
EAI Endorsed Transactions on
 Context-Aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e4

EAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

1

On Sustaining Dynamic Adaptation of Context-Aware Services

Boudjemaa Boudaa1,*, Slimane Hammoudi2, Abdelkader Bouguessa1, Leila Amel Mebarki1, and

Mohammed Amine Chikh3

1Département d’Informatique, Université Ibn Khaldoun, Tiaret, Algérie
2Equipe MODESTE, Groupe ESEO, Angers, France
3Département d’Informatique, Université Abou Bekr Belkaid, Tlemcen, Algérie

Abstract

The modern human is getting more and more mobile having access to online services by using mobile cutting-edge

computational devices. In the last decade, the field of context-aware services had led to emerge several works. However,

most of the proposed approaches have not provided clear adaptation strategies in case of unforeseen contexts. Dealing with

this last at runtime is also another crucial need that has been ignored in their proposals. This paper aims to propose a

generic dynamic adaptation process as a phase in a model-driven development life-cycle for context-aware services using

the MAPE-K control loop to meet the runtime adaptation. This process is validated by implementing an illustrative

application on FraSCAti platform. The main benefit of the proposed process is to sustain the self-reconfiguration of such

services at model and code levels by enabling successive dynamic adaptations depending on the changing context.

Keywords: Context-Aware Service, Dynamic Adaptation, Model-Driven Development, MAPE-K.

Received on 15 December 2014, accepted on a6 December 2014, published on 12 March 2015

Copyright © 2015 Boudjemaa Boudaa et al., licensed to ICST. This is an open access article distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/casa.2.3.e4

*Corresponding author. boudjemaa.boudaa@univ-tiaret.dz

1. Introduction

Actually, the tendency is to use more applications

and services offered on mobile computing cutting-

edge devices for managing people’s professional and

social lives. Mobile and ubiquitous environments are

featured by the richness of context information that

increases the need to personalise and adapt services

accordingly. This requires considering how to cope

the context changes in the mobile services

development. These services should be context-

aware [1], [2] using information about their

execution context for responding and adapting to

changes in different computing situations. In this

regard, Context-Aware Services (CAS for short)

should be capable to sense, and to collect the context

information, so adapting their behaviours to

significant context changes in order to provide

personalised and relevant information and/or

services to end-users.

This context can be static (information which is

unlikely to change, e.g. mother tongue) or dynamic

(information which changes over time; such as

weather conditions) [3], therefore the consideration

of both kinds of context is crucial in every context-

aware services development proposal; where the

dynamic context requires an adaptation at execution

time for quick responses without any human

intervention. A CAS being executed should be

adapted automatically at runtime if a context change

occurs, mainly in real-time systems where there is no

time to lose (healthcare, air traffic ...). For example,

the cancellation of a flight (as a context-aware

adaptation) if there is a strong snowfall (as a context

information). In consequence, the adoption of an

adaptation strategy at runtime becomes very

essential in CAS life-cycle.

To improve development of context-aware

services’ adaptation, our ongoing work is to propose

a Model-Driven Approach taking advantage of

combining Model-Driven Development (MDD) [4]

and Aspect-Oriented Modelling (AOM,

http://www.aspect-modeling.org/).

MDD simplifies designing and developing of such

services piloted by models, which can be converted

to other models or codes by transformation

techniques, instead of writing them by hand, which

is a daunting and error-prone task. Furthermore,

AOM allows to achieve the context-awareness logic

by weaving proposed context-aware aspect models

(called ContextAspect) at design and run time into

http://creativecommons.org/licenses/by/3.0/

EAI Endorsed Transactions on
 Context-Aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e4

 Boudjemaa Boudaa et al.

2

the core application model. This approach involves

the following phases (modelling, composition,

transformation, adaptation) constituting its

development process.

In this work, we aim to more highlight the

adaptation phase functioning by implementing an

illustrative example on FraSCAti platform [5] that

supports the adaptation at runtime of context-aware

services.

The remainder of this paper is organized as

follows. Section 2 discusses some related works.

