
SpotCore: A Power-Efficient Embedded Processor for
Intelligent Sensor Networks

Mbou Eyole-Monono
University of Cambridge

Computer Laboratory
15 JJ Thomson Avenue

Cambridge CB3 0FD, UK
me265@cam.ac.uk

Robert Harle
University of Cambridge

Computer Laboratory
15 JJ Thomson Avenue

Cambridge CB3 0FD, UK
rkh23@cam.ac.uk

Andrew Rose
ARM Ltd.

Processor Division
110 Fulbourn Road

Cambridge CB1 9NJ, UK
Andrew.Rose@arm.com

ABSTRACTSensor platforms designed with mobility in mind, su
h asbody networks, have inherent s
alability problems arisingfrom the 
on�i
ting demand for high pro
essing 
apabilities(to 
olle
t, 
ompress, and �lter data) and the need for low-power, resour
e-
onstrained hardware. This paper presentsa CPU design whi
h seeks to optimize pro
essing for a sen-sor network by improving performan
e in a power-e�
ientand s
alable manner. We demonstrate the 
ru
ial designde
isions and trade-o�s required in developing su
h a pro-
essing platform and demonstrate that a minimalist designsaves power without adverse impa
t on performan
e. Inaddition, we address the problem of s
alability in a multi-threaded environment through the development of a novels
heduling algorithm implemented dire
tly in hardware.
Categories and Subject DescriptorsC.1.1 [Pro
essor Ar
hite
tures℄: Single Data Stream Ar-
hite
tures�pipeline pro
essors, RISC ar
hite
tures
General TermsMeasurement, Performan
e, Design, Experimentation, Lan-guages
KeywordsLow-power, Sensor networks, Mi
ropro
essors, Embeddedsystems, Threads, S
hedulers
1. INTRODUCTIONIn re
ent years, advan
es in wireless 
ommuni
ations havefostered the notion of many independent sensors distributedthroughout an environment or a
ross an obje
t, 
ontinu-ally sensing and rea
ting to the 
urrent state. Beyond reli-able 
ommuni
ation, the s
enario of body sensor nets o�ersmany 
hallenges: powering the sensor nodes, pro
essing in-formation e�
iently within the network, and bringing 
ostsdown. Sensing inside or around a human body, for example,

requires tiny nodes (aestheti
s) 
onne
ted invisibly (so asnot to restri
t motion) with low power draw (so we 
an usesmaller, lighter batteries that need 
hanging less frequentlyor some form of energy-s
avenging). In fa
t, power is oftenthe major barrier: it limits 
ommuni
ations range, operat-ing lifetime, and pro
essing 
apabilities.This paper presents a novel approa
h to enhan
ing the 
om-putational 
apabilities of sensor networks without the penaltyof high power 
onsumption. Currently, any high-performan
eba
k-end pro
essing required in sensor networks is often of-�oaded to desktop or server 
lusters as dis
ussed in [21℄.However, this s
enario su�ers from at least �ve drawba
ks:1. Compute-intensive appli
ations 
annot run within thesensor network in order to improve the quality of thedata by adapting the sensor parameters in real-time.2. High-end 
omputing systems may be remote from thesensor network and the bandwidth required to trans-port data to and from the 
luster will be very large.3. A 
onne
tion to a high-performan
e 
omputer 
lusterwould not always be available for 
ertain deploymentsof sensor networks.4. Server 
lusters are 
urrently not power-e�
ient andthe laten
y may be unpredi
table.5. As sensor systems s
ale in size and 
omplexity the en-ergy e�
ien
y of a distributed 
omputation will be farfrom optimal if individual pro
essing elements are notpower-e�
ient.Signi�
ant advan
es in body nets 
an be a
hieved by pro-
essing biomedi
al data lo
ally within the body sensor net-work using pro
essing units designed with su
h extremelypower-
onstrained networks in mind. The pro
essor de-s
ribed herein, named SpotCore, is a small, fast, and open-sour
e CPU 
ore designed with emphasis on power e�
ien
y,�exibility and s
alability, whi
h it is hoped will stimulate re-sear
h into high-performan
e pro
essing within sensor net-works. It is designed in the Verilog hardware des
riptionlanguage and is purely synthesisable.The rest of this paper is organised as follows. Se
tion 2summarises some important resear
h into the redu
tion of

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BODYNETS 2007, June 11-13, Florence, Italy
Copyright © 2007 ICST 978-963-06-2193-9
DOI 10.4108/bodynets.2007.151



power 
onsumption. Se
tion 3 
overs the important ar
hi-te
tural points whi
h dire
ted the development of SpotCoreand explains the 
ru
ial 
ombination of features whi
h makeit unique among the plethora of RISC pro
essors available.Se
tion 4 examines the instru
tion set in detail. Some in-tegrated 
ir
uit synthesis and experimental results are pre-sented in Se
tion 5. Se
tion 6 is 
on
erned with optimisings
heduling within a sensor-driven 
omputational platform,aiming to make this as lightweight as possible without sa
-ri�
ing robustness. We 
on
lude in Se
tion 7.
2. RELATED WORKNazhandali [16℄ notes that designing energy-e�
ient sensorpro
essors is a fairly re
ent undertaking and des
ribes howan ultra-low energy pro
essor may be designed by 
ombiningoptimisations at the mi
roar
hite
tural and instru
tion setlevels, with subthreshold voltage 
ir
uits [17℄. These 
ir
uitsoften involve signi�
antly lower 
lo
k frequen
ies[22℄ and arethus su

