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Abstract 

This paper reviews the works found in the literature in the field of Transportation Mode Detection (TMD) which is a 

subfield of Activity Recognition aiming at indentifying (i.e. classifying) the mean of transportation a person is using. The 

solutions found in literature have different characteristics according to the device for which the solution was tailored 

(smartphones or other systems such as, e.g., GPS loggers) and to the algorithm used for the classification task. This may 

vary a lot according to the number and type of input used (e.g. accelerations, GPS, maps information or GIS - 

Geographical Information System information) and to the identified classes of transportation mode. These two aspects are 

the most relevant to consider when evaluating and comparing the accuracies claimed by each work. A comparison of the 

works is proposed taking into account the characteristics discussed above. 

In general the accelerometer is the most widely used sensor for TMD applications, as it limits battery consumption and 

captures relevant features for detecting motion. 

Indeed a key challenge in TMD is to detect different motorized classes such as bus, car, train and metro because they share 

common characteristics (such as e.g. the average speed and accelerations) which make hard identifying suitable features 

for the classification algorithm. Identifying the “walk” and “stationary” transportation modes is a simpler task because 

they are characterized by distinct features. 
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1. Introduction

Transportation Mode Detection (TMD) is a particular 

subfield of the Activity Recognition field that aims at 

identifying the mean of transportation a person is using, in 

an automatic way. In TMD personal mobile sensors are 

required in order to capture the most relevant features that 

characterize the specific mode of transportation. These 

personal mobile sensors must travel along with the person 

under observation, implying that sensors must be either 

integrated in portable technologies that have to be carried by 

persons (e.g. a smartphone) or worn by persons (e.g. a 

watch). In the literature, many different sensing techniques 

are considered: in the earliest research, custom mobile 

devices were used to collect data (e.g., GPS loggers and 

accelerometers), while in more recent works smartphone-

based solutions have been developed, with the purpose of 

exploiting the sensing capability of these widely used 

devices. Indeed the technology evolution on one side, and 

the worldwide spread of smartphones on the other, made 

these latter the ideal candidates to be used for continuous 

sensing such as a TMD application. In fact the use of these 

devices avoids the use of dedicated ones which should be 

carried by persons in addition to those that are already 

usually carried. The algorithms found in the literature for the 

detection of the mode of transportation differ mainly on: 

a) the assumption on the position of the mobile

sensor(s), i.e. fixed and known or variable and

unknown a priori;

b) the number and type of input signals collected;

c) the kind and the number of features extracted from

the collected data;

d) the type of classifier used for the recognition of the

mode of transportation on the basis of the extracted

features.

In the following sections, the most recent approaches to 

TMD are discussed and compared, differentiating between 

solutions based on smartphones (section 2) and those based 

on other mobile devices (section 3). Finally in section 4 a 

comparison of the works is proposed discussing which are 

for the authors of this review the most important and 

promising contributions.  

http://creativecommons.org/licenses/by/3.0/
mailto:jacopo.biancat@attainit.eu


EAI Endorsed Transactions on 
 Ambient Systems 

03 - 10 2014 | Volume 1 | Issue 4 | e3 

 

 Jacopo Biancat
 
et al. 

  2 

2. Solutions based on smartphones 

A variety of smartphone based solutions have been 

studied in the literature, differing mainly on the information 

used for classification and on the implementation of the 

classification algorithm, i.e. as server-based online 

classification, server-based offline classification or 

smartphone-based online classification. 

Table 1 compares the PROs and CONs of the server-

based and smartphone-based approaches in the 

implementation of the classification algorithm. 

 

Table 1. PROs and CONs of server-based and 
smartphone-based solutions in the implementation of 

the classification algorithm. 

 

  PROs CONs 

Server-based 

Algorithm 
implementation is 
independent of the 
device HW 

Algorithm limited 
by the 
communication 
rate at which data 
can be exchanged 

Smartphone-

based 

No data exchange 
is required with the 
server thus the 
algorithm relies only 
on the device 
internal resources 

Classification 
algorithm must be 
simple to comply 
with smartphone 
resources 

 
The server-based approach has the main advantage that 

the algorithm implementation is independent of the device 

HW. Nevertheless, it is limited by the communication rate at 

which data can be exchanged between the smartphone and 

the server. 

