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ABSTRACT

Sensor platforms designed with mobility in mind, such as
body networks, have inherent scalability problems arising
from the conflicting demand for high processing capabilities
(to collect, compress, and filter data) and the need for low-
power, resource-constrained hardware. This paper presents
a CPU design which seeks to optimize processing for a sen-
sor network by improving performance in a power-efficient
and scalable manner. We demonstrate the crucial design
decisions and trade-offs required in developing such a pro-
cessing platform and demonstrate that a minimalist design
saves power without adverse impact on performance. In
addition, we address the problem of scalability in a multi-
threaded environment through the development of a novel
scheduling algorithm implemented directly in hardware.

Categories and Subject Descriptors
C.1.1 [Processor Architectures|: Single Data Stream Ar-
chitectures pipeline processors, RISC architectures

General Terms
Measurement, Performance, Design, Experimentation, Lan-
guages

Keywords
Low-power, Sensor networks, Microprocessors, Embedded
systems, Threads, Schedulers

1. INTRODUCTION

In recent years, advances in wireless communications have
fostered the notion of many independent sensors distributed
throughout an environment or across an object, continu-
ally sensing and reacting to the current state. Beyond reli-
able communication, the scenario of body sensor nets offers
many challenges: powering the sensor nodes, processing in-
formation efficiently within the network, and bringing costs
down. Sensing inside or around a human body, for example,
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requires tiny nodes (aesthetics) connected invisibly (so as
not to restrict motion) with low power draw (so we can use
smaller, lighter batteries that need changing less frequently
or some form of energy-scavenging). In fact, power is often
the major barrier: it limits communications range, operat-
ing lifetime, and processing capabilities.

This paper presents a novel approach to enhancing the com-
putational capabilities of sensor networks without the penalty
of high power consumption. Currently, any high-performance
back-end processing required in sensor networks is often of-
floaded to desktop or server clusters as discussed in [21].
However, this scenario suffers from at least five drawbacks:

1. Compute-intensive applications cannot run within the
sensor network in order to improve the quality of the
data by adapting the sensor parameters in real-time.

2. High-end computing systems may be remote from the
sensor network and the bandwidth required to trans-
port data to and from the cluster will be very large.

3. A connection to a high-performance computer cluster
would not always be available for certain deployments
of sensor networks.

4. Server clusters are currently not power-efficient and
the latency may be unpredictable.

5. As sensor systems scale in size and complexity the en-
ergy efficiency of a distributed computation will be far
from optimal if individual processing elements are not
power-efficient.

Significant advances in body nets can be achieved by pro-
cessing biomedical data locally within the body sensor net-
work using processing units designed with such extremely
power-constrained networks in mind. The processor de-
scribed herein, named SpotCore, is a small, fast, and open-
source CPU core designed with emphasis on power efficiency,
flexibility and scalability, which it is hoped will stimulate re-
search into high-performance processing within sensor net-
works. It is designed in the Verilog hardware description
language and is purely synthesisable.

The rest of this paper is organised as follows. Section 2
summarises some important research into the reduction of
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power consumption. Section 3 covers the important archi-
tectural points which directed the development of SpotCore
and explains the crucial combination of features which make
it unique among the plethora of RISC processors available.
Section 4 examines the instruction set in detail. Some in-
tegrated circuit synthesis and experimental results are pre-
sented in Section 5. Section 6 is concerned with optimising
scheduling within a sensor-driven computational platform,
aiming to make this as lightweight as possible without sac-
rificing robustness. We conclude in Section 7.

2. RELATED WORK

Nazhandali [16] notes that designing energy-efficient sensor
processors is a fairly recent undertaking and describes how
an ultra-low energy processor may be designed by combining
optimisations at the microarchitectural and instruction set
levels, with subthreshold voltage circuits [17]. These circuits
often involve significantly lower clock frequencies[22] and are
thus successful in reducing power for applications that do
not require a high throughput. However, this limitation is
too great in the general case.

Many sensor network platforms have used off-the-shelf com-
ponents which were not primarily designed for the strict

ultra-low power environments they are then embedded within.

