
Integrating Virtual Reality and Robotic Operation
System (ROS) for AGV Navigation
Ata Jahangir Moshayedi1∗, KM Shibly Reza1, Amir Sohail Khan1, Abdullah Nawaz2

1School Of Information Engineering, Jiangxi University Of Science And Technology, No 86, Hongqi Ave, Ganzhou,
Jiangxi, 341000, China
2Department of Electrical Engineering, University of Engineering and Technology, University campus, University
Rd, Rahat Abad, Peshawar, Khyber Pakhtunkhwa, Pakistan