Section 3 presents briefly our future MDA-based

approach using ContextAspect models. By a

descriptive example, Section 4 details our proposed

dynamic adaptation process of CASs at runtime, and

Section 5 concludes this paper, and indicates some

future works.

2. Related Work

The software adaptation in mobile and ubiquitous

computing has been treated by several works in the

literature [6]. This work is focused on model-driven

approaches proposed for developing and adapting

context-aware services. The viewpoint of context-

aware adaptation as a crosscutting concern in core

service-based application is not new. It has been

used by some works at model and/or code levels. To

the best of our knowledge, [7] and [8] are only two

works that combine MDD with AOM to develop

context-aware applications at model level. However,

a few works are proposed at code level. They have

combined AOP [9] and MDD to tackle the

complexity of context-aware applications

development. In [10], Prezerakos et al. proposed to

deal with core service logic and context-aware

adaptation as separate concerns using a modified

version of ContextUML [11] and aspects to

encapsulate context-dependent behaviour in discrete

AspectJ code modules. Tanter et al. in [12] presented

the contextual adaptation in what is called context-

aware aspects. Otherwise, there are other works

which have based on MDD to handle context-aware

services development.

Sheng et al. [11] proposed the ContextUML

metamodel which extends UML syntax to introduce

appropriate artefacts enabling the creation of

context-aware service models. Ayed and Berbers

[13] have presented an UML metamodel that

supports context-aware adaptation of service design

from structural, architectural, and behavioural

perspectives. The Kapitsaki et al. approach [14] has

proposed a context adaptation architecture of web

services composition and a model-driven

methodology for the development of such context-

aware composite applications.

The approaches of [7], [12], [11], [13] are

generally limited to the static aspect of context at

design time and ignore completely its dynamic

aspect. They do not take into account the dynamic

change of context during the application execution

and consequently no adaptation plan at runtime is

expected in their proposals. However, the works [8],

[10], [14] have treated this kind of adaptation at code

level without a clear and generic dynamic process.

However, in [15], the authors propose an approach

to develop and evolve context-aware adaptive

services at model level, which focuses on

models@runtime concept [16]. This approach is

built on a specific adaptation process.

In addition, all cited approaches are not based on

a standard feedback loop such as MAPE-K used in

ours. The main advantage of the present adaptation

process is to allow the self-reconfiguration of

context-aware service-based applications at code

level in accordance with model level by weaving

successive adaptations to context-aware services

being executed depending on context change over

time.

3. An MDA-Based Approach for CASs

This section introduces in a concise manner our

ongoing approach which is based on Model-Driven

Architecture (MDA) [17] to develop and adapt

CASs. Figure 2 shows its model-driven architecture

that is founded on ContextAspect models to deal

with context-aware adaptation as a crosscutting

concern. The ContextAspect metamodel (Figure 1)

aims to define and specify where and how the

context-aware adaptation logic will take place. A

ContextAspect model should contain one or more

context-aware aspects where each one is composed

of :

 Aspect elements (red coloured): to provide

where (pointcut), what and how (advice)

elements requisite to apply a context-aware

adaptation using the concepts of aspect-oriented

programming (AOP) [9].

 Context elements (yellow coloured): for

representing the execution context that

surrounds the service with an ontology

formalism according to the ODM specification

[18].

EAI Endorsed Transactions on
 Context-Aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e4

On Sustaining Dynamic Adaptation of Context-Aware Services

3

 Context-Awareness elements (green coloured):

are for relating Aspect and Context elements by

three context-awareness mechanisms:

ContextBinding, BehaviourAd-aptation and

ContextTriggering [19], [20].

Figure 1. ContextAspect MetaModel

The proposal approach focuses on considering

that a context-aware service can be seen as

application with several sensitive elements to

context (as variation points). For each one, a

multiple alternative ContextAspect models (as

variants) are associated in order to select one of them

according to the context and to weave it by AOM

techniques.

This approach begins by designing a first context-

aware application adaptable to other applications at

execution time according to the dynamic context

change. It comprises four phases, namely:

(i) Modelling phase: consists to provide

different UML-based models [21] in

accordance with their metamodels which

will be included in the CAS development

(Ontology-based Context model, Platform

Independent Model or PIM, and

ContextAspect models).