Virantha et al. [6] present a novel architecture based on
an asynchronous 16-bit RISC core. By using asynchronous
design techniques this processor, known as SNAP/LE, can
reduce its power consumption because not all parts of the
circuit are actively changing state, and there is no power-
hungry clock-tree. To simplify verification (often a problem
in asynchronous circuits) they adopt a quasi delay-insensitive
design approach. Their reported worst-case energy con-
sumption figure is 300pJ/instruction and they note that
this stands out favourably when compared to approximately
1500pJ /instruction for an off-the-shelf Atmel microcontroller.
The design principles of SNAP/LE differ from those of Spot-
Core since the latter retains a synchronous design method-
ology (the most viable route for integrated circuit synthe-
sis) and focusses instead on optimising the instruction set
and processor architecture. The researchers in [13] use a
low-power compilation methodology to save energy within
a wireless sensor network by making optimisations at the
microprocessor instruction execution level.

The SNAP/LE project also shows how the execution time
of a given task can be reduced relative to an Atmel mi-
crocontroller running TinyOS on a Berkeley MICA mote,
by using a scheduler implemented in hardware and tightly-
coupled to the processor. This technique yields significant
power improvements, and is adopted in SpotCore. How-
ever, we present a more scalable hardware-based scheduler
which is capable of supporting not only event-driven execu-
tion but true multi-threading, and which achieves a better
degree of fairness than the simple non-pre-emptive FIFO-
based scheduler used in SNAP/LE. Mota et al. [15] also
take a hardware-oriented approach and show that they can
improve the information-processing capability of sensor net-
work nodes by re-implementing tasks as hardware modules.

Warneke et al. [23]| produced a design which improves power-
efficiency by having separate hardware subsystems which
can be shutdown independently, elaborate clock-gating, and

guarded ALU inputs. However, the design uses no data-
path pipelining in a bid to avoid the associated hardware
overhead. This in turn limits the maximum clock frequency.
However, the designers note that the platform known as
“Smart Dust” will be used in low data rate scenarios where
high clock frequencies are not normally needed. At 500kHz
and 1V, the design utilises 12pJ/instruction. With the pos-
sibility of collaborative processing between sensor platforms
and the high level of interest in in-network processing, much
higher levels of performance may be required and hardware
limitations on the design speed are inadvisable. The instan-
taneous power might be reduced at lower frequencies (and
voltage) but the overall energy consumption might be worse
if the execution time is not also reduced through careful
instruction set design.

Ciaran et al. [14] present a survey of different processor
architectures for wireless sensor networks and observe that
current microprocessors have limited capabilities for han-
dling complex data-processing tasks. The Texas Instru-
ments MSP430 [9] emerged as the best architecture in the
survey, with the smallest power consumption figures com-
pared to the Atmel ATMegal28L and the Microchip PIC18.

The i-Bean [19] uses dual processors clocked at different
speeds to improve power efficiency. The recently announced
Imote2 [3] from Crossbow technology uses a high-performance,
low-power 32-bit PXA271 XScale processor and is capable
of dynamic voltage and frequency scaling from 13MHz to
416MHz. The platform also incorporates a DSP coproces-
sor to accelerate multimedia operations by extending the
XScale instruction set. Preliminary data suggests that, with
the radio circuitry off, the rest of the chip comprising the
CPU and memory consume about 2mW /MHz. It is an inter-
esting fact that on this platform, which is touted as the most
power-efficient sensor platform, the processing elements con-
sume as much as 40% of the overall power consumption when
the radio circuitry is on; indicating that research into more
power-efficient cores is at least as important as research into
low-power communication interfaces in the quest to reduce
the overall power consumption of sensor platforms.