On the other side, the smartphone-based approach does 

not require any data exchange with the server since the 

classification algorithm relies only on the device internal 

resources which imposes that the algorithm itself must be 

simple enough to allow it running on smartphone platforms.  

Indeed the technology evolution makes available both 

communication infrastructures and mobile platforms ever 

more powerful. Therefore the limitations of both alternative 

approaches may not be considered as such, in particular in 

the future. Finally it is worth highlighting that a smartphone-

based solution allows avoiding or limiting sending personal 

data (such as GPS information) to a server which could be 

considered favourably by users who may be particularly 

concerned on their privacy. 

In recent works, the online implementation of TMD 

algorithms on smartphones has been studied and enhanced 

to cope with the limited energy resource available on 

smartphones. In general, this is achieved by a trade-off 

between the number of sensors used and the complexity of 

the classification algorithms.  

As regards sensors, the accelerometer is the most widely 

used sensor for TMD applications [1], as it limits battery 

consumption and captures relevant features for detecting 

motion.  

The first approaches to TMD focused mainly on the use 

of GPS information, possibly combined with Geographical 

Information System (GIS) information, and later also on 

GSM and WiFi signals, which identified variations of the 

user environment.  

The solutions based on GSM and/or WiFi signals despite 

being more energy-efficient than GPS based solutions, 

suffer of the variability of the GSM cell sizes and WiFi 

access points density, thus resulting unreliable outside urban 

areas [1]. 

Moreover, these two classes of approaches (GPS and 

GSM/ WiFi) were typically implemented as server-based 

applications for classification, due to smartphone battery 

limitations. 

The use of GPS data for TMD is being limited in the 

recent applications, in order to avoid the problem of relying 

on uncertain information (GPS data may not be 

continuously available in certain environments) and of using 

a very energy demanding sensor. 

The main reasons that were found in literature for the wider 

adoption of the accelerometer sensor for TMD applications 

are [1]: 

1. low power consumption; 

2. independence on external signals sources; 

3. possibility to extract highly detailed information 

about user motion. 

These advantages allow also the development of TMD 

algorithms as smartphone apps, running online on the user’s 

phone. In this case, as already highlighted, the main issue is 

to design a simple classification algorithm allowing 

differentiating among a variety of transportation modes. 

However, in some cases the absence of additional 

information yields the development of very complex 

classification strategies. Furthermore, the phone orientation 

represents in general a critical aspect to take into account to 

analyse relevant acceleration measurements. 

Indeed, three main approaches to this issue have been 

identified in the literature: in the first, accelerometers are 

fixed in a prescribed position on the user body so that the 

gravity components and the motion direction can be directly 

deduced; in the second, the three acceleration components 

are processed to calculate a total acceleration vector or to 

filter out the gravity components; in the third approach, the 

three acceleration components are not combined into a 

single variable but are used as independent input variables 

for classification. In this case, test subjects are normally 

required to label records with the phone orientation they are 

using during the data collection, so that this information can 

be directly used for training the classification model. 

Examples of these approaches are discussed in the 

following. 

A very recent work on TMD applications is that of 

Hemminki et Al. [1], in which an accelerometer based 

solution for TMD was implemented. This approach consists 

on the recognition of the gravity acceleration components, 

the extraction of a large set of features (78 in total) which 

capture time and frequency characteristics of the 
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acceleration signal, and the construction of a three-stage 

hierarchical classification framework ( 

Figure 1). 

 

 
 

Figure 1. Overview of the system architecture 
including three classifiers proposed by  Hemminki et 

Al. [1]. 
 

At the root of the hierarchy is a kinematic motion 

classifier which performs a coarse-grained distinction 

between pedestrian and other modalities. When the 

kinematic motion classifier fails to detecting substantial 

physical movement (e.g. walking), the process progresses to 

a stationary classifier, which determines whether the user is 

stationary or in a motorized transport. When motorized 

transportation is detected, the classification proceeds to a 

motorized classifier which is responsible for classifying the 

current activity into one of five modalities: bus, train, metro, 

tram or car [1]. 

