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ABSTRACT
This paper presents a new approach to the problem of ges-
ture recognition in real time using inexpensive accelerome-
ters. This approach is based on the idea of creating special-
ized signal predictors for each gesture class. These signal
predictors forecast future acceleration values from current
ones. The errors between the measured acceleration of a
given gesture and the predictors are used for classification.
This approach is modular and allows for seamless inclusion
of new gesture classes. These predictors are implemented us-
ing Continuous Time Recurrent Neural Networks (CTRNN).
On the one hand, this kind of networks exhibits rich dynam-
ical behaviour that is useful in gesture recognition and on
the other, they have a relatively low computational cost that
is interesting feature for real time systems.

1. INTRODUCTION
Wearable computers are intelligent devices seamlessly inte-
grating in clothing or objects we carry around everyday. By
being “on the body” wearable computers are at an ideal lo-
cation to detect important informations about the “state”
of the user, such as his position, his activities or gestures
or even his social interactions. This context awareness [7,
17] allows wearable computers to e.g. become the personal
health assistant of the user [23] (e.g. by monitoring the
physical activity) or to deliver context-based information
[20]. User gestures are an important aspect of the context.
They can be used for human-computer interactions [14], to
detect social interactions [15], or even provide an insight into
affective disorders or depression [12].

One of the challenge of gesture recognition in wearable com-

puting is to offer good recognition accuracy on miniature
wearable devices (e.g. [21]) which offer long battery life,
and consequently limited computational power.

Hidden Markov models, dynamic programming and neural
networks have been investigated for gesture recognition [6]
with hidden Markov models being nowadays one of the pre-
dominant approach to classify sporadic gestures (e.g. clas-
sification of intentional gestures [5]).

Fuzzy expert systems has also been investigated for gesture
recognition[8] based on analyzing complex features of the
signal like the doppler spectrum. The disadvantage of these
methods is that the classification is based on the separability
of the features, therefore two different gestures with similar
values for these features may be difficult to classify.

In this article we describe a method to classify gestures from
inexpensive accelerometers. This approach is based on sig-
nal predictors for each gesture class that is to be classified.
These signal predictors forecast future acceleration values
from current ones. The errors between the measured accel-
eration of a given gesture and the predictors are used for
classification. Signal predictors have the advantage of oper-
ating directly on the raw sensor signal. They do not require
feature extraction that is common in Bayesian classification
or hidden Markov models. Therefore they may avoid de-
signer bias in feature selection and thus have the potential of
being more general. This prediction approach has been used
previously to recognize gestures obtaining high recognition
rates. In [22] several gestures captured by a magnetic mo-
tion tracker are classified using predictors based on kalman
filter. Neuro-Fuzzy systems have also been studied to create
such predictors [1, 13]. In particular, in [1] we used Neuro
Fuzzy systems to create acceleration signal predictors ob-
taining high recognition rates which showed the suitability
of the prediction approach with acceleration signals.

The objective of this paper is to investigate how this predictor-
approach performs when using a more general signal predic-
tor than in our previous work with Neuro Fuzzy systems [1]:
a Continuous Time Recurrent Neural Network (CTRNNs)
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is used instead as predictor. CTRNNs are networks of con-
tinuous model neurons without constraints placed on their
connectivity [10] that exhibit rich dynamics [2]. It has been
proved that the internal state of a CTRNN neuron can ap-
proximate any dynamical system [9]. The dynamic and non-
linear nature of CTRNN makes them suited for temporal
information processing. Sequential behaviors and learning
with CTRNNs have been illustrated in bit sequence tasks
[25] and in robotics [3].

CTRNN may be therefore well suited as universal signal pre-
dictors. They may cope with the dynamics of any gesture
signal with the appropriate time constants and interconnec-
tion weights.

The rest of the paper is organized as follows: in section 2
the device used for signal capture is described. Section 3
explains the structure of the CTRNN predictors and how to
use them to recognize gestures. In section 4 we describe the
gesture recognition experiment carried out to validate the
approach. In section 5 we discuss the results and highlight
future work. And finally, section 6 concludes this paper.

