines 4-
5). The client then validates all intervals in DS2 (line
6). After this has been done, the client streams (by
streams we mean that the client obtains M records
at a time from the server, in order to prevent the

client from having to store more than O(M) things) the
remaining N logD + 1 entries from the server. For each
entry, there are several cases: i) the interval specified
by the prefix is not contained in DS2, i) the interval
specified by the prefix is contained in DS2, iii) the
tuple is a dummy or padding tuple. In the first case
(line 27), the client simply re-encrypts the tuple (as it
has not changed). In the other cases, the client throws
the old tuple away, and builds a new tuple. To build
this new tuple, the client first writes out all interesting
prefixes in DS2. After all of these values have been
written, then padding is written. After going through
all N logD + 1 tuples, the server has all interesting
prefixes and the appropriate amount of padding. Then
2M dummy values are written (lines 31-33). After
writing all of these entries, global variables are re-
initialized (lines 36-38). All of the values are permuted
using the techniques of [7], and then query processing
is resumed.

4.6. Analysis
The client’s storage is determined by the size ofDS1 and
DS2. For each nearest neighbor query, there is at most
1 thing in DS1, and thus its size is O(M). Furthermore,
DS2 has at most 2M intervals, and thus its size is O(M).
The client has to store O(logD) bits, and thus its total
storage is O(M logD).

The server has to store O(N logD +M) items, and
each has size O(max{κ, logD}). Since κ is a constant
and M << N , then the server’s total bit storage is
O(N log2D).

The communication to process an insert, remove, or
nn query is O(1) for both the client and the server.
Furthermore, the communication is O(1).

The computational cost of the rebuilding phase is
O(N logD), and the communication cost isO(N log2D).

It is worth comparing this solution to the original
cost of OS, to determine the overhead of the nearest
neighbor capabilities. Here V is the size of the messages
associated with the keys. It is clear from the table that
the overhead is dictated by the relationship between V
and log2D. There are many application with small key
size (for example a key size of 8 bytes may be sufficient
in many contexts). However, in many applications the
sizes of the messages are large (the simulations used
in [7] varied V from 1KB to 64 KB). In either case
the O(N log2D) is dominated by O(NV ). Hence, the
overhead added by the current approach is modest
when compared to OS.

5. Summary
In this paper, we introduced an oblivious index that
extends oblivious storage to support nearest neighbor
queries. In realistic settings, the proposed index
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Table 2. Comparison between the Original Scheme and the Index Overhead

Metric Traditional Index Overhead
Server Storage O(NV ) O(N log2D)
Client Storage O(MV ) O(M logD)
Online computation O(1) O(1)
Online communication O(V ) O(logD)
Rebuild Communication O(NV ) O(N log2D)

Algorithm 10 rebuild()

1: {Triggered when QUERIES = M}
2: Suspend query processing
3: f k′ ← P RF.Gen(1κ)
4: pref ixSet ← {}
5: padWrite← 0
6: validateIntervals()
7: DS2.f irst()
8: {Start streaming remaining records from server}
9: for all (Encek(p, np, ns) in Server storage do

10: Decrypt to obtain (p, np, ns)
11: if (p,np,ns)=FAKE OR DS2.containsPoint(ns)

then
12: if pref ixSet = {} then
13: interval ← DS2.next()
14: if interval , null then
15: pref ixSet ← SP LIT (interval)
16: end if
17: end if
18: if pref ixSet , {} then
19: Pick (p2, np2, ns2) from pref ixSet
20: pref ixSet ← pref ixSet − {(p2, np2, ns2)}
21: (k, v)← ((REAL, p2), (p2, np2, ns2))
22: else
23: padWrite← padWrite + 1
24: (k, v)← ((PAD, padWrite), FAKE)
25: end if
26: else
27: (k, v)← (p, np, ns)
28: end if
29: Send server (Ff k′ (k), Encek(v))
30: end for
31: for i = 1 to 2M do
32: (k, v)← ((DUMMY , i), FAKE)
33: Send (Ff k′ (k), Encek(v)) to server.
34: end for
35: f k ← f k′

36: queries, dumUsed,misUsed ← 0
37: DS1← InitalizeCommonQuery()
38: DS2← InitalizeIntervals()
39: Shuffle servers storage as in [7]
40: {Note the above changes the value of f k}
41: Resume query processing

introduces a small overhead, when compared to the
original oblivious data store. Future work includes:

1. Implementing the index and determining actual
overhead for realistic loads.

2. Extending a miss-intolerant OS to a miss-tolerant
OS using these techniques. It is straightforward to
do this for get, but less so for insert and remove.

3. Extending the semantics further to include range
queries, range count and aggregate queries. A
straightforward way to do range queries is
based on nn query: the client partitions the
key domain into O(

√
N ) intervals, stores a

key value pair for each one as (lef t_endpoint,
(values_inside_interval, right_endpoint)), and
builds the nn search index over all the left
endpoints. To query for a range [a, b], the client
queries for the nearest left endpoint of a and
gets all the values in the interval, and continues
fetching the next interval by a nn query for
the current interval’s right_endpoint + 1 until
exceeding b. Range count and aggregate queries
could also be done in a similar way. However,
this will increase the local storage at the client
to O(N0.75) , so future work could focus on these
semantics without increasing the storage.
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