3. THE SPOTCORE ARCHITECTURE

The design of SpotCore is primarily motivated by the de-
sire to integrate as much essential functionality as possible
into a single core whilst taking great care in the instruc-
tion set and processor design to avoid the introduction of
redundant hardware. There are many optimisations which
can be applied to the basic RISC pipeline (see [7]) but it is
important to identify a set of reliable optimisations which
would still yield a reasonable performance from a highly
minimalist design philosophy. While more pipeline stages
will enable the design to be clocked at higher frequencies,
by putting less work or logic in each stage, this adds com-
plexity, increases hardware size and worsens the branch or
exception penalty. We observe that processing in sensor
networks is of a highly concurrent nature as there might be
multiple data streams requiring analysis. We envisage that
as these networks scale, this parallelism is going to increase
dramatically. This leads to an increased probability of many
context-switches so it is desirable to keep as little state inter-
nal to the processor as possible (but relevant to any given
thread). In addition, SpotCore is being designed for low-
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Figure 1: The internal structure of SpotCore

power environments where extremely high clock frequencies
in the gigahertz range are not feasible due to the substan-
tial increase in power requirements. The critical path length
constraint can be relaxed as a result. Deeply-pipelined pro-
cessors will typically need a great deal of logic to transfer
information contained in instructions still in the pipeline to
preceding instructions.

Using an instruction width of just 16 bits instead of 32 bits
or higher reaps power savings by reducing the bandwidth re-
quirement of instruction memory and may additionally lead
to high code density. The datapath of SpotCore (comprising
registers, internal buses and functional units) is 32 bits wide.
The important parts of the internal structure and datapath
are shown in Figure 1.

The instructions are split into different classes depending on
whether they are dyadic, monadic or require no operands.
This enables us to attain a highly orthogonal instruction
set design which makes maximum use of the available en-
coding space. This encoding scheme is illustrated in detail
later. Most of the data processing instructions (Add, Sub-
tract, Multiply, AND etc) on SpotCore are dyadic but due
to the restrictions on instruction length only register con-
tents may be used as operands. This is in contrast to the
plurality of addressing modes used on an ARM processor
[2] and it greatly simplifies the addressing scheme leading
to more compact decode logic. In addition, register lookup
uses indices specified in fixed parts of an instruction in order
to further simplify decode.

All SpotCore instructions are conditional — the predicated
instruction scheme has been found to be successful in ARM
processors [2] and Intel’s IA-64 architecture [11] by reducing
the number of branches. However, in order to save encoding
space we mandate that a conditional instruction cannot also
be “flag-modifying”. This means we can use just one field to
specify whether an instruction sets or clears the flags or is
itself conditional on some flags set previously within the pro-
cessor. This field is restricted to 3 bits. The trade-off arose
from observing many instruction traces of code compiled for
an ARM processor and not finding many instances of condi-
tional instructions which modified flags. The combination of
this 3-bit field and a 4-bit primary opcode field leaves only
9 bits for encoding the registers being accessed. This in
turn restricts the number of visible and directly addressable
registers to eight.

Another power-saving measure seeks to reduce the number
of register ports two read ports are adequate if we use
only simple dyadic instructions. However, we eventually in-
corporated three read ports and two write ports in order to
be able to support certain very useful instructions:

STR 10,[r1],r2 => Store the value in r0 at the address
pointed to by the value in rl and update the register
rl with the sum of the values in rl and r2.

MLA r0,r1,r2 —> Place X + Y*Z in register r0, where XY,
and Z are the values in r0,r1 and r2 respectively.

LDR r0,[r2],r3 => Load r0 with the value at the address
pointed to by the value in r2 and update the register
r2 with the sum of the values in r2 and r3.

SORT r0,r1 => Swaps data values so that the register with
the higher index contains the higher value.

These instructions and a few others necessitate either three
simultaneous reads from or two simultaneous writes into the
register file. However, the presence of two write ports creates
an opportunity to improve the execute stage by arranging
the logic so its more critical pathways feed into a less heavily-
loaded write port and thereby creating more balanced timing
in that pipeline stage.

SpotCore has a smaller register file than most embedded
RISC processors and no banked registers. In order to save
time on exception-entry, register-file stacking is managed by
hardware. Register 7 is the program counter and the stack
pointer is internal. SpotCore also maintains an internal link
register which is saved automatically when nested subrou-
tines are detected. This increases the number of general
purpose registers available and also saves time since it can
be stacked in parallel with branching. A separate instruc-
tion is provided to recover the link register value if necessary.
We are currently researching more ways of reducing the per-
formance impact of this small register file through advanced
compilation techniques. SpotCore simply operates in one of
two modes — trusted or untrusted, and avoids any expensive
exception-handling scheme.