Each classifier uses a variant of Adaptive Boosting [2] 

for the learning phase. Boosting is a general technique for 

improving the accuracy of the learning algorithm. More in 

detail, the idea is to iteratively train a set of classifiers that 

focus on different subsets of the training data and to 

combine these classifiers into one stronger classifier. In 

addition to this, adaptive boosting introduces an iterative 

strategy for reducing the classification error by assigning to 

each sample of the training data a weight that represents the 

importance of the sample, so that higher priority is given to 

samples that are misclassified. 

The algorithm was tested in different use scenarios and 

mission profiles, resulting in very accurate estimates of the 

transportation modes (see also Table 5 in sec. 4). 

Nevertheless, the complexity of the classification framework 

and the number of parameters involved in the feature 

extraction make results interpretation much more difficult 

and enhancements to the classification logic hard to 

demonstrate and test. 

 

 

 

 

However, the most interesting aspects in the approach 

proposed by Hemminki et Al. are the gravity components 

estimation algorithm and the variety of features used in the 

classification process. Other accelerometer-based solutions 

found in the literature normally consider only subsets of the 

features used by Hemminki et Al. and avoid the process of 

estimating gravity components, which may result hard to set 

up properly. 

An example of this different approach is the work of 

Manzoni et Al. [3], in which a decision tree classifies a set 

of features including 32 FFT coefficients, computed on the 

total acceleration vector, and the signal variance. The overall 

classification accuracy is slightly lower than that obtained 

by Hemminki et Al., but the number of transportation modes 

classified by Manzoni et Al. is higher (eight vs. seven, see 

also Table 5 in sec. 4). However, it is not clearly stated in 

their paper whether the real-time classification was 

implemented on the smartphone as an app, or a prototype 

application was developed running on other hardware 

devices.  

Another example of accelerometer-based TMD 

application is that of Nham et Al. [4], in which offline 

classification of transportation modes is performed by 

training a Support Vector Machine (SVM) with 253 features 

(250 FFT coefficients, signal energy, mean and variance), 

obtaining accuracy over 90%. Similarly to Manzoni et Al., 

they calculated the total vector of acceleration magnitudes in 

order to eliminate the dependency of the signal processing 

from the phone orientation. It shall be remarked that the 

authors did not test the algorithm as extensively as 

Hemminki et Al., since they trained the model with each 

subject data independently and did not train the model on 

one set of subjects then testing it on an unrelated subject. 

Brezmes el Al. [5] propose a solution in which 

frequency-based features are classified online by a server 

based application for the more general purpose of activity 

recognition, in which standing, walking, running, climbing 

up stairs, climbing down stairs, ecc are identified. Although 

the activities classified in this approach are different from 

those of interest for TMD, some activity recognition 

solutions have been considered relevant for this review, as 

they have common algorithm characteristics and 

implementation issues to the TMD problem. In their 

approach, the K-nearest neighbours algorithm is used 

assuming no a priori knowledge on the phone orientation. 

Yan et Al. [6] provide an insight into the problem of 

online implementation of activity recognition algorithms on 

smartphones, by analysing in detail the energy efficiency 

issue. Their work provides an analysis of the effects on 

energy consumption of the sensor sampling frequency (see 

for example  

 

Figure 2) and of the choice of the set of features used in 

activity classification. They found that the trade-off between 

energy overhead and classification accuracy is activity-

dependant. For this reason, they propose an activity-adaptive 

approach (called A3R), in which sampling frequency and 

features selection are selected depending on the activity that 
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is being performed by the user. A J48 adaptive decision tree 

was trained using the Weka toolkit. 

 

 
 

 

Figure 2. Accuracy at different sampling frequencies 
and classification features [6]. 

The strategy was tested on Android phones achieving 

overall energy savings of 20-25% with respect to the 

continuous use of the highest sampling frequency and the 

larger set of features (non-adaptive approach).  