(ii) Composition phase: is for composing the

PIM with the selected ContextAspect, and it

returns a Contextual Platform Independent

Model (CPIM) using weaving techniques

into Model to Model (M2M)

Transformation.

(iii) Transformation phase: firstly and by an

M2M transformation, the CPIM is converted

to a Contextual Platform Specific Model

(CPSM) bounded to SCA-based platform.

Secondly, the obtained CPSM will be coded

by a Model to Text (M2T) Transformation

for generating FraSCAti platform codes [5].

(iv) Adaptation phase: once created and

deployed on a service-oriented platform, the

produced application can then be subject to

several dynamic adaptations according to

context change. The next section details our

contribution in this phase by presenting a

dynamic process to accomplish these

adaptations.

4. Dynamic Adaptation Process

Figure 2. MDA-based Development Approach for
CASs

Before giving the adaptation process to be followed

dynamically by context-aware services at execution

time, we introduce an illustrative example for

unrolling steps of this process.

EAI Endorsed Transactions on
 Context-Aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e4

Boudjemaa Boudaa et al .

 4

Figure 3. Evacuation ContextAspect Model

4.1. Descriptive Application

The following example illustrates the way we

provide urgent medical services to patients in need,

as the SAMU service in France*. It consists to

receive patient’s call and to evacuate him/her to the

nearest hospital according to his/her chronic disease.

The application of this example can be achieved by

standing on the SCA architecture, as the described

below (Figure 4). The application contains the

needed components in order to accomplish the

SAMU services.

Figure 4. SAMU Application

Using our MDA-based approach, the SAMU

application can be seen as a context-aware

application. Figure 5 shows the context-aware

service of Evacuation component built by weaving

the context-awareness logic included in

Evacuation ContextAspect (Figure 3). The

* http://www.aphp.fr/urgence/le-centre-15/

building of context-aware application by the present

approach is out of scope for this paper and will be

detailed in other work. Here we are interested only

by exhibiting the adaptation phase of this approach.

Now, the context-aware Evacuation service can

acts without human intervention by deducing the

itinerary source from the patient call’s location using

the GPS technology, and the hospital destination

from disease information found in the patient profile.

Those two context parameters would help the service

to select the appropriate itinerary with shortest

distance from several proposed ways.

To illustrate the dynamic adaptation process,

which will be proposed, we will unroll a simple

scenario on this Evacuation service considering that

it is invoked, and the itinerary is selected and

displayed to evacuate a patient. Nonetheless, and

after traffic on this itinerary, a contextual event is

observed indicating that the selected way is crossed

out because of car accident or unforeseen work. In

what follows we will see how this service in

question is going to behave.

Figure 5. Context-aware Evacuation Service

EAI Endorsed Transactions on
 Context-Aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e4

On Sustaining Dynamic Adaptation of Context-Aware Services

5

4.2. Dynamic Adaptation Process

Bobrow et al. [22] have defined the reflection as:

“The ability of a program to manipulate as data

something representing the state of the program

during its own execution. There are two aspects of

such manipulation: introspection and intercession.

Introspection is the ability of a program to observe

and therefore reason about its own state.

Intercession is the ability of a program to modify its

own execution state or alter its own interpretation

or meaning”.

To exploit this reflection principle for realizing

the dynamic adaptation in our paper's scope, the

context-aware service can be considered as an

autonomic system with the MAPE-K control loop

which consists to monitoring, analysis, planning and

execution activities by sharing knowledge between

them [23] (Figure 2, M0 level). Currently, the

MAPE-K suggested by IBM in 2003 represents the

reference model for many self-adaptive software

development works like in [24].