SpotCore has a branch penalty of 2 cycles. Due to the
fairly mild impact of branching and exceptions on its short



pipeline, it was decided that the performance boost afforded
by branch prediction in this case would not justify the extra
hardware needed. However, in order to mitigate the im-
pact of branching in the common scenario involving fixed
branches at the end of iterative blocks of code such as in
FOR loops, a LOOP instruction was added to the instruc-
tion set. The concept is similar to that used in the Intel
x86 architecture [10] but our mechanism is different and the
occurrence of nested loops is detected and handled auto-
matically by the SpotCore hardware. The purpose of this
instruction is to ensure that the process of checking for the
last iteration at the end of the loop body can happen while
the loop body itself is being executed so the pipeline can be
filled with the correct set of instructions and the effect of the
branch is hidden. As a result, an explicit branch at the end
of the loop, and the penalty associated with it, are avoided.
To illustrate this point the following ARM code sequence A
can be rewritten as code sequence B on SpotCore.

;CODE SEQUENCE A

MOV r0,#10 ;set up loop counter
label LDR ri1,[r2],r3 ;loop starts here

;rest of loop body

LDR r4,[r5],r3

SUBS r0,r0,#1

BNE label

;other instructions

;CODE SEQUENCE B
LOOP r1,r0
MOV r0,#10 ;set up loop counter
;set up loop end address
MOV r1,#end_address
LDR r1,[r2],r3 ;loop starts here
;rest of loop body
end_address LDR r4,[r5],r3
;other instructions

Notice that the registers used to set up the loop in the LOOP
instruction can be re-used within the loop. In the case of a
nested loop, the information held in the loop state machine
in the CPU is written out to memory automatically as the
new “loop state” is created in the two instructions following
the a LOOP instruction. A special internal register holding
a pointer to the base of the memory structure holding loop
state information at various levels must be set up during
initialisation.

4. INSTRUCTION SET DESIGN

The SpotCore instruction set is largely influenced by the
many common RISC instruction sets. SpotCore attempts
to include many of the most common instructions without
violating our size and power constraints (Figure 2), while
also including some special instructions for thread manage-
ment. Many of our instructions would typically be found in
digital signal processors.

Apart from the simple register addressing mode shown in the
table, the 32-bit ARM has other addressing modes where the
second operand could be an immediate value or even speci-
fied as the result of a shift operation. Since we did not want

SpotCore ARM TIMSP430 |MIPS32

ADD Y ADD B Y rL ADD sro,dst ADD rd, rs, 1t
SUB Y i SUB ey 1L SUB src,dst SUBrd, rs, it
CRRE £ 17 ORR £, 1 BIS sre dst OF rd, rs, 1t

AND Y AND e Y rL AND sro,dst AND rd, rs, 1t
EOR iy 2 EOR £y i WOR src,dst FOR rdrs it

BIC £4,rY 1L BIC r r 12 BIC srcdst f-emeeeee-

ML Y 1L MUL £ 1 MUL rd rs it

MALA XY 1 MLA £ 1 WADD rd rs it
LOR #[rY] LDR 1] LW 1t offest(base)
STR B[] STR 1] SVt offest(base)
LDR B[] LDR £ [rY] .12 WG

STR B [rY ] STR 3 [rY] i SWHCT

MOY i # MO 1 #

B or BL lahel B or BL label JWP label B offset

BL rx B |- JALR X

LSL or LSR i #3h MOV i r1 LER#5h |---mmeeeeeee- SLL/SLR

PUSH {10-r5} STh spl{0-r12} PUSH src

POP {r-r5} LDM spl{d-r12} POP dst

RETURN {r0-r5}  [LDM spl{0-12 pc}  |RET

LSL oy MO 10,11 LER {rotation)

LSR iy WO 10,11 LER i (rotation)