Figure 3 and Figure 4 show the result of the analysis of 

energy savings obtained with the A3R algorithm and of the 

battery consumption time evolution, with respect to the non-

adaptive approach and the normal use of the smartphones. 

 
Figure 3. Impact of confidence threshold on energy 

savings in A3R  [6]. 

 

 

 
 

Figure 4. Power consumption of different activity 
recognition modes in daily lifestyle settings (evaluating 

the embedded A3R for two Android users) [6]. 
 

Differing from the above solutions, examples of activity 

recognition approaches using fixed phones positions, are 

that of Ravi et Al. [7] and of Kwapisz et Al. [8]. 

Presenting similar purposes to the approach by Yan et Al., 

the approach proposed by Rosenberg Randleff et Al. for 

TMD [9] focused on the simplification of the TMD 

estimation process, in order to make the smartphone 

workload as low as possible. Their algorithm exploits 

mainly the accelerometer data and introduces the GPS data 

and other information (such as train track) only when 

necessary for the classification. The strategy is to use 

accelerometer data only, as long as these data provide 

enough evidence of the transportation mode used. In this 

way, energy demanding sensors and data processing are 

activated only when needed, and the algorithm complexity is 

kept to a minimum. It is highlighted that this algorithm was 

tested by the authors only on a limited set of data and that 

the training phase requires a quite relevant effort by the 

users, which are required to label their trips indicating the 

device orientation in addition to the transportation mode 

used. However, the idea of activating additional sensors on 

condition, to complete the accelerometer information, is 

interesting. 

A similar approach is that proposed by Reddy et Al. 

[10], which developed a classification system of 

transportation modes using GPS and accelerometer data 

only, obtaining an accuracy better than 93% over a set of 5 

transportation modes. The classifier is composed by a 

decision tree followed by a first-order discrete Hidden 

Markov Model and analyses GPS speed every second, 

together with variance and frequency components of the 

accelerometer signal.  

Figure 5 shows the distribution of the speed signal for 

the different transportation modes, as reported by the 

authors. 
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Figure 5. Distribution of speeds for the transportation 
modes [10]. 

 

An additional algorithm is described in the paper that 

turns on the classifier when the user goes outdoor, using the 

changes in the connected cell tower as a trigger to start 

logging the GPS signal. The main drawbacks of this 

approach are that the set of transportation modes considered 

for classification is actually quite limited, as “motorized 

transport” is considered as a single class; in addition, the 

training process required the users to wear 6 smartphones at 

specified positions on their body, in order to train a 

generalized decision tree that was able to classify modes of 

transportation independently on the phone actual position 

during usage. 

An interesting result reported by Reddy et Al. is the loss 

of accuracy caused by the use of other information than that 

of the accelerometer and the GPS, which is shown in Table 

2. 

Table 2. Classification accuracy decrease compared to 
GPS and accelerometer based system [10]. 

Accelerometer GSM GPS WiFi Accuracy Decrease 

X 
  

 10.4 

 
X 

 
 33.2 

  
X  19.2 

   
X 35.1 

X X 
 

 6.9 

X 
  

X 3.9 

X X 
 

X 3.0 

 
X X  13.3 

 
X 

 
X 22.1 

  
X X 11.9 

 

It is not clearly described how the WiFi and GSM 

information is integrated with the accelerometer and/or GPS 

data. Presumably, the GSM and WiFi signals were used to 

calculate the motion speed when the GPS speed is absent. 

The authors also state that the classifier with all four 

modalities resulted in a negligible increase in accuracy 

(0.6%) compared to the use of accelerometer and GPS only. 

Another similar approach is that of Xiao et Al [11], 

which uses speed statistics derived from GPS and cellular 

network information and the standard deviation of the 

magnitude of the force on the body obtained from 

accelerometer samples. This approach creates traces of 

positions with the GPS data and GSM-based position 

estimates in case of GPS unavailability, and exploits this 

geographical information to detect stop positions. A 

decision tree classifies the standard deviation of the force 

and the maximum and average moving speed along a trace 

between two successive stops. It shall be said that the 

algorithm as it is presented in the paper does not distinguish 

among a wide variety of transportation modes, as it is 

limited to differentiating motorized transportation among 

bus, MRT (Mass Rapid Transit, a system that forms the 

backbone of the public transportation in Singapore) and taxi. 