essful in redu
ing power for appli
ations that donot require a high throughput. However, this limitation istoo great in the general 
ase.Many sensor network platforms have used o�-the-shelf 
om-ponents whi
h were not primarily designed for the stri
tultra-low power environments they are then embedded within.Virantha et al. [6℄ present a novel ar
hite
ture based onan asyn
hronous 16-bit RISC 
ore. By using asyn
hronousdesign te
hniques this pro
essor, known as SNAP/LE, 
anredu
e its power 
onsumption be
ause not all parts of the
ir
uit are a
tively 
hanging state, and there is no power-hungry 
lo
k-tree. To simplify veri�
ation (often a problemin asyn
hronous 
ir
uits) they adopt a quasi delay-insensitivedesign approa
h. Their reported worst-
ase energy 
on-sumption �gure is 300pJ/instru
tion and they note thatthis stands out favourably when 
ompared to approximately1500pJ/instru
tion for an o�-the-shelf Atmel mi
ro
ontroller.The design prin
iples of SNAP/LE di�er from those of Spot-Core sin
e the latter retains a syn
hronous design method-ology (the most viable route for integrated 
ir
uit synthe-sis) and fo
usses instead on optimising the instru
tion setand pro
essor ar
hite
ture. The resear
hers in [13℄ use alow-power 
ompilation methodology to save energy withina wireless sensor network by making optimisations at themi
ropro
essor instru
tion exe
ution level.The SNAP/LE proje
t also shows how the exe
ution timeof a given task 
an be redu
ed relative to an Atmel mi-
ro
ontroller running TinyOS on a Berkeley MICA mote,by using a s
heduler implemented in hardware and tightly-
oupled to the pro
essor. This te
hnique yields signi�
antpower improvements, and is adopted in SpotCore. How-ever, we present a more s
alable hardware-based s
hedulerwhi
h is 
apable of supporting not only event-driven exe
u-tion but true multi-threading, and whi
h a
hieves a betterdegree of fairness than the simple non-pre-emptive FIFO-based s
heduler used in SNAP/LE. Mota et al. [15℄ alsotake a hardware-oriented approa
h and show that they 
animprove the information-pro
essing 
apability of sensor net-work nodes by re-implementing tasks as hardware modules.Warneke et al. [23℄ produ
ed a design whi
h improves power-e�
ien
y by having separate hardware subsystems whi
h
an be shutdown independently, elaborate 
lo
k-gating, and

guarded ALU inputs. However, the design uses no data-path pipelining in a bid to avoid the asso
iated hardwareoverhead. This in turn limits the maximum 
lo
k frequen
y.However, the designers note that the platform known as�Smart Dust� will be used in low data rate s
enarios wherehigh 
lo
k frequen
ies are not normally needed. At 500kHzand 1V, the design utilises 12pJ/instru
tion. With the pos-sibility of 
ollaborative pro
essing between sensor platformsand the high level of interest in in-network pro
essing, mu
hhigher levels of performan
e may be required and hardwarelimitations on the design speed are inadvisable. The instan-taneous power might be redu
ed at lower frequen
ies (andvoltage) but the overall energy 
onsumption might be worseif the exe
ution time is not also redu
ed through 
arefulinstru
tion set design.Ciaran et al. [14℄ present a survey of di�erent pro
essorar
hite
tures for wireless sensor networks and observe that
urrent mi
ropro
essors have limited 
apabilities for han-dling 
omplex data-pro
essing tasks. The Texas Instru-ments MSP430 [9℄ emerged as the best ar
hite
ture in thesurvey, with the smallest power 
onsumption �gures 
om-pared to the Atmel ATMega128L and the Mi
ro
hip PIC18.The i-Bean [19℄ uses dual pro
essors 
lo
ked at di�erentspeeds to improve power e�
ien
y. The re
ently announ
edImote2 [3℄ from Crossbow te
hnology uses a high-performan
e,low-power 32-bit PXA271 XS
ale pro
essor and is 
apableof dynami
 voltage and frequen
y s
aling from 13MHz to416MHz. The platform also in
orporates a DSP 
opro
es-sor to a