2. SENSOR HARDWARE
In order to capture the gestures used in the following exper-
iments, a tri-axial accelerometer is used 1. This device was
selected because it has good features for wearable applica-
tions. It is small sized, so it can be worn easily (see figure 1).
It has as well a very low power consumption so it can oper-
ate for long periods of time (12 hours) with a single battery
that is inside the case. This accelerometer module is con-
nected over Bluetooth to the personal computer capturing
the data.

Figure 1: Tri-Axial Acceleration Sensor 64x40x15

milimeters

The data provided by this sensor consists in an acceleration
vector with three components: one for each axis (ax, ay, az).
Their values are measured in gravity units (g) in the range
of [-6g,6g] encoded with 10 bits. This vector is captured
with a sampling rate of 100 Hz, which is fast enough for our
purpose since the maximum frequency of hand gestures is
about 10 Hz [24].

1The acceleration sensor used in this work is the
module Witilt v2.5 provided by Sparkfun electronics
http://www.sparkfun.com
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Figure 2: Acceleration signals recorded at the hand

when performing a circular hand motion.

During the experiments, this sensor was held in the hand in
a vertical orientation. Furthermore, to segment some ges-
tures we used a wireless mouse that was held in the other
hand. Data from the wireless button was recorded on the
personal computer together with the acceleration data. This
button was pressed before doing the gesture and released af-
ter finishing it. An example of the acceleration signals for a
circular hand motion is illustrated in figure 2.

3. GESTURE RECOGNITION USING SIG-
NAL PREDICTORS

The recognition system presents a high modularity because
it is completely composed of the basic component repre-
sented in figure 3. There are as many components as num-
ber of different class of gestures. This component consists
of three main blocks: a memory block in order to delay one
time step the input signal, a predictor block that is the core
of the method and an error block that is used to calculate
the prediction error.

Figure 3: Basic Component

3.1 Predictor block using CTRNN
As stated in introduction, the predictor block is implemented
with CTRNN. The specific architecture of the neural net-
work used in this work consists of five fully connected neu-
rons in which each neuron can be connected to every input



(see figure 4). The input of this predictor block is the ac-
celeration vector in the previous time step V t−1

[X,Y,Z] and the

output is the prediction of the acceleration vector for the
present time P t

[X,Y,Z] that are the activations of three neu-
rons.

In order to obtain the output values, it is necessary to cal-
culate the activations of all neurons. The activation of the
neuron i is calculated using the following differential equa-
tion ([3]):

dγi
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=
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Aj = σ (γj − θj) where σ (x) =
1

1 + e−x
(2)

Where N is the number of neurons in this case five, γi is
the state of neuron i, τi is the time constant of neuron i,
ωij is the weight of the synapse from neuron i to j. Aj is
the activation of the neuron j that is calculated using the
equation 2 where θj is the bias of that neuron, ωik is the
weight that neuron i applies to input k and lastly Vk is the
value of the predictor inputs for each axis X,Y and Z.

To discretize the differential equation 1 we use the Forward
Euler numerical integration as in [3] so, the iterative update
rule for the state of each neuron is:
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Where ∆t is the integration step and for this work it was
fixed to 0.01s because this is the sampling rate of the sensor.
Furthermore, since the outputs of the CTRNN are in the
range [0, 1], the inputs in range [−6g, +6g] are normalized
to this range by a linear mapping.

Figure 4: Architecture of the CTRNN

3.2 Prediction error block
The function of the error block is to measure how good is
the prediction produced by the predictor. For this, it cal-
culates the error between the real signals and the predicted
ones. In particular for this work, the error measurement
for a sample is the mean absolute error of each axis of the
signal, computed with the following equation:

Pred Errort =

X,Y,Z
X

i

|P t
i − V t

i |/3 (4)

Parameter # per neuron Range
Neuron weights 5 [-0.25,0.25]
Input weights 3 [-0.25,0.25]
Time constant 1 [0.01,0.1]
Neuron Bias 1 [-0.25,0.25]

Table 1: Parameters of each Neuron of CTRNN

This is the prediction error for only one sample so, to obtain
the prediction error for one gesture, the mean of this error
is calculated for all its samples.