I B Y MW B Y 1MW dst

INCR £ 1Y ADD ri i #1 INC dst

DECR iy SUB e DECdst |--eeeeee
L e e ABE fd fs

SORT Y |-

MNEG mry REB Y HD |- NEG fd fs
CLZ m Y [N CLLrd rs

BITREY ki |eommmmeeees

LOOP B s

Thread instructions [-----------—

Figure 2: Comparison of SpotCore, ARM, TI
MSP430, and MIPS32 instruction sets

the shifter to be in the critical path and were limited in
our available encoding space, we created separate instruc-
tions for getting immediate values into the processor and
for shifting. Although this might represent a performance
problem if these types of instructions are used frequently,
we can however assert that the code size relative to a 32-bit
instruction set is unaffected as the two operations simply
become two 16-bit instructions.

The MSP430 is a 16-bit RISC CPU which lies at the heart
of many sensor boards. It has 16 registers, 4 of which are
treated specially program counter, status register and
constant generator which is particularly important because
it provides six frequently used immediate values thereby re-
ducing code size. However, unlike SpotCore and ARM not
all MSP430 instructions are conditional. Only a few MIPS32
instructions are predicated despite having a 32-bit instruc-
tion set.

Following the implementation of an "ARM-like" instruc-
tion set, we were able to add some useful but uncommon
single-cycle instructions without any drastic effect on oper-
ational parameters. These extra instructions are ABS (get
absolute value), SORT (arrange values in registers based on
their numeric size), BITREV (bit-reversal useful in Fast-
Fourier Transform algorithm), the LOOP instruction de-
scribed previously, and some thread management instruc-
tions described later. We also added the facility to load a
relatively large literal from the instruction stream as data.
Our move instruction (MOV) has a special bit which if set



will treat the next instruction as data, and append the last
5 bits of the move instruction to that. This means that
besides the usual data memory access instructions we can
either load a 5-bit value in one instruction or a 21-bit value
in two instructions. In contrast, one cannot load an arbi-
trary 21-bit value within a single (32-bit) ARM instruction
but have to encode the immediate operand as an 8-bit con-
stant and a 4-bit (even-number) rotate which is applied to
it.

The four main SpotCore instruction formats are shown in
Figures 3, 4, 5 and 6, while Figures 7, 8, 9 and 10 show the
exceptions to these standard formats. What we are trying
to portray in these figures, is the fact that the width (num-
ber of bits), meaning, and placement of many sections of
the instruction are kept as consistent as possible between
instructions in a bid to simplify the decoding logic. Simi-
larly, by splitting the instruction set into different classes de-
pending on their requirements, with regards to the number
of registers required for a particular operation, we achieve
a compact layout which favours an efficient design. POP
and PUSH instructions read from and write to the stack re-
spectively. The RETURN instruction is similar to the POP
instruction with the only difference being the fact that it
also loads the PC with the preserved link register value. In
these instructions, the bit field [5:0] is used to encode the set
of registers which must be stacked to allow flexibility, akin
to the ARM stack-manipulation instructions.

5. SYNTHESISAND TEST CODE RESULTS

Since the energy usage of sensor applications is a product of
power and time, it is important to reduce both the power
consumption and the execution time of a set of instructions.
We synthesised our Verilog design using Synopsys Design
Compiler with a UMC 130nm technology library. The worst-
case power estimate obtained was 0.03mW /MHz which looks
auspicious compared to the TT MSP430 (0.4mW/MHz, CPU
only). Admittedly the TI MSP430 is a complete System-
On-Chip comprising memory and other peripherals (watch-
dog,timer,UART etc), but this power reduction is very sig-
nificant as it is more than an order of magnitude smaller
than the power consumed by the TI CPU when it is op-
erating alone with all the peripherals powered down. We
note that the more lightweight embedded ARM processors