elerate multimedia operations by extending theXS
ale instru
tion set. Preliminary data suggests that, withthe radio 
ir
uitry o�, the rest of the 
hip 
omprising theCPU and memory 
onsume about 2mW/MHz. It is an inter-esting fa
t that on this platform, whi
h is touted as the mostpower-e�
ient sensor platform, the pro
essing elements 
on-sume as mu
h as 40% of the overall power 
onsumption whenthe radio 
ir
uitry is on; indi
ating that resear
h into morepower-e�
ient 
ores is at least as important as resear
h intolow-power 
ommuni
ation interfa
es in the quest to redu
ethe overall power 
onsumption of sensor platforms.
3. THE SPOTCORE ARCHITECTUREThe design of SpotCore is primarily motivated by the de-sire to integrate as mu
h essential fun
tionality as possibleinto a single 
ore whilst taking great 
are in the instru
-tion set and pro
essor design to avoid the introdu
tion ofredundant hardware. There are many optimisations whi
h
an be applied to the basi
 RISC pipeline (see [7℄) but it isimportant to identify a set of reliable optimisations whi
hwould still yield a reasonable performan
e from a highlyminimalist design philosophy. While more pipeline stageswill enable the design to be 
lo
ked at higher frequen
ies,by putting less work or logi
 in ea
h stage, this adds 
om-plexity, in
reases hardware size and worsens the bran
h orex
eption penalty. We observe that pro
essing in sensornetworks is of a highly 
on
urrent nature as there might bemultiple data streams requiring analysis. We envisage thatas these networks s
ale, this parallelism is going to in
reasedramati
ally. This leads to an in
reased probability of many
ontext-swit
hes so it is desirable to keep as little state inter-nal to the pro
essor as possible (but relevant to any giventhread). In addition, SpotCore is being designed for low-



Figure 1: The internal stru
ture of SpotCorepower environments where extremely high 
lo
k frequen
iesin the gigahertz range are not feasible due to the substan-tial in
rease in power requirements. The 
riti
al path length
onstraint 
an be relaxed as a result. Deeply-pipelined pro-
essors will typi
ally need a great deal of logi
 to transferinformation 
ontained in instru
tions still in the pipeline topre
eding instru
tions.Using an instru
tion width of just 16 bits instead of 32 bitsor higher reaps power savings by redu
ing the bandwidth re-quirement of instru
tion memory and may additionally leadto high 
ode density. The datapath of SpotCore (
omprisingregisters, internal buses and fun
tional units) is 32 bits wide.The important parts of the internal stru
ture and datapathare shown in Figure 1.The instru
tions are split into di�erent 
lasses depending onwhether they are dyadi
, monadi
 or require no operands.This enables us to attain a highly orthogonal instru
tionset design whi
h makes maximum use of the available en-
oding spa
e. This en
oding s
heme is illustrated in detaillater. Most of the data pro
essing instru
tions (Add, Sub-tra
t, Multiply, AND et
) on SpotCore are dyadi
 but dueto the restri
tions on instru
tion length only register 
on-tents may be used as operands. This is in 
ontrast to theplurality of addressing modes used on an ARM pro
essor[2℄ and it greatly simpli�es the addressing s
heme leadingto more 
ompa
t de
ode logi
. In addition, register lookupuses indi
es spe
i�ed in �xed parts of an instru
tion in orderto further simplify de
ode.

All SpotCore instru
tions are 
onditional � the predi
atedinstru
tion s
heme has been found to be su

essful in ARMpro
essors [2℄ and Intel's IA-64 ar
hite
ture [11℄ by redu
ingthe number of bran
hes. However, in order to save en
odingspa
e we mandate that a 
onditional instru
tion 
annot alsobe ��ag-modifying�. This means we 
an use just one �eld tospe
ify whether an instru
tion sets or 
lears the �ags or isitself 
onditional on some �ags set previously within the pro-
essor. This �eld is restri
ted to 3 bits. The trade-o� arosefrom observing many instru
tion tra
es of 
ode 
ompiled foran ARM pro
essor and not �nding many instan
es of 
ondi-tional instru
tions whi
h modi�ed �ags. The 
ombination ofthis 3-bit �eld and a 4-bit primary op
ode �eld leaves only9 bits for en
oding the registers being a

essed. This inturn restri
ts the number of visible and dire
tly addressableregisters to eight.Another power-saving measure seeks to redu
e the numberof register ports � two read ports are adequate if we useonly simple dyadi
 instru
tions. However, we eventually in-
orporated three read ports and two write ports in order tobe able to support 
ertain very useful instru
tions:STR r0,[r1℄,r2 => Store the value in r0 at the addresspointed to by the value in r1 and update the registerr1 with the sum of the values in r1 and r2.MLA r0,r1,r2 => Pla
e X + Y*Z in register r0, where X,Y,and Z are the values in r0,r1 and r2 respe
tively.LDR r0,[r2℄,r3 => Load r0 with the value at the addresspointed to by the value in r2 and update the registerr2 with the sum of the values in r2 and r3.SORT r0,r1 => Swaps data values so that the register withthe higher index 
ontains the higher value.These instru
tions and a few others ne
essitate either threesimultaneous reads from or two simultaneous writes into theregister �le. However, the presen
e of two write ports 
reatesan opportunity to improve the exe
ute stage by arrangingthe logi
 so its more 
riti
al pathways feed into a less heavily-loaded write port and thereby 
reating more balan
ed timingin that pipeline stage.SpotCore has a smaller register �le than most embeddedRISC pro
essors and no banked registers. In order to savetime on ex
eption-entry, register-�le sta
king is managed byhardware. Register 7 is the program 
ounter and the sta
kpointer is internal. SpotCore also maintains an internal linkregister whi
h is saved automati
ally when nested subrou-tines are dete
ted. This in
reases the number of generalpurpose registers available and also saves time sin
e it 
anbe sta
ked in parallel with bran
hing. A separate instru
-tion is provided to re
over the link register value if ne
essary.We are 
urrently resear
hing more ways of redu
ing the per-forman
e impa
t of this small register �le through advan
ed
ompilation te
hniques. SpotCore simply operates in one oftwo modes � trusted or untrusted, and avoids any expensiveex
eption-handling s
heme.SpotCore has a bran
h penalty of 2 
y
les. Due to thefairly mild impa
t of bran
hing and ex
eptions on its short