Pred Gesture Error =
T
X

t=1

Pred Errort/T (5)

Where T is the number of samples of the gesture.

3.3 Training of the signal predictors
Once the architecture of the signal predictor is defined (num-
ber of neurons, connections), the next step is to find the ap-
propriate parameters to create the predictors of each class.
In table 1 are shown all parameters for each neuron that
need to be trained. The second column indicates how many
parameters of this type there are in each neuron. The last
column shows the range used for these parameters that were
chosen after several trials with different ranges.

For this type of neural networks, a global optimization of the
network parameters using genetic algorithms can be per-
formed [3]. Genetic algorithms allow to do robust global
searches in complex search spaces [11]. The basic idea of
this method is to represent the neuron parameters as a bit
string (the genetic string). A population of such string is
then “evolved” using operators of selection, mutation and
cross-over inspired by biological evolution, in order to max-
imize or minimize a fitness function. In this case, each ge-
netic string represents the parameters of a CTRNN. The
length of this genetic string is 300 bits and each block of
60 bits encodes the parameters of a single neuron. In this
neuron block are represented 5 connection weigths between
neurons, 3 weights applied to the inputs, 1 time constant
and 1 bias of the neuron in this order. All parameters are
binary encoded on 6 bits in the range indicated in table 1.

To evolve the CTRNN, a standard genetic algorithm was
used with a population of 100 invididuals, rank selection of
the 30 best individuals, one-point crossover rate of 70% and
mutation rate of 1% per bit and elitism that copies the best
individual without change in the new generation.

The fitness function that guides the search of the genetic
algorithm reflects how well the CTRNN predicts a training
set T that is composed of several instances T1..N of gestures
of the same class. The fitness function is the mean of the
measure Pred Gesture Error (5) for all training instances.
Therefore, the genetic algorithm should minimize it because
the smaller this measure, the better the predictor.

Fitness =
N
X

i=1

(Pred Gesture Error(Ti)/N (6)

Notice that for each different training instance the activa-
tions of the CTRNN start with zero value so we decided



to feed the CTRNN with twenty previous samples of the
instance in order to initialize it.

3.4 Recognition of gestures
The first step to recognize gestures is to create a signal pre-
dictor for each different gesture class that we want to recog-
nize. This is done using the previous genetic algorithm with
one training set for each gesture class. Each training set is
composed of several instances of gestures of the same class.

After training, the system is used to recognize gestures in the
following way: the acceleration signal that contains the ges-
tures is provided sample by sample to all the predictors. So,
the activations of all neurons of the predictors are updated
for each sample. In contrast to the training step, where the
neuron activations are reset at the beginning of the gesture,
no reset is done during recognition to allow for continuous
use (i.e. the predictors are provided with all the recorded
samples that contain a succession of gestures). When all
activations are updated, the prediction error produced by
each predictor is computed by the error block. To classify
each gesture, the information of segmentation is used to ex-
tract the part of the signal that belongs to that gesture. For
this part, the measure Pred Gesture Error is computed for
all the predictors. After comparing all these errors, the low-
est one indicates the class of the analyzed gesture because
usually the predictor trained with gestures of that class will
produce the better prediction.

4. PERFORMANCE EVALUATION
A set of eight different gestures represented in figure 5 has
been used to test the performance and accuracy of the recog-
nition method. The begin and end of each gesture is marked
with a circle and an arrow, respectively. All gestures were
performed vertically. In this work, two different datasets
were recorded by only one person that held the sensor in a
vertical orientation with the right hand. For both datasets,
twenty instances of each gesture were recorded in a random
sequence. So, in total for each dataset, there are 160 gesture
instances.