An example of very accurate TMD based on GPS and 

GIS data is that developed by Stenneth et Al. [12], in which 

the knowledge of the underlying transportation network, in 

terms of bus locations, spatial rail and spatial bus stops 

information, is exploited. The authors state that the use of 

this information improves the accuracy of the TMD 

algorithm by 17% in comparison with the GPS only 

approach and by 9% in comparison with GPS and GIS 

models, achieving an overall estimation accuracy of over 

90%. In this approach, a centralized system collects data 

from smartphones, elaborates the information and sends 

back the resulting classification to the user. The GPS data 

are pre-processed in order to filter out invalid GPS points 

and are sent to the central station every 15 seconds, to avoid 

battery drain. The detection algorithm uses a Random Forest 

model and only five classification features: average speed, 

average rail line closeness, average acceleration, average 

bus closeness, candidate bus closeness. The main drawbacks 

of this approach are that the infrastructure knowledge 

required makes this solution difficult to disseminate into 

large geographical areas; in addition, the use of GPS data, 

even though collected every 15 seconds, will probably 

reduce excessively the smartphone battery endurance. 

Another example of TMD solution based on GPS data is 

presented by Gonzalez et Al. [13], in which a Multi-Layer 

Perceptron neural network model is trained with GPS data to 

classify transportation modes among car, walk and bus. The 

interesting aspect of their implementation is in the Critical 

Points algorithm (see Figure 6), which reduces significantly 

the number of GPS points that represent the user’s path and 

that are sent to the server for classification, thus saving 

battery, network bandwidth and storage space. The overall 

accuracy obtained by the authors is greater than 91%, 

achieving 100% accuracy in the classification of walking 

segments. 
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Figure 6. Comparison between Car trip data with All 
GPS Points (top) and Car trip data with only Critical 

Points (below) [13]. 
 

An interesting perspective is that of enhancing models 

prediction by including the knowledge on a user’s past 

history. This approach would certainly require the setup of 

personal features databases and higher computational 

complexity, but would exploit the normally repetitive 

trajectories of users in everyday transportation. A discussion 

on this approach can be found in [14]. 

3. Solutions based on other devices 

TMD solutions based on other mobile devices refer to 

those approaches found in the literature in which data are 

collected by means of general portable devices, typically 

accelerometers and GPS loggers. 

One of the first contributions (2004) to the activity 

recognition problem is that proposed by Bao and Intille [15], 

in which five biaxial accelerometers worn simultaneously on 

different parts of the user’s body were used to collect and 

then extract mean, energy frequency-domain entropy and 

correlation of acceleration data. The C4.5 decision tree 

classifier was selected as the best performing, recognizing a 

variety of 20 everyday activities with an overall accuracy of 

84%. No online classification was implemented, but detailed 

post processing analysis was performed in order to validate 

the model with different data sets (the leave-one-subject-

out-validation approach was used). 

A more recent work (2010) in the more specific field of 

transportation modes detection is that of Zheng et Al. [16]. 

Their approach consists of three parts: a change point based 

segmentation to partition GPS trajectories into segments of 

different transportation modes, an inference model that 

classifies the segment features and a graph-based post 

processing algorithm that improves inference performance. 

The classification algorithm can distinguish between walk, 

driving, bus and bike transportation modes. 

The change-point segmentation algorithm relies on the 

assumption that walking should be a transition between 

different transportation modes and that during transitions 

between two modes the GPS speed should be close to zero 

as people must stop and then go when changing their 

transportation mode. An example of change point-based 

graph is shown in  

Figure 7, where change-points are represented as circles. 

The post processing algorithm calculates a transport 

mode probability considering both real world constraints to 

transportation and typical user behaviour based on locations. 

The model is however not user-specific as it is trained from 

datasets of different users.  