pipeline, it was de
ided that the performan
e boost a�ordedby bran
h predi
tion in this 
ase would not justify the extrahardware needed. However, in order to mitigate the im-pa
t of bran
hing in the 
ommon s
enario involving �xedbran
hes at the end of iterative blo
ks of 
ode su
h as inFOR loops, a LOOP instru
tion was added to the instru
-tion set. The 
on
ept is similar to that used in the Intelx86 ar
hite
ture [10℄ but our me
hanism is di�erent and theo

urren
e of nested loops is dete
ted and handled auto-mati
ally by the SpotCore hardware. The purpose of thisinstru
tion is to ensure that the pro
ess of 
he
king for thelast iteration at the end of the loop body 
an happen whilethe loop body itself is being exe
uted so the pipeline 
an be�lled with the 
orre
t set of instru
tions and the e�e
t of thebran
h is hidden. As a result, an expli
it bran
h at the endof the loop, and the penalty asso
iated with it, are avoided.To illustrate this point the following ARM 
ode sequen
e A
an be rewritten as 
ode sequen
e B on SpotCore.;Code sequen
e AMOV r0,#10 ;set up loop 
ounterlabel LDR r1,[r2℄,r3 ;loop starts here;rest of loop bodyLDR r4,[r5℄,r3SUBS r0,r0,#1BNE label;other instru
tions;Code sequen
e BLOOP r1,r0MOV r0,#10 ;set up loop 
ounter;set up loop end addressMOV r1,#end_addressLDR r1,[r2℄,r3 ;loop starts here;rest of loop bodyend_address LDR r4,[r5℄,r3;other instru
tionsNoti
e that the registers used to set up the loop in the LOOPinstru
tion 
an be re-used within the loop. In the 
ase of anested loop, the information held in the loop state ma
hinein the CPU is written out to memory automati
ally as thenew �loop state� is 
reated in the two instru
tions followingthe a LOOP instru
tion. A spe
ial internal register holdinga pointer to the base of the memory stru
ture holding loopstate information at various levels must be set up duringinitialisation.
4. INSTRUCTION SET DESIGNThe SpotCore instru
tion set is largely in�uen
ed by themany 
ommon RISC instru
tion sets. SpotCore attemptsto in
lude many of the most 
ommon instru
tions withoutviolating our size and power 
onstraints (Figure 2), whilealso in
luding some spe
ial instru
tions for thread manage-ment. Many of our instru
tions would typi
ally be found indigital signal pro
essors.Apart from the simple register addressing mode shown in thetable, the 32-bit ARM has other addressing modes where these
ond operand 
ould be an immediate value or even spe
i-�ed as the result of a shift operation. Sin
e we did not want

Figure 2: Comparison of SpotCore, ARM, TIMSP430, and MIPS32 instru
tion setsthe shifter to be in the 
riti
al path and were limited inour available en
oding spa
e, we 
reated separate instru
-tions for getting immediate values into the pro
essor andfor shifting. Although this might represent a performan
eproblem if these types of instru
tions are used frequently,we 
an however assert that the 
ode size relative to a 32-bitinstru
tion set is una�e
ted as the two operations simplybe
ome two 16-bit instru
tions.The MSP430 is a 16-bit RISC CPU whi
h lies at the heartof many sensor boards. It has 16 registers, 4 of whi
h aretreated spe
ially � program 
ounter, status register and
onstant generator whi
h is parti
ularly important be
auseit provides six frequently used immediate values thereby re-du
ing 
ode size. However, unlike SpotCore and ARM notall MSP430 instru
tions are 
onditional. Only a few MIPS32instru
tions are predi
ated despite having a 32-bit instru
-tion set.Following the implementation of an "ARM-like" instru
-tion set, we were able to add some useful but un
ommonsingle-
y
le instru
tions without any drasti
 e�e
t on oper-ational parameters. These extra instru
tions are ABS (getabsolute value), SORT (arrange values in registers based ontheir numeri
 size), BITREV (bit-reversal useful in Fast-Fourier Transform algorithm), the LOOP instru
tion de-s
ribed previously, and some thread management instru
-tions des
ribed later. We also added the fa
ility to load arelatively large literal from the instru
tion stream as data.Our move instru
tion (MOV) has a spe
ial bit whi
h if set



will treat the next instru
tion as data, and append the last5 bits of the move instru
tion to that. This means thatbesides the usual data memory a