ARM7TDMI and the ARM Cortex M3 have power fig-
ures of 0.06mW/MHz and 0.09mW/MHz (130nm technol-
ogy and speed-optimised) respectively [1]. The Cortex-M3
[20] implements a new 16-bit variant of the ARM instruc-
tion set known as Thumb-2 which is capable of improving
code density while maintaining a high level of performance.
Figure 11 shows the code size and execution times of differ-
ent processors running the same digital filter algorithm on
4000 input samples. The performance advantage of Spot-
Core in this IIR filter experiment is largely due to its ability
to know precisely where branches within loops occur; and
this improvement is significant for a large number of pro-
grams as loops are very common programming constructs.
In addition, judging from Figure 2, about 70% of our in-
struction set is ARM compatible which is significant as there
exists a wealth of reliable benchmarks for that instruction
set. While many of our instructions are also similar to those
in the TT MSP430 instruction set, we believe we gained a
definite performance advantage because our core supports

[ [15:12] [ [11:9] [[8:6] [ [5:3] | [2:0] ]
[ opcodel [ Predicate [ rX [ rY [ rZ ]
Figure 3: Class 1 instruction
[ [15:12] | [L:9] [ [8:6] [ [5:3] [ [2:0] ]
[ opcodel | Predicate | opcode2 | rY | 1Z |
Figure 4: Class 2 instruction
[ [15:12] | [1:9] [ [86] | [5:3] [[2:0]]
| opcodel | Predicate | opcode2 | opcode3 | r7Z |
Figure 5: Class 3 instruction
[ [15:12] [ 9] | [86] [ [5:3] | [2:0] |
| opcodel | Predicate | opcode2 | opcode3 | opcoded |
Figure 6: Class 4 instruction
S O O
[ opcodel | Predicate | rX [ direction | shiftAmount |
Figure 7: Shift by Immediate
[ J15:12] | [L9] [ [8] | [7:0] |
[ opcodel [ Predicate | Link? | <signed offset> |
Figure 8: Branch instruction
[ [15:12] | [L9] [ [86] [ [5:0] |

opcodel | Predicate | opcode2 | r0—rb |

Figure 9: PUSH, POP, RETURN

[15:12]

(09861 [ Bl [ 150 ]

opcodel | Predicate | rX [ Next? | Value |

Figure 10: MOVE instruction



| | Execution time (ms) | Code size (bytes) ]

SpotCore 20.2 50
ARM7TDMI 23.5 92
TI MSP430 38.5 95

Figure 11: IIR Filter Code results

dyadic instead of monadic data-processing instructions. In
addition, the TT MSP430 does not support direct multipli-
cation within the processor datapath but relies instead on a
system peripheral which limits performance because a data
access is required.

6. ROBUST ZERO-OVERHEAD SCHEDUL -
ING

In addition to building low-energy processor cores, optimis-
ing the manner in which threads are loaded and removed,
and the associated scheduling scheme, maximises proces-
sor utilisation and improves power efficiency. An effective
thread management strategy should also scale with the num-
ber of threads and processing elements. Due to the small
physical area of SpotCore it is envisaged that it will be used
not only in a multithreaded environment but alongside other
cores in a multiprocessor; and in this case it is desirable to
have transparent thread migration between cores. The cen-
tral innovation in this section is the development of a thread
management policy which runs directly in hardware without
requiring any CPU time unlike conventional operating sys-
tems. This hardware module which we call TopDog shares
a connection with the processor memory and interrupt in-
terfaces, and can dispatch threads to the processor based
on its internal scheduling algorithm. This module elevates
the level of performance possible as the processor does not
have to keep switching to some kind of supervisory mode in
order to check the status of other threads. It also improves
scalability in a system comprising multiple cores (Figure 12)
by providing a common, fast arbitration mechanism. This is
applicable in situations where a shared bus is feasible such
as symmetric multiprocessors with up to about 16 cores.