 

 
 

Figure 7. A change point-based graph within a region 
[16]. 

 

Another recent contribution (2013) to this research area 

is that of Biljecki et Al. [17], in which the concept of single-

mode segment, similar to the segments defined by Zheng et 

Al., is introduced. However, the method proposed by 

Biljecki et Al. differs from previous works for the following 

main reasons, as reported by the authors: 

a) it exploits the fuzzy concepts of membership 

functions and certainty factors (from the expert 

systems field), 

b) it uses OpenStreetMap data, 

c) there is a strong separation between reasoning and 

knowledge, so that parameters can be modified and 

new transportation modes can be easily added. 

Moreover, this solution can distinguish among 10 

transportation modes and handles data with signal shortages 

and noise. 

The features used in the expert system for classification 

are: three single values of speed in the segment, the mean 

speed, the mean moving speed, five average proximities of 

the segment to the infrastructures used by the selected 

transportation modes and the location of the trajectory with 

respect to water surfaces. 

A GPS logger was used to collect data, which were 

added to data downloaded from the internet (from the 

OpenStreetMaps database), obtaining a data set for training 

and validation of 17.5 million GPS points. The overall 

accuracy obtained is higher than 91%. 
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The interesting characteristic of this approach is the use 

of expert systems in this kind of application. Indeed, the 

logical rules constructed on the membership functions are 

very easy to interpret and modify. 

This solution was implemented and tested with GPS 

receivers and GPS phones, which sent data to a web 

application for processing. During training, the subjects 

were asked to label their trajectories on the web application. 

4.  Discussion and solutions comparison 

A summary of the main implementation features of the most 

relevant contributions described in sections 3 is reported in 

Table 5. 

This table compares the works found in literature in terms 

of: 

 identified classes; 

 sensor and information used as input; 

 implementation mode; 

 duration of test data; 

 number of users used for the experimental phase; 

 the claimed accuracy. 

 

It can be noticed that most of the effort made in the 

literature is focused on smartphone based solutions, even 

though not all the applications were developed to actually 

run online on a smartphone. Most of them used smartphones 

as sensors to measure accelerations and collect GPS position 

data. However, some of the offline ones are suitable, in 

principle, for the online implementation on smartphones. 

One of the most relevant contributions in the set of 

smartphone-based solution is that of Manzoni et Al. [3], 

because of the simplicity of the classification algorithm 

proposed and of the high number of transportation modes 

considered. 

Accelerometer and GPS are the most used sensors, these 

information being sometimes integrated with GSM, maps 

and/or knowledge of the underlying transportation network. 

The highest accuracy (93.8%) is achieved by Nham et Al. 

[4] using only accelerometer data. However it distinguishes 

only four different classes of transportation modes: walk, 

run, bicycle and motorized transport.  

The second best accuracy (93.6%) is achieved by Reddy 

et Al. [10] using both accelerometer and GPS data and 

distinguishing five different classes (stationary, walk, run, 

bicycle, motorized transport). Both contributions group 

together the transportation mode of car, bus, tram and train 

in a unique class named “motorized transport”. 

The third best accuracy (93.5%) is achieved by Stenneth 

et Al. [12] distinguishing among six different classes: car, 

bus, surface train, walk, bicycle, stationary. However, the 

detection is not based on accelerometer data, which, as 

already discussed, would preserve the battery endurance, but 

on GPS data and on the knowledge of the underlying 

transportation network. As already said this infrastructure 

knowledge makes the solution difficult to disseminate into 

large geographical areas or complying with heterogeneous 

transport infrastructures. 

Table 3 shows the shortlist of the three works detecting 

the highest number of transportation modes. 

Among these three, Biljecki et Al. [17] achieve the 

highest accuracy of 91.6%. However it is based on GPS data 

and on the availability of map-based information as those 

provided by OpenStreetMap.  

Table 3. PROs and CONs of server-based and 
smartphone-based solutions in the implementation of 

the classification algorithm. 