ess instru
tions we 
aneither load a 5-bit value in one instru
tion or a 21-bit valuein two instru
tions. In 
ontrast, one 
annot load an arbi-trary 21-bit value within a single (32-bit) ARM instru
tionbut have to en
ode the immediate operand as an 8-bit 
on-stant and a 4-bit (even-number) rotate whi
h is applied toit.The four main SpotCore instru
tion formats are shown inFigures 3, 4, 5 and 6, while Figures 7, 8, 9 and 10 show theex
eptions to these standard formats. What we are tryingto portray in these �gures, is the fa
t that the width (num-ber of bits), meaning, and pla
ement of many se
tions ofthe instru
tion are kept as 
onsistent as possible betweeninstru
tions in a bid to simplify the de
oding logi
. Simi-larly, by splitting the instru
tion set into di�erent 
lasses de-pending on their requirements, with regards to the numberof registers required for a parti
ular operation, we a
hievea 
ompa
t layout whi
h favours an e�
ient design. POPand PUSH instru
tions read from and write to the sta
k re-spe
tively. The RETURN instru
tion is similar to the POPinstru
tion with the only di�eren
e being the fa
t that italso loads the PC with the preserved link register value. Inthese instru
tions, the bit �eld [5:0℄ is used to en
ode the setof registers whi
h must be sta
ked to allow �exibility, akinto the ARM sta
k-manipulation instru
tions.
5. SYNTHESIS AND TEST CODE RESULTSSin
e the energy usage of sensor appli
ations is a produ
t ofpower and time, it is important to redu
e both the power
onsumption and the exe
ution time of a set of instru
tions.We synthesised our Verilog design using Synopsys DesignCompiler with a UMC 130nm te
hnology library. The worst-
ase power estimate obtained was 0.03mW/MHz whi
h looksauspi
ious 
ompared to the TI MSP430 (0.4mW/MHz, CPUonly). Admittedly the TI MSP430 is a 
omplete System-On-Chip 
omprising memory and other peripherals (wat
h-dog,timer,UART et
), but this power redu
tion is very sig-ni�
ant as it is more than an order of magnitude smallerthan the power 
onsumed by the TI CPU when it is op-erating alone with all the peripherals powered down. Wenote that the more lightweight embedded ARM pro
essors� ARM7TDMI and the ARM Cortex M3 have power �g-ures of 0.06mW/MHz and 0.09mW/MHz (130nm te
hnol-ogy and speed-optimised) respe
tively [1℄. The Cortex-M3[20℄ implements a new 16-bit variant of the ARM instru
-tion set known as Thumb-2 whi
h is 
apable of improving
ode density while maintaining a high level of performan
e.Figure 11 shows the 
ode size and exe
ution times of di�er-ent pro
essors running the same digital �lter algorithm on4000 input samples. The performan
e advantage of Spot-Core in this IIR �lter experiment is largely due to its abilityto know pre
isely where bran
hes within loops o

ur; andthis improvement is signi�
ant for a large number of pro-grams as loops are very 
ommon programming 
onstru
ts.In addition, judging from Figure 2, about 70% of our in-stru
tion set is ARM 
ompatible whi
h is signi�
ant as thereexists a wealth of reliable ben
hmarks for that instru
tionset. While many of our instru
tions are also similar to thosein the TI MSP430 instru
tion set, we believe we gained ade�nite performan
e advantage be
ause our 
ore supports

[15:12℄ [11:9℄ [8:6℄ [5:3℄ [2:0℄op
ode1 Predi
ate rX rY rZFigure 3: Class 1 instru
tion[15:12℄ [11:9℄ [8:6℄ [5:3℄ [2:0℄op
ode1 Predi
ate op
ode2 rY rZFigure 4: Class 2 instru
tion[15:12℄ [11:9℄ [8:6℄ [5:3℄ [2:0℄op
ode1 Predi
ate op
ode2 op
ode3 rZFigure 5: Class 3 instru
tion[15:12℄ [11:9℄ [8:6℄ [5:3℄ [2:0℄op
ode1 Predi
ate op
ode2 op
ode3 op
ode4Figure 6: Class 4 instru
tion[15:12℄ [11:9℄ [8:6℄ [5℄ [4:0℄op
ode1 Predi
ate rX dire
tion shiftAmountFigure 7: Shift by Immediate[15:12℄ [11:9℄ [8℄ [7:0℄op
ode1 Predi
ate Link? <signed o�set>Figure 8: Bran
h instru
tion[15:12℄ [11:9℄ [8:6℄ [5:0℄op
ode1 Predi
ate op
ode2 r0�r5Figure 9: PUSH, POP, RETURN[15:12℄ [11:9℄ [8:6℄ [5℄ [4:0℄op
ode1 Predi
ate rX Next? ValueFigure 10: MOVE instru
tion



Exe
ution time (ms) Code size (bytes)SpotCore 20.2 50ARM7TDMI 23.5 92TI MSP430 38.5 95Figure 11: IIR Filter Code resultsdyadi
 instead of monadi
 data-pro
essing instru
tions. Inaddition, the TI MSP430 does not support dire
t multipli-
ation within the pro
essor datapath but relies instead on asystem peripheral whi
h limits performan
e be
ause a dataa