In the first dataset, the objective was to check the validity
of the proposed approach for gesture recognition. In this
dataset the noise sources were minimized: the person that
performed all gestures was sitting during the recording time.
Furthermore, these gestures were isolated: between one ges-
ture and the next, the hand rested in the same position. In
a first step, the segmentation was done manually pressing a
button but we noticed that this was not accurate because
the person sometimes took some time to release the button
after finishing the gesture. So, in order to avoid these seg-
mentation problems, in this test the gestures were segmented
automatically using the magnitude of the acceleration sig-
nal. When the device is not moving the only acceleration
present in the sensor device is the gravity that is equal to 1
g, therefore if the magnitude of the acceleration is different
from 1 g this means that there is a gesture. In particu-
lar it was considered that the device was moving when the
magnitude was out of the range [−1.15g, 1.15g].

The second dataset was recorded in order to test how the
predictors behave in a realistic environment. As in the previ-
ous dataset, the same gestures were done by only one person

Figure 5: Gestures used to analized the performance

of the method

but this person moved around the room in an uncontrained
way. A continuous sequence of motion and activities was
carried out like: sitting, standing up, reading books, open-
ing drawers ... during which the 8 gestures were performed
at random instants. Furthermore, there was not any rest
posture between two following gestures. In this dataset, the
automatic segmentation was not used because it cannot dis-
criminate between gestures and other activities. Therefore,
the gestures were segmented manually pressing the button
of the wireless mouse.

4.1 Results
In both datasets, 5 instances randomly selected for each class
of gesture were used to train the signal predictors. As it was
explained before, during this training, the genetic algorithm
has to minimize the fitness function. As an example of this
training, figure 6 shows the evolution of the fitness function
during the training of a predictor for gestures of class A.
As can be seen from this figure only about 20 generations
were necessary for the fitness values to reach a stable level
although evolution is always performed for 200 generations.
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Figure 7: Prediction Errors for individual gestures of class A with the 8 class of predictors

Using the trained predictors of the dataset of isolated ges-
tures, we can observe how the recognition method works.
For example, figure 7 represents the prediction errors ob-
tained in a trial for all the instances of class A. The training
instances used for this trial are in the positions 2, 8, 15, 16
and 19. Most of the 20 instances are well classified because
the lowest prediction errors are produced by the predictors
that belongs to the same class. There is only one missclas-
sification in 13th instance, the predictor H obtains a lower
error than predictor A. Furthermore, it can be observed that
there is a high variability in this error for all instances. This
means that it may be difficult to recognize a gesture by com-
paring the error of its corresponding predictor to an absolute
threshold. However in this experiment recognition seems
possible due to the comparison of the errors produced by
different predictors between them.

To measure the performance of the classifiers for both datasets,
a confusion matrix is used. This matrix illustrates the re-
sult of the classification. It has as many rows and columns
as a classes of gestures. The element placed in the row i
and column j indicates the percentage of gestures of type j
that are classified as gestures of type i. Therefore, correctly
classified gestures will be in the diagonal of the matrix. In
the following results each element of the tables have two
numbers. The first and second numbers indicate the classi-
fication accuracy of the training and testing set respectively.

Optimizing the predictors with a genetic algorithm is a stochas-

tic process. In order to alleviate variability, the experiment
has been repeated 10 times with different set of evolved pre-
dictors. Furthermore, for each trial the 5 training instances
of each predictor were randomly selected. The confusion
matrix is the average of this 10 repetitions.

The table 2 shows the confusion matrix for the isolated ges-
tures. A high recognition rate of 98% was obtained for the
training set and 94% for the testing set. Another interesting
result of this test is that the gestures C and D are sometimes
missclassified between them. One explanation may be that
on the second and fourth segment both gestures go up and
down, respectively. So, this gestures are quite similar during
about 50% of the length of the gesture.