In summary, the TopDog carries out the following tasks
which are deemed to be crucial to efficient operation when
many threads are present:

e Fast and clean creation, reloading, and switching of
threads

e Implements a scheduling algorithm with fairness con-
siderations from the ground up

e Synchronisation of threads

e Stores thread control blocks (TCB) for different threads
and can modify each via simple instructions issued
from the processor

e Holds interrupt vectors and priorities, and uses a com-
mon CPU access mechanism for interrupts and other
threads

Rather than leaving the scheduling decisions entirely up to
the operating system, the programmer can specify certain

interrupts
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Figure 12: Processing Subsystem with TopDog
Scheduler

parameters to the TopDog to enable it to achieve the right
level of Quality-of-Service (QoS). This development was in-
spired by Nemesis [18] which is an OS designed to provide
applications such as multimedia applications which are very
time-sensitive with some form of QoS guarantees with re-
spect to CPU and I/O resources. The scheduling decisions in
TopDog are based on the following three parameters which
achieve the appropriate balance between ease-of-use and ro-
bustness — PRIORITY, ON_TIME, and OFF_ TIME.

BLOCKED

EXIT

INDEF_WAIT )

ON_TIME

DEF_WAIT
INTER

OFF_TIME

EVENTS -
IRQ
SIGNAL

START
Figure 13: The TopDog scheduler state machine

These parameters relate to the thread state diagram in Fig-
ure 13 and their utility is explained as follows. At the most
elementary level, if threads are of the same priority, they
gain access to the processor core based on a First-Come-
First-Served (FCFS or simply FIFO) scheme. There are 16
priority levels and the TopDog will remove lower priority
threads from the processor so a higher priority one can run.
Unfortunately, this might very easily lead to starvation of
some threads if there are many high priority threads. As



a result we designed a system which allows the program-
mer to specify a maximum “ON_TIME” and a minimum
“OFF TIME” for each thread. Together with the priority
value, they can be used to fine-tune performance because
the priority value controls how quickly the thread gets to
execute when it is in the READY state, the ON_TIME
controls how long it is allowed to spend on a processor, and
the OFF TIME determines the delay between getting pre-
empted at the end of its execution time, and being able re-
turning to the READY state again. The scheme has enough
flexibility to support a very broad range of CPU access
schemes without resorting to a high-level thread library which
will impact performance.

While the hardware does not guarantee that thread starva-
tion will be avoided, it does provide the sensor system pro-
grammer with more scope for controlling thread scheduling
than is currently available. The effect of the ON_TIME
and OFF TIME parameters is to ensure that the execution
probability of any thread does not have a strong dependence
on the number of threads of a higher or the same priority.
One good policy for fairness would be to ensure that low
priority threads have more ton and less torr, while high
priority threads have less ton and more torr.

We shall now compare our scheduler with those commonly
found in resource-constrained environments. MicroC/OS-II
is a pre-emptive real-time kernel written in C, which runs
on embedded processors such as the Motorola 68k, ARM?7,
and Altera Nios II. It supports dynamic priorities but no
two tasks (threads) may have the same priority. The high-
est priority thread always runs but may be superseded by
an interrupt service routine. Its main drawback is that a
low priority thread can wait for an arbitrarily long period of
time since the highest priority thread must run to comple-
tion or get blocked before it can run. It is believed that this
approach does not scale well because fairness is not integral
to the operating system and it is harder to give the lower pri-
ority thread any QoS as the execution times of many higher
priority threads are indeterminate. The TopDog scheduler
avoids this undesirable scenario by providing the ability to
control the dominance of higher priority threads in a direct
way. The uC/OS-II kernel code occupies about 2K bytes
and can consume about 5% of CPU time. It can support up
to 255 tasks. While the TopDog scheduler has fewer priority
levels, it can support multiple threads of the same priority
and can manage up to 512 threads.

TinyOS [8] is an open-source embedded operating system
developed at University of California Berkeley and is very
popular among developers of applications for Wireless Sen-
sor Networks (e.g. [12]). It operates on many different
platforms, speeds development, and is useful for testing re-
search ideas. It is written in nesC which is a C-like struc-
tured component-based language. In addition to the stan-
dard functions of task scheduling and interrupt handling, it
also performs encryption and power management. The ma-
jor system components include drivers for the radio inter-
face, UART, memory and timer. Other components include
drivers for the LED interface, an I2C protocol implementa-
tion and a CRC packet filter. It has an event-driven archi-
tecture which is sufficiently abstract to enable the creation
of cross-platform applications while remaining lightweight.