ess is required.
6. ROBUST ZERO-OVERHEAD SCHEDUL-

INGIn addition to building low-energy pro
essor 
ores, optimis-ing the manner in whi
h threads are loaded and removed,and the asso
iated s
heduling s
heme, maximises pro
es-sor utilisation and improves power e�
ien
y. An e�e
tivethread management strategy should also s
ale with the num-ber of threads and pro
essing elements. Due to the smallphysi
al area of SpotCore it is envisaged that it will be usednot only in a multithreaded environment but alongside other
ores in a multipro
essor; and in this 
ase it is desirable tohave transparent thread migration between 
ores. The 
en-tral innovation in this se
tion is the development of a threadmanagement poli
y whi
h runs dire
tly in hardware withoutrequiring any CPU time unlike 
onventional operating sys-tems. This hardware module whi
h we 
all TopDog sharesa 
onne
tion with the pro
essor memory and interrupt in-terfa
es, and 
an dispat
h threads to the pro
essor basedon its internal s
heduling algorithm. This module elevatesthe level of performan
e possible as the pro
essor does nothave to keep swit
hing to some kind of supervisory mode inorder to 
he
k the status of other threads. It also improvess
alability in a system 
omprising multiple 
ores (Figure 12)by providing a 
ommon, fast arbitration me
hanism. This isappli
able in situations where a shared bus is feasible su
has symmetri
 multipro
essors with up to about 16 
ores.In summary, the TopDog 
arries out the following taskswhi
h are deemed to be 
ru
ial to e�
ient operation whenmany threads are present:
• Fast and 
lean 
reation, reloading, and swit
hing ofthreads
• Implements a s
heduling algorithm with fairness 
on-siderations from the ground up
• Syn
hronisation of threads
• Stores thread 
ontrol blo
ks (TCB) for di�erent threadsand 
an modify ea
h via simple instru
tions issuedfrom the pro
essor
• Holds interrupt ve
tors and priorities, and uses a 
om-mon CPU a

ess me
hanism for interrupts and otherthreadsRather than leaving the s
heduling de
isions entirely up tothe operating system, the programmer 
an spe
ify 
ertain

Figure 12: Pro
essing Subsystem with TopDogS
hedulerparameters to the TopDog to enable it to a
hieve the rightlevel of Quality-of-Servi
e (QoS). This development was in-spired by Nemesis [18℄ whi
h is an OS designed to provideappli
ations su
h as multimedia appli
ations whi
h are verytime-sensitive with some form of QoS guarantees with re-spe
t to CPU and I/O resour
es. The s
heduling de
isions inTopDog are based on the following three parameters whi
ha
hieve the appropriate balan
e between ease-of-use and ro-bustness � PRIORITY, ON_TIME, and OFF_TIME.

Figure 13: The TopDog s
heduler state ma
hineThese parameters relate to the thread state diagram in Fig-ure 13 and their utility is explained as follows. At the mostelementary level, if threads are of the same priority, theygain a

ess to the pro
essor 
ore based on a First-Come-First-Served (FCFS or simply FIFO) s
heme. There are 16priority levels and the TopDog will remove lower prioritythreads from the pro
essor so a higher priority one 
an run.Unfortunately, this might very easily lead to starvation ofsome threads if there are many high priority threads. As



a result we designed a system whi
h allows the program-mer to spe
ify a maximum �ON_TIME� and a minimum�OFF_TIME� for ea
h thread. Together with the priorityvalue, they 
an be used to �ne-tune performan
e be
ausethe priority value 
ontrols how qui
kly the thread gets toexe
ute when it is in the READY state, the ON_TIME
ontrols how long it is allowed to spend on a pro
essor, andthe OFF_TIME determines the delay between getting pre-empted at the end of its exe
ution time, and being able re-turning to the READY state again. The s
heme has enough�exibility to support a very broad range of CPU a

esss
hemes without resorting to a high-level thread library whi
hwill impa
t performan
e.While the hardware does not guarantee that thread starva-tion will be avoided, it does provide the sensor system pro-grammer with more s
ope for 
ontrolling thread s
hedulingthan is 
urrently available. The e�e
t of the ON_TIMEand OFF_TIME parameters is to ensure that the exe
utionprobability of any thread does not have a strong dependen
eon the number of threads of a higher or the same priority.One good poli
y for fairness would be to ensure that lowpriority threads have more tON and less tOF F , while highpriority threads have less tON and more tOF F .We shall now 
ompare our s
heduler with those 
ommonlyfound in resour
e-
onstrained environments. Mi
roC/OS-IIis a pre-emptive real-time kernel written in C, whi
h runson embedded pro
essors su
h as the Motorola 68k, ARM7,and Altera Nios II. It supports dynami
 priorities but notwo tasks (threads) may have the same priority. The high-est priority thread always runs but may be superseded byan interrupt servi
e routine. Its main drawba
k is that alow priority thread 
an wait for an arbitrarily long period oftime sin
e the highest priority thread must run to 
omple-tion or get blo
ked before it 
an run. It is believed that thisapproa
h does not s
ale well be
ause fairness is not integralto the operating system and it is harder to give the lower pri-ority thread any QoS as the exe
ution times of many higherpriority threads are indeterminate. The TopDog s
heduleravoids this undesirable s
enario by providing the ability to
ontrol the dominan
e of higher priority threads in a dire
tway. The uC/OS-II kernel 
ode o