 Monitoring

The Context Manager equipped with Observer

module can sense any significant change in context

acquired from software (web services for example)

or hardware (camera, GPS ...) sensors. The Observer

can be realized by Complex Event Processing (CEP)

system [25]. We consider that the CEP technology

could continuously control and process the

confluence and fluctuation of the context in order to

refine it and to store the proper context in OWL file

derived from the proposed ontology-based context

model [18]. We believe that the combination

WildCat http://wildcat.ow2.org//Esper and

http://esper.codehaus.org/ frameworks can be

solicited to act as Manager and Observer modules. In

this work, we have not more focused on the

acquisition of context but about its modelling and

how improving the adaptation based on it.

For our example, the OWL file contains Status

datatypeproperty which value is switched from

“IsNotBlocked” to “IsBlocked” less for the

selected itinerary. This is considered as a trigger

event to initiate the dynamic adaptation process in

order to change the itinerary of evacuation.

Analysis

The new values of context will be analysed by a

Reasoner that is an inference engine based on ECA

rules. The general syntax of ECA rule is “on Event

if Condition do Action”. The event part specifies

the signal that triggers the rule invocation. In our

case, the event is the context change sensed by the

Observer. The condition part is a logical test that, if

satisfied, causes an action to be carried out. It is one

or more constraints on context values. The action

part consists of updates or invocations on the local

data. Here, it implies the selection of necessary

adaptations encapsulated in ContextAspect model.

ECA rules are used to select the suitable

ContextAspect model to a context situation in order

to weave it in application model. Our ECA rules can

be established from constraints (“Constraint”

class) designed in ContextAspect model (see Figure

1). These ECA rules can be implemented and

checked by a Drools Engine http://

http://www.drools.org/ by transforming

the event part to “When” clause and both parts of

condition and action to “Then” clause. In our case,

we have a Drools rule that decides to weave

Evacuation ContextAspect model once again for

application adaptation (Figure 3) after unweaving

the former in order to change the previous itinerary

of evacuation that is blocked for different reasons

(for car accident, unforeseen work or congestion

road, for example). This ContextAspect proposes for

the ambulance a new GPS itinerary accordingly to

this situation of context. Other ContextAspect

models can be woven for other contextual situations

for other application examples [26].

Planning

The selected ContextAspect model will be converted

by an M2T transformation to generate FPath and

FScript codes [27], requisite to reconfigure the

running application on FraSCAti platform. The

pointcut expressions of this model are

transformed into FPath code allowing the navigation

in the architecture of the running FraSCAti-based

applications to search the impacted weaving

elements. Furthermore, the advice is transformed

into FScript code which is a scripting language

dedicated to architectural reconfiguration of such

applications [28].

Generally, a reconfiguration (or dynamic

adaptation) consists of two main steps: (1) to find

the context-aware places matched by pointcut

through FPath code, and (2) to weave the

modifications expressed in advice and coded by

FScript. The modifications' weaving will be planned

in actions conforming to a Weaving metamodel and

will be directed by an algorithm and rules that will

not be presented here. For each place impacted by

EAI Endorsed Transactions on
 Context-Aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e4

 Boudjemaa Boudaa et al.

6

FPath, this weaving should go through the following

actions:

1. stopping the running FraSCAti

components (or composite);

2. removing all components and wires

relevant to the advice script of the

ContexAspect model already woven (if

any);

3. adding components and wires for weaving

the script of the new advice element;

4. and finally, restarting the stopped

components.

On the other hand and at the same time, an

adaptation at model level should be made. Again, the

composition

Figure 6. Reconfiguration FScript code for Adapted Evacuation Service

phase (Section 2) is called considering that the

running CPIM model becomes PIM model for

accepted to be composed with the ContextAspect

model selected in this adaptation phase. The

dynamic adaptation at model level can be enabled

using models@runtime [16] in order to establish a

causal connection between the model and the

running application. Also, this adaptation can serve

to validate the reconfigured context-aware service by

automatic CPIM to CPSM to code transformations if

they will be available. Applying on the SAMU

example and by an M2T transformation, the selected

Evacuation ContextAspect model will be

converted to FPath and FScript codes for generating

the needed reconfiguration scripts to be applied on

the toEvacuatePatient service. The pointcut

expression is transformed into FPath code

(toDisplayJP=$root/descendant-or-

self::*[name(.)==’toEvacuatePatient’]) which selects

toEvacuatePatient Service Component to be

adapted without affecting toReceiveCall one,

which continues its execution. Using weaving

actions, the advice is as well transformed into

FScript code as a reconfiguration script for weaving

Evacuation ContextAspect. In Figure 6, the

script listing implements a weaving operation:

Firstly, it brings the application in a quiescent

state (line 2), and then creates an instance of three

service components, namely:

SetDepartureItinerary (line 4),

SetDestinationItinerary (line 9) and

toSelectItinerary (line14). The two first

components are described by <<BeforeJP>> advice

(see Figure 3), where they are included in the

application architecture as subcomponent by

addFcSubComponent primitive (lines 5 and 10)

and wired to

toEvacuatePatientServiceComponent (lines

6-7 and 11-12). However, the last new component is

included as subcomponent by

addFcSuperComponent primitive (line 15) for

<<AfterJP>> advice (Figure 3) and wired to

toEvacuatePatientServiceComponent (lines

16-17). Finally, the service ItinerarySelected is

promoted to the enclosing composite (line 18) and

exposed as a SOAP binding in order to be

discovered and connected as web service (line 19).

When these actions are completed, the execution of

the application can be resumed (line 20). For

unweaving action, can use
RemoveFcSuperComponent, RemoveFcSub-

Component and UnbindFC primitives [5], [27].

1 action WeaveEvacuation(EvacuationApplication, EvacuationAdvice){

2 stop($EvacuationApplication);

3 // subcomponent of SetDepartureItineraryServiceComponent

4 SetDepartureItineraryServiceComponent = adl-new($SetDepartureItineraryAdvice);

5 addFcSubComponent($EvacuationApplication, $SetDepartureItineraryServiceComponent);

6 bindFc($toEvacuatePatientServiceComponent/interface:: DepartureItinerary,
7 $SetDepartureItineraryServiceComponent/interface:: DepartureItinerary);
8 // subcomponent of SetDestinationItineraryServiceComponent

9 SetDestinationItineraryServiceComponent = adl-new($SetDestinationItineraryAdvice);

10 addFcSubComponent($EvacuationApplication, $SetDestinationItineraryServiceComponent);

11 bindFc($toEvacuatePatientServiceComponent/interface:: DestinationItinerary,
12 $SetDestinationItineraryServiceComponent/interface:: DestinationItinerary);
13 // supercomponent of toSelectItineraryServiceComponent

14 toSelectItineraryServiceComponent = adl-new($toSelectItineraryAdvice);

15 addFcSuperComponent($EvacuationApplication, $toSelectItineraryServiceComponent);

16 bindFc($toSelectItineraryServiceComponent/interface:: EvacuationItinerariesList,
17 $toEvacuatePatientServiceComponent/interface:: EvacuationItinerariesList);
18 promote($toSelectItineraryServiceComponent/interface:: ItinerarySelected, $EvacuationApplication);

19 bind($toSelectItineraryServiceComponent/interface:: ItinerarySelected, "soap");

20 start($EvacuationApplication);

21 return $EvacuationApplication;}

EAI Endorsed Transactions on
 Context-Aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e4

On Sustaining Dynamic Adaptation of Context-Aware Services

7

Execution

Thanks to FraSCAti platform (plugged in Eclipse

https://www.eclipse.org/) which supports

the weaving at runtime and enables the dynamic

adaptation of applications being executed [5]. the

adaptation process can be done so efficiently. Firstly,

and before adaptation (at 15:30 pm, for example),

toEvacuatePatient service displays the whole

list of itineraries either Blocked or NotBlocked

(status column) with a map of the shortest and

selected itinerary to be displayed on Ambulance’s

GPS as shown in Figure 7 (Screen 1).

Then, and after a change in status (as context

information) of the selected itinerary (from

NotBlocked to Blocked, at 15:45 pm), an

adaptation of toEvacuatePatient service

will occur taking account the new departure of the

itinerary (i.e. where it received the new context

information about the blocking of the previous

itinerary) and then, it selects other new itineraries list

with new distances to the same destination. Finally,

the system will show the new map for the new

selected itinerary to be followed by the Ambulance

driver (Figure 7, Screen 2) for a rapid evacuation of

the patient in order to save his/her life.