The table 3 shows the confusion matrix for the gestures
captured in a realistic environment. The total recognition
rate for training instances is about 80.5% and for testing
instances is 63.6 %. So, there is a noticeable decrease in
performance compared to the previous dataset which was
recorded in a more constrained way. Besides, the recogni-
tion accuracy for the various classes differs much. For ex-
ample, the recognition rate for class B is very high while for
classes A,D and F is relatively low. Lastly, it is interesting
to remark that the misclassification between C and D also
appears in this dataset and some more like G and H.

Lastly, we noticed that these neural networks presented a
robust behaviour for both datasets. They never got satu-



Classes A B C D E F G H

A 100.0/96.7 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
B 0.0/0.0 98.0/95.3 0.0/0.0 0.0/0.0 0.0/2.7 0.0/0.0 0.0/0.0 0.0/0.7
C 0.0/0.0 0.0/0.0 94.0/79.3 6.0/9.3 0.0/0.7 0.0/0.0 0.0/0.0 0.0/2.0
D 0.0/0.0 0.0/0.0 6.0/20.7 92.0/90.7 0.0/0.7 0.0/0.0 0.0/0.0 0.0/2.7
E 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 100.0/96.0 0.0/0.0 0.0/0.0 0.0/0.0
F 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 100.0/100.0 0.0/0.0 0.0/0.0
G 0.0/0.0 2.0/4.7 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 100.0/100.0 0.0/0.0
H 0.0/3.3 0.0/0.0 0.0/0.0 2.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 100.0/94.7

Table 2: Confusion matrix for isolated gestures

Classes A B C D E F G H

A 72.0/50.7 0.0/0.0 2.0/3.3 0.0/0.0 0.0/4.0 18.0/14.0 2.0/0.0 0.0/6.0
B 0.0/0.0 100.0/92.7 0.0/0.0 0.0/0.0 6.0/9.3 0.0/0.0 0.0/0.0 0.0/0.0
C 4.0/16.7 0.0/0.0 88.0/64.0 18.0/34.0 4.0/6.0 10.0/14.7 0.0/0.0 0.0/0.0
D 0.0/0.7 0.0/0.0 6.0/25.3 68.0/48.7 8.0/8.0 2.0/4.0 0.0/0.7 0.0/0.0
E 0.0/6.7 0.0/2.0 2.0/6.0 14.0/16.7 76.0/68.7 0.0/0.0 0.0/0.0 0.0/0.7
F 14.0/12.0 0.0/1.3 2.0/1.3 0.0/0.7 4.0/2.7 62.0/48.0 6.0/8.0 0.0/5.3
G 0.0/1.3 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 4.0/9.3 86.0/66.7 8.0/18.7
H 10.0/12.0 0.0/4.0 0.0/0.0 0.0/0.0 2.0/1.3 4.0/10.0 6.0/24.7 92.0/69.3

Table 3: Confusion matrix for gestures captured in a realistic environment

rated or locked in oscillatory patterns, although the predic-
tors were fed directly with the whole signal without resetting
the activations between different gestures.

5. DISCUSSION
There is a significant difference between performance of the 2
considered datasets. This could be explained by the higher
noise in the signal caused by the person movements and
activities in the second dataset. Furthermore, due to the
movement it is usual that the device is not held exactly in
the same orientation for all gestures. These little variations
produce large differences in the signal because, due to the
effect of gravity, the signal provided by the accelerometers
depends highly in the orientation of the sensor. This could
be solved using the gravity to estimate the device orientation
and then reorienting the acceleration vector [18].

Another reason for the difference in performance could be
the less accurate hand-made segmentation used for the ges-
tures captured in the realistic environment. This coarse seg-
mentation may include parts of the signal that do not belong
to the gesture. During training, these parts are also used to
train the predictor and this could produce the lower recog-
nition rate. Therefore, a main objective of future work is
the search of an automatic segmentation method that also
works for noisy datasets. An initial idea for this, could be
to detect periods of the signal where there is activity using
some features of the acceleration signal like the standard
deviation or the magnitude.