upies about 2K bytesand 
an 
onsume about 5% of CPU time. It 
an support upto 255 tasks. While the TopDog s
heduler has fewer prioritylevels, it 
an support multiple threads of the same priorityand 
an manage up to 512 threads.TinyOS [8℄ is an open-sour
e embedded operating systemdeveloped at University of California Berkeley and is verypopular among developers of appli
ations for Wireless Sen-sor Networks (e.g. [12℄). It operates on many di�erentplatforms, speeds development, and is useful for testing re-sear
h ideas. It is written in nesC whi
h is a C-like stru
-tured 
omponent-based language. In addition to the stan-dard fun
tions of task s
heduling and interrupt handling, italso performs en
ryption and power management. The ma-jor system 
omponents in
lude drivers for the radio inter-fa
e, UART, memory and timer. Other 
omponents in
ludedrivers for the LED interfa
e, an I2C proto
ol implementa-tion and a CRC pa
ket �lter. It has an event-driven ar
hi-te
ture whi
h is su�
iently abstra
t to enable the 
reationof 
ross-platform appli
ations while remaining lightweight.

The main stru
tural elements are 
on�gurations whi
h 
on-ne
t 
omponents, modules whi
h de�ne how 
omponentsbehave by implementing 
ommands and event-handlers, andinterfa
es whi
h de�ne the intera
tion between any two 
om-ponents. Unfortunately, TinyOS provides only an elemen-tary 
on
urren
y model with limited operating system sup-port for a large number of threads or a platform with morethan one pro
essor. It has no inherent ability to spe
ify mul-tiple priority levels. The two main system threads 
omprisetasks and hardware event-handlers respe
tively. Tasks mustrun to 
ompletion and 
annot preempt other tasks whilethey may be preempted by hardware interrupts.The SpotCore approa
h di�ers from this by allowing threadsin our system to pre-empt other threads regularly and by al-lowing the programmer to spe
ify QoS 
onstraints in an ex-pli
it manner. Contiki [4℄ builds on the event-driven modelby utilising �protothreads� [5℄ � lightweight threads whi
h
an fa
ilitate multithreading. Sin
e ea
h protothread doesnot need its own sta
k, protothreads have been promotedas ideal for memory-
onstrained systems. The 
onditionalblo
king wait abstra
tion provided by protothreads avoidsthe 
omplexity involved in dealing with expli
it state ma-
hines whi
h is 
ommon when developing software for event-driven systems. The TopDog gives threads the ability toblo
k until a 
ondition variable be
omes true or an externalevent of interest (interrupt) o

urs. We argue that our ap-proa
h is more s
alable as there is no overhead in terms ofCPU time or 
ode size and we 
an also reap the bene�ts ofhardware a

eleration of the s
heduling algorithm.Rather than 
ommuni
ating with the TopDog module as amemory-mapped peripheral on the system bus, we 
reatedspe
ial instru
tions to speed-up a

ess and promote �exibil-ity with di�erent memory ar
hite
tures as no pointers haveto be 
al
ulated.The SpotCore instru
tions whi
h are used to 
ommuni
atewith the TopDog are:
• SET_VECTOR � this sets the address from whi
hthe new thread will start exe
uting
• SET_PRIORITY� this spe
i�es a 4-bit priority valuefor the thread being 
reated
• SET_ONTIME� sets the parameter tON (10-bit value)
• SET_OFFTIME � sets the parameter tOF F (10-bitvalue)
• FORK � a
tivates the thread state ma
hine
• EXIT � removes all a
tive referen
es to the exitingthread
• SIGNAL � de
rements the spe
i�ed variable held inone of the TopDog memory banks (this behaves in amanner similar to a 
onventional semaphore in thatea
h update is atomi
 and an event is generated whenthe 
ount value rea
hes zero)
• WAIT � blo
ks or suspends a thread until a spe
i�edevent su
h as a semaphore value rea
hing zero or anexternal interrupt o

urs.



• CHECK � similar to wait but non-blo
king
• SET_SIGNAL � initialise a given semaphoreThe state diagram shown in Figure 13 is implemented bymultiple memory blo
ks and a few asso
iated logi
 
on-trollers. The total memory required to manage 512 threadswith 16 priority levels, and 64 signals is about 720 bytes.The 
ontrollers were simple enough so that the hardwarefootprint of the TopDog module is barely over 2000 gates.Assuming a 
lo
k frequen
y of 10MHz, the worst-
ase la-ten
y between one thread sending a signal to the TopDog,and another one be
oming dispat
hed after the TopDog hasupdated its READY queue due to the signal and determinedthe thread whi
h now has the highest priority, is 2 µs. Thekey to this fast inter-thread 
ommuni
ation and syn
hroni-sation me
hanism was designing the logi
 whi
h maps eventsto thread IDs and that whi
h performs priority analysis onthe READY queue, to operate as 
on
urrently as possible.