Figure 7. Evacuation Itineraries Before and After Adaptation

Sreen 1

Sreen 2

EAI Endorsed Transactions on
 Context-Aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e4

Boudjemaa Boudaa et al .

 8

Note that the maps in this example are obtained by

using the Bing Maps REST Services

http://msdn.microsoft.com/en-

us/library/ff701713.aspx.

5. Conclusion

Context-aware services are a promising technology

to construct personalised pervasive applications.

Besides the importance of how to build such

services, their context-aware adaptation during the

execution time represents a challenge to overcome.

The present article proposed a model-driven

dynamic adaptation process at runtime respecting the

MAPE-K control loop. This process consists to

weave at model and code levels necessary

adaptations specified in ContextAspect models into

the running application according to dynamic

context change. The aspect weaving enables to

produce a wide range of context-aware services

models without designing them from the beginning.

An illustrative case study is implemented using the

FraSCAti platform, so smoothly achieving this

runtime adaptation.

Our future work will be on evaluating the

execution time taken by this process. We will also

focus on reducing the adaptation’s response time so

improving the context-awareness performed for such

kind of services.

References

[1] Schilit, B., and Theimer, M. Disseminating active map

information to mobile hosts. IEEE Network 8 (1994), 22-

32.

[2] Kapitsaki, G. M., Prezerakos, G. N., Tselikas, N. D., 2010.

In book "Enabling Context-Aware Web Services:

Methods, Architectures, and Technologies", 1st Edition.

Chapman & Hall/CRC Press, Ch. Context-aware Web

Service Development: Methodologies and Approaches, pp.

3–29.

[3] Turner, R. M. Determining the Context-Dependent

Meaning of Fuzzy Subsets. In Proceedings of the 1997

International and Interdisciplinary Conference on

Modeling and Using Context (CONTEXT-97) (Rio de

Janeiro, 1997).

[4] Brambilla, M., Cabot, J., and Wimmer, M. Model-Driven

Software Engineering in Practice. Morgan & Claypool,

Sept. 2012.

[5] Seinturier, L., Merle, P., Rouvoy, R., Romero, D.,

Schiavoni, V., and Stefani, J.-B. A component-based

middleware platform for recon gurable service-oriented

architectures. Software: Practice and Experience 42, 5

(May 2012), 559-583.

[6] Kakousis, K., Paspallis, N., and Papadopoulos, G. A. A

survey of software adaptation in mobile and ubiquitous

computing. Enterp. Inf. Syst. 4, 4 (Nov.2010).

[7] Carton, A., Clarke, S., Senart, A., and Cahill, V. Aspect-

oriented model-driven development for mobile context-

aware computing. In SEPCASE '07: Proceedings of the 1st

International Workshop on Software Engineering for

Pervasive Computing Applications, Systems, and

Environments (Washington, DC, USA, 2007), IEEE

Computer Society, p. 5.

[8] Grassi, V., and Sindico, A. Towards model driven design

of service-based context-aware applications. In

Proceedings of the 2007 International Workshop on

Engineering of Software Services for Pervasive

Environments, ESSPE 2007 (Dubrovnik, Croatia,

September 2007), A. L. Wolf, Ed., ACM, pp. 69-74.

[9] Elrad, T., Filman, R. E., and Bader, A. Aspect-oriented

programming: Introduction. Commun. ACM 44, 10 (Oct.

2001), 29-32.

[10] Prezerakos, G. N., Tselikas, N. D., and Cortese, G. Model-

driven composition of context-aware web services using

contextuml and aspects. In Proceedings of 2007 IEEE

International Conference on Web Services (ICWS 2007)

(Salt Lake City, Utah, USA, July 9-13 2007), IEEE

Computer Society, pp. 320-329.

[11] Sheng, Q. Z., and Benatallah, B. Contextuml: A uml-based

modeling language for model-driven development of

context-aware web services. In Proceedings of 2005

International Conference on Mobile Business (ICMB

2005) (Sydney, Australia, 11-13 July 2005), pp. 206-212.