In previous work we investigated predictors based on Neuro
Fuzzy systems [1]. Each predictor consisted of a fuzzy rule
based system that only forecast one axis of the acceleration
signal. So, for each gesture, three predictors were needed
(one for each axis). The inputs were the previous values
of the acceleration signal (t-8, t-16, t-24) of one axis and
its output was the predicted signal in current time (t) for
that axis. Using this approach, high recognition rates were

obtained however it presents some limitations. On the one
hand, the distribution in time of the previous values of in-
puts favours the prediction of specific frequencies of the sig-
nal. On the other, if there are correlations between the sig-
nals of different axis, this predictor cannot use them because
it only has information of one axis. Lastly, these fuzzy pre-
dictors do not present any time dynamics. Therefore, these
problems and the search for a more general predictor were
the reasons that motivated us to look for another kind of
predictors

Neural networks have been used in previous research to per-
form gesture classification [19, 4, 16]. In these approaches
complex hierarchical neural networks are often used (Koho-
nen map combined with a recurrent network in [4], multi-
network approach in [16]). Although this added complexity
may show benefits in terms of recognition accuracy, our ap-
proach was to use a comparatively simple and compact net-
work, with the main motivation of minimizing the computa-
tional requirements for implementation in miniature wear-
able sensor nodes. The network that we chose for this pur-
pose however allows for rich temporal dynamics which is
required for the task at hand. Murakami et al. used a
discrete-time recurrent neural network for gesture classifica-
tion (Elman network) [19]. Although our work bears some
similarity, the key advantage of CTRNN is their richer tem-
poral dynamics which can be controlled by the neuron time
constants. In addition Murakami et al. relied on absolute
as well as relative hand position for gesture recognition.
This requires a complex sensing device: here inexpensive
accelerometers are directly used instead.

To train the predictor, the fitness function that is currently
used tends to generate CTRNN that maximize the predic-
tion accuracy of gestures of their own class. As a conse-
quence, lower fitness value means higher prediction accuracy,
but may not necessarily translate into higher classification
accuracy. Another fitness function may be investigated that



specifically tries to maximize the recognition accuracy. This
has not been investigated, because the inclusion of new ges-
ture classes obliges to recalculate the whole system. With
the current fitness function new gesture classes can be added
by simply training the corresponding predictor, which is a
more scalable approach.

Lastly, the system described here currently does not include
a null class. In other words a gesture that is not in the
training set will nevertheless be classified instead of being
discarded. This is due to the classification is being only
based on the election of the predictor that produces the
minimum prediction error. A line of work in the future is
the search for a measurement based on the prediction error
that allow to classify a gesture in a null class.

6. CONCLUSION
The use of signal predictors to recognize gestures is a novel
approach in this field. The results obtained in this paper and
the previous ones presented in [1] show that this approach is
promising and works with different predictor types: CTRNN
and Neuro Fuzzy Systems, respectively. The predictors have
interesting features especially for real time systems. They
are fast, simple and modular which allows to incorporate
easily new gestures in the recognition method.

CTRNN provides a more general predictor that can deal
with the dynamics of the gesture signal. The classification
of 8 gestures of an isolated dataset achieved very high success
rates (94%). In an unconstrained recording the recognition
accuracy was 64%, which is nevertheless a high accuracy
regarding the number of gesture classes. The recognition
rates reached by this method show its suitability for this
problem. Besides, these neural networks presented a robust
behaviour during gestures prediction because they did not
saturate or get locked in oscillatory behaviors.

One of the limitations of this recognition method is its de-
pendency on segmentation and device orientation, but this
will be improved in future work. In addition, although
changes in device orientation was shown to decrease recog-
nition accuracy, this problem is shared by other methods
relying on acceleration data to perform classification.

A comparison of recognition performance with different pre-
dictors and different dataset complexity is needed in order
to quantify the benefit of using a generic predictor such as a
CTRNN instead of simpler Neuro-Fuzzy systems. Further-
more, it is necessary to validate this approach using data
from different subjects in order to prove the system robust-
ness because all experiments of this paper were done only by
one person. These points remain the object of future work.
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