Ref. 
N° 

classes 
Accuracy Input 

[17] 9 91.6% 
GPS logger + 

OpenStreetMap 

[3] 8 82.1% 

Accelerometer (and GPS 

optionally for computation 

of CO2) 

[1] 7 84.9% Accelerometer 

 

Therefore the most interesting and promising works are 

those by Manzoni et Al. [3] and Hemminki et Al. [1] since: 

a) They detect the highest number of relevant 

transportation modes as shown in Table 4.  

Table 4. Transportation modes detected by 
Manzoni et Al. [3] and Hemminki et Al. [1]. 

Manzoni et Al. [3] Hemminki et Al. [1] 

Stationary, walk, bus, 

train, metro, car, bicycle, 

motorcycle 

Stationary, walk, bus, 

train, metro, car, tram 

 

b) They rely only on accelerometer data (e.g. they do 

not rely on maps database) 

c) They do not require dedicated devices. 

 

The average accuracy of these two works is 83.5% 

which could be considered as the SoA benchmark accuracy. 

However caution is recommended in this case because for 

example the dataset used by Manzoni is said to include 

“several hours” of data but it is not actually quantified.   

Indeed Hemminki et Al.’s datasets include 150 hours of 

data which is one of the largest dataset found in the 

literature. Furthermore the experimental phase is detailed in 

different qualified scenarios, based on different smartphone 

models (three) and users (16), from four different countries, 

demonstrating to be effective in different geographic 

locations.  

In conclusion the work by Hemminki et Al., which is 

very recent (SenSys ’13, Rome November 2013) may be 

considered as the most valuable one found in the literature 

by the authors of this review. However, the system proposed 

may still be improved as discussed in sec. 5.   
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Table 5. Comparison of Transportation Mode Detection Solutions based on smartphones and other devices. 

 

Ref Classes Sensor/ 

information 

Implementation  Duration of 

test data 

Users Accuracy 

[1] 
Stationary, Walk, Bus, Train, 

Metro, Tram, Car 
Accelerometer 

Smartphone-

based online 

classification 

150 hours 16 84.9% 

[3] 
Bus, Metro, Walk, Bicycle, 

Train, Car, Still, Motorcycle 

Accelerometer (and 

GPS optionally for 

computation of 

CO2) 

Smartphone-

based online 

acquisition 

several 

hours 
4 82.1% 

[4] Walk, Run, Bicycle, Car Accelerometer 

Smartphone-

based offline 

classification 

8.87 hours 4 93.8% 

[5] 

Walk, Climbing-up stairs, 

climbing-down stairs, standing-

up, sitting-down, falling 

Accelerometer 

Smartphone-

based online 

classification 

NA 1 80% 

[6] 

Walk, Slow-walk, Sit Relax, Sit, 

Normal Walk, Escalator up, 

Escalator down, Elevator up, 

Elevator down, Down stairs 

Accelerometer 

Smartphone-

based online 

classification 

6-8 weeks 6 90% 

[9] 
Walk, Car, Train, Other 

(Bicycle) 

Accelerometer + 

GPS & train tracks 

when needed 

Smartphone-

based acquisition 
NA NA NA 

[10] 
Stationary, Walk, Run, Bicycle, 

Motorized Transport 

Accelerometer + 

GPS 

Smartphone-

based online 

classification 

120 hours 16 93.6% 

[11] Bus, MRT, Taxi 
GPS + GSM + 

Accelerometer  

Smartphone based 

acquisition, Web 

server-based 

classification 

NA NA NA 

[12] 
Car, Bus, Aboveground Train, 

Walk, Bicycle, Stationary 

GPS + Knowledge 

of underlying 

transportation 

network 

Smartphone based 

acquisition, 

Mobile web-based 

classification 

3 weeks 6 93.5% 

[13] Walk, Car, Bus GPS (assisted) 

Mobile phone-

based acquisition, 

server-based 

classification 

114 trips NA 91.2% 

[15] 

Walk, Sit Relax, Still, Watch 

TV, Run, Stretching, Scrubbing, 

Fold laundry, Brush teeth, Ride 

Elevator 

5 Biaxial 

accelerometers 

Server-based 

offline 

classification 

1.6 hours 20 84% 

[16] Car, Walk, Bus, Bicycle 
GPS receivers and 

GPS phones 

Web application-

based online 

classification 

2000 hours 65 75% 

[17] 