[12] Tanter, E., Gybels, K., Denker, M., and Bergel, A.

Context-aware aspects. In 5th International Symposium on

Software Composition (SC 2006) (Vienna, Autriche,

2006), W. L• owe and M. S• udholt, Eds., vol. 4089 of

LNCS, Springer.

[13] Ayed, D., and Berbers, Y. Uml pro le for the design of a

platform-independent context-aware applications. In

Proceedings of the 1st workshop on MOdel Driven

Development for Middleware, MODDM 2006 (Melbourne,

Australia, December 2006), I. Gorton, L. Zhu, Y. Liu, and

S. Chen, Eds., vol. 183 of ACM International Conference

Proceeding Series, ACM, pp. 1-5.

[14] Kapitsaki, G. M., Prezerakos, G. N., Tselikas, N. D., and

Venieris, I. S. Model-driven development of composite

context-aware web applications. Information & Software

Technology 51, 8 (2009), 1244-1260.

[15] Hussein, M., Han, J., Yu, J., and Colman, A. Enabling

runtime evolution of context-aware adaptive services. In

IEEE SCC (2013), IEEE, pp. 248-255.

[16] Blair, G., Bencomo, N., and France, R. B. Models@

run.time. Computer 42 (2009), 22-27.

[17] OMG, 2003. Model driven architecture (mda), mda guide

version 1.0.1.URL http://www.omg.org/cgi-

bin/doc?omg/03-06-01.

[18] Boudaa, B., Hammoudi, S., and Chikh, M. A. ODM-Based

modeling for User-Centered Context-Aware mobile

applications. In The 3rd International Conference on

Information Technology and e-Services

ICITeS'2013(ICITeS'2013) (Sousse, Tunisia, Mar. 2013).

[19] Sheng, Q. Z., Yu, J., Segev, A., and Liao, K. Techniques

on developing context-aware web services. IJWIS 6, 3

(2010), 185-202.

[20] Boudaa, B. Towards a Model-Driven Requirements

Specification of Context-Aware Services. The 10th

International Conference on Signal Image Technology &

Internet - Based Systems (SITIS'14) - Track On Web

EAI Endorsed Transactions on
 Context-Aware Systems and Applications

01-03 2015 | Volume 2 | Issue 3 | e4

On Sustaining Dynamic Adaptation of Context-Aware Services

9

Computing And Applications (WeCA), November 23 -

27, 2014, Marrakech, Morocco.

[21] OMG, August 2011. OMG Unified Modeling Language

(OMG UML), Superstructure, Version 2.4.1.URL

http://www.omg.org/spec/UML/2.4.1

[22] Bobrow, D. G., Gabriel, R. P., and White, J. L. Clos in

context: the shape of the design space. 29-61.

[23] Kephart, J. O., and Chess, D. M. The vision of autonomic

computing. Computer 36, 1 (Jan. 2003), 41-50.

[24] Vogel, T., and Giese, H. Model-driven engineering of self-

adaptive software with eurema. ACM Trans. Auton. Adapt.

Syst. 8, 4 (Jan. 2014), 18:1-18:33.

[25] Luckham, D. C. The Power of Events: An Introduction to

Complex Event Processing in Distributed Enterprise

Systems. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2001.

[26] Boudaa, B., Hammoudi, S., Bouguessa, A., Chikh, M. A.,

2014. Supporting runtime adaptation of context-aware

services. In: Proceedings of 3rd International Conference

on Context-Aware Systems and Applications, ICCASA

2014.

[27] David, P.-C., Ledoux, T., Coupaye, T., and L eger, M.

Fpath and fscript: Language support for navigation and

reliable recon guration of fractal architectures. Annales des

Telecommunications 64, 1-2 (Fevrier 2009), 45-63.

[28] Parra, C., Blanc, X., Cleve, A., and Duchien, L. Unifying

design and runtime software adaptation using aspect

models. Science of Computer Programming 76, 12 (Jan.

2011), 1247-1260.