7. CONCLUSIONSIn this paper, we have applied a sele
tion of low-power CPUdesign strategies to develop a highly-optimised pro
essor de-sign whi
h 
an meet performan
e goals in a power-e�
ientmanner. We demonstrated a 48% improvement in the ex-e
ution time of an IIR �lter routine over the TI MSP430whi
h is widely used on sensor platforms, and a 14% im-provement over an ARM7 pro
essor. Our synthesis resultsprove the extremely lightweight nature of the design; and
oupled with redu
ed exe
ution times, it 
an enable signi�-
ant energy-savings to be made in the realm of sentient 
om-puting. We also noted improvements in 
ode density, anddis
ussed the possibility of very fast thread management us-ing our hardware-based s
heduler module. We hope theseresults will stimulate more resear
h into suitable primitivesfor expressing 
omputation in the 
reation of very power-
ons
ious CPU designs within the sensor network resear
h
ommunity. Our future work will involve leveraging thesmall size and performan
e of the SpotCore CPU to buildmultipro
essing hubs whi
h will take advantage of the highdegree of data-parallelism inherent in sensor networks. Itis our belief that su
h lightweight pro
essing elements willform the 
ornerstone of s
alable sentient 
omputing.
AcknowledgementsMany thanks to Andy Hopper, Alastair Tse, Andrew Ri
e,and Ripduman Sohan for their inspiration. The generous �-nan
ial support from ARM Ltd. is gratefully a
knowledged.
8. REFERENCES[1℄ http://www.arm.
om/produ
ts/
pus/.[2℄ ARM Ltd. ARM Ar
hite
ture Referen
e Manual.[3℄ Crossbow Te
hnology, In
. Imote2 High-perfroman
eWireless Sensor Network Node.[4℄ A. Dunkels, B. Grönvall, and T. Voigt. Contiki - alightweight and �exible operating system for tinynetworked sensors. In Pro
eedings of the First IEEEWorkshop on Embedded Networked Sensors(Emnets-I), Tampa, Florida, USA, Nov. 2004.[5℄ A. Dunkels, O. S
hmidt, T. Voigt, and M. Ali.Protothreads: Simplifying Event-driven Programming

of Memory-Constrained Embedded Systems. InSensys' 06, November 2006.[6℄ V. Ekanayake, I. Clinton Kelly, and R. Manohar. AnUltra Low-Power Pro
essor for Sensor Networks. InAr
hite
tural Support for Programming Languages andOperating Systems, 2004.[7℄ J. L. Hennessey and D. A. Patterson. ComputerAr
hite
ture: A Quantitative Approa
h. MorganKaufmann, 2003.[8℄ J. Hill, R. Szew
zyk, A. Woo, S. Hollar, and K. P.David Culler. System ar
hite
ture dire
tions fornetworked sensors. In ASPLOS-IX, 2000.[9℄ T. Instruments. MSP430 Ultra-Low-PowerMi
ro
ontrollers.[10℄ Intel. Intel Ar
hite
ture Software Developer's Manual:Instru
tion Set Referen
e.[11℄ Intel. Intel Itanium Ar
hite
ture Software Developer'sManual, 2006.[12℄ R. M. Kling. Intel mote: An Enhan
ed SensorNetwork Node.[13℄ N. Lane and A. Campbell. The in�uen
e ofMi
ropro
essor Instru
tions on the energy
onsumption of wireless sensor networks. In ThirdWorkshop on Embedded Networked Sensors (EmNets2006), 2006.[14℄ C. Lyn
h and F. O'Reilly. Pro
essor Choi
e ForWireless Sensor Networks. In Workshop on Real-WorldWireless Sensor Networks, 2005.[15℄ A. Mota, L. B. Oliveira, F. F. Ro
ha, R. Riserio,A. A. F. Loureiro, C. J. C. Jr., H. C. Wong, andE. Nakamura. WISENEP: A Network Pro
essor forWireless Sensor Networks. ISCC, 0:8�14, 2006.[16℄ L. Nazhandali. Ar
hite
tural Optimisation forPerforman
e- and Energy-Constrained SensorPro
essors. PhD thesis, University of Mi
higan, 2006.[17℄ L. Nazhandali, M. Minuth, B. Zhai, J. Olson,T. Austin, and D. Blaauw. A Se
ond-GenerationSensor Network Pro
essor with Appli
ation-DrivenMemory Optimizations and Out-of-Order Exe
ution.In ACM/IEEE International Conferen
e onCompilers, Ar
hite
ture, and Sythesis for EmbeddedSystems, September 2005.[18℄ D. Reed and R. Fairbairns. Nemesis Kernel Overview,May 1997.[19℄ S. Rhee, D. Seetharam, S. Liu, N. Wang, and J. Xiao.i-Bean Network: An Ultra-Low Power Wireless SensorNetwork. In Ubi
omp, 2003.[20℄ S. Sadasivan. An Introdu
tion to the ARM Cortex-M3Pro
essor. Te
hni
al report, ARM Ltd., 2006.[21℄ C.-K. Tham. Sensor Network and Con�guration:Fundamentals, Te
hniques, Platforms andExperiments. Springer-Verlag, June/July 2006.[22℄ A. Wang and A. P. Chandrakasan. A 180mV FFTpro
essor using subthreshold 
ir
uit te
hniques. InDigest of te
hni
al papers, 2004 IEEE InternationalSolid State Cir
uits Conferen
e, volume 1, pages310�319, 2004.[23℄ B. Warneke and K. Pister. An Ultra-Low EnergyMi
ro
ontroller for Smart Dust Wireless SensorNetworks. In International Solid-State Cir
uitsConferen
e, 2004.