The main structural elements are configurations which con-
nect components, modules which define how components
behave by implementing commands and event-handlers, and
interfaces which define the interaction between any two com-
ponents. Unfortunately, TinyOS provides only an elemen-
tary concurrency model with limited operating system sup-
port for a large number of threads or a platform with more
than one processor. It has no inherent ability to specify mul-
tiple priority levels. The two main system threads comprise
tasks and hardware event-handlers respectively. Tasks must
run to completion and cannot preempt other tasks while
they may be preempted by hardware interrupts.

The SpotCore approach differs from this by allowing threads
in our system to pre-empt other threads regularly and by al-
lowing the programmer to specify QoS constraints in an ex-
plicit manner. Contiki [4] builds on the event-driven model
by utilising “protothreads” [5] — lightweight threads which
can facilitate multithreading. Since each protothread does
not need its own stack, protothreads have been promoted
as ideal for memory-constrained systems. The conditional
blocking wait abstraction provided by protothreads avoids
the complexity involved in dealing with explicit state ma-
chines which is common when developing software for event-
driven systems. The TopDog gives threads the ability to
block until a condition variable becomes true or an external
event of interest (interrupt) occurs. We argue that our ap-
proach is more scalable as there is no overhead in terms of
CPU time or code size and we can also reap the benefits of
hardware acceleration of the scheduling algorithm.

Rather than communicating with the TopDog module as a
memory-mapped peripheral on the system bus, we created
special instructions to speed-up access and promote flexibil-
ity with different memory architectures as no pointers have
to be calculated.

The SpotCore instructions which are used to communicate
with the TopDog are:

e SET VECTOR this sets the address from which
the new thread will start executing

e SET PRIORITY thisspecifies a 4-bit priority value
for the thread being created

e SET ONTIME — sets the parameter ton (10-bit value)

e SET OFFTIME sets the parameter torr (10-bit

value)

e FORK  activates the thread state machine

e EXIT — removes all active references to the exiting
thread

e SIGNAL — decrements the specified variable held in
one of the TopDog memory banks (this behaves in a
manner similar to a conventional semaphore in that
each update is atomic and an event is generated when
the count value reaches zero)

e WAIT — blocks or suspends a thread until a specified
event such as a semaphore value reaching zero or an
external interrupt occurs.



e CHECK — similar to wait but non-blocking

e SET_SIGNAL — initialise a given semaphore

The state diagram shown in Figure 13 is implemented by
multiple memory blocks and a few associated logic con-
trollers. The total memory required to manage 512 threads
with 16 priority levels, and 64 signals is about 720 bytes.
The controllers were simple enough so that the hardware
footprint of the TopDog module is barely over 2000 gates.
Assuming a clock frequency of 10MHz, the worst-case la-
tency between one thread sending a signal to the TopDog,
and another one becoming dispatched after the TopDog has
updated its READY queue due to the signal and determined
the thread which now has the highest priority, is 2 us. The
key to this fast inter-thread communication and synchroni-
sation mechanism was designing the logic which maps events
to thread IDs and that which performs priority analysis on
the READY queue, to operate as concurrently as possible.

7. CONCLUSIONS

In this paper, we have applied a selection of low-power CPU
design strategies to develop a highly-optimised processor de-
sign which can meet performance goals in a power-efficient
manner. We demonstrated a 48% improvement in the ex-
ecution time of an IIR filter routine over the TI MSP430
which is widely used on sensor platforms, and a 14% im-
provement over an ARMT processor. Our synthesis results
prove the extremely lightweight nature of the design; and
coupled with reduced execution times, it can enable signifi-
cant energy-savings to be made in the realm of sentient com-
puting. We also noted improvements in code density, and
discussed the possibility of very fast thread management us-
ing our hardware-based scheduler module. We hope these
results will stimulate more research into suitable primitives
for expressing computation in the creation of very power-
conscious CPU designs within the sensor network research
community. Our future work will involve leveraging the
small size and performance of the SpotCore CPU to build
multiprocessing hubs which will take advantage of the high
degree of data-parallelism inherent in sensor networks. It
is our belief that such lightweight processing elements will
form the cornerstone of scalable sentient computing.
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