Car, Train, Walk, Bicycle, 

Tram, Bus, Sailing,  Ferry, 

Underground 

GPS logger + 

OpenStreetMap 

Server-based 

offline 

classification 

17 million 

points  
NA 91.6% 
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5. Conclusions 

This paper reviewed different transportation mode 

detection systems and algorithms. Literature works were 

divided into two main groups according to the device for 

which the system was tailored: systems based on 

smartphones and systems based on other devices such as 

GPS loggers. 

The most recent works present smartphone-based 

solutions, which pose the issue related to the limited 

energy available on such devices. Energy saving is 

achieved by a trade-off between the number of sensors 

used and the complexity of the classification algorithms.  

The accelerometer is the most widely used sensor for 

TMD applications, as it limits battery consumption and 

captures relevant features for detecting motion. 

Indeed in transportation mode detection, a key challenge 

is to detect different motorized classes such as bus, car, 

train and metro. This differentiation may be sometimes 

difficult because these transportation modes share 

common characteristics (such as the average speed and 

accelerations), which make hard identifying suitable 

features for the classification algorithm. It is not 

incidental that the two contributions that achieve the 

highest accuracies (Nham et Al. [4] and Reddy et Al. 

[10]) consider “only” a unique “motorized transport” 

class. Identifying the “walk” and “stationary” 

transportation modes is a simpler task because they are 

characterized by distinct features. For example walking is 

characterized by higher values (with respect to the other 

classes) of the standard deviation and maximum features 

of the total acceleration vector. On the other side, the 

stationary class is characterized by lower values of the 

maximum and median features of the total acceleration 

vector.  

The most interesting and promising works found in 

literature by the authors of this review are those by 

Manzoni et Al. [3] and Hemminki et Al. [1], belonging to 

the smartphones based solutions since: 

a) They detect a high number of relevant 

transportation modes.  

b) They rely only on accelerometer data (e.g. they 

do not rely on maps database)  

c) They do not require dedicated devices. 

Indeed the work by Hemminki et Al., given the quality of 

their validation phase for both the extension (over 150 

hours) and the variety of the dataset (16 users from four 

different countries using three different smartphone 

models), appears to be the most valuable work found by 

the authors of this paper in transportation mode detection. 

However, as recognized by the authors themselves, the 

system proposed has still the following drawbacks: 

 It is susceptible to interference from extraneous 

kinematic events; 

 The latency (20 s) of detecting the correct 

modality while switching to a motorized 

transportation modality. These could be 

significantly reduced by fusing measurements 

from additional sensors (e.g. changes in GSM or 

WiFi signal environment, GPS speed or changes 

in magnetic field). 

 

Therefore improvements may be done in the field of TMD 

taking into account that the technology evolution is 

providing more and more powerful smartphones 

embedding more and more sensors which could be 

exploited for the scope of detecting the mode of 

transportation of a person, such as, for example, 

temperature sensors already integrated in the Samsung 

Galaxy S4 and in the new Samsung Galaxy S5 model. 

In conclusion the authors of this review point out the 

following topics as the most relevant for further 

investigations in future works: 

1) Improvement of the latency time required by the 

TMD algorithms to identify a “motorized” class; 

2) Improvement of robustness of TMD algorithms, 

for example, against interference from 

extraneous kinematic events, such as user 

interactions or changes in the orientation of the 

phone; 

3) Reduction of the power consumption required by 

the TMD algorithms, since battery endurance is 

one of the critical factors in nowadays 

smartphones. This could be achieved by the 

exploitation of low-power co-processors, 

dedicated to the management of sensors, which 

have been integrated in the last year in the most 

recent smartphones. 

4) Exploitation and integration in the TMD 

algorithms of innovative information provided 

by new sensors such as the already mentioned 

temperature sensor; 

5) Adaptation of TMD algorithms to run in other 

smart devices different from smartphones such as 

smartwatches or smartglasses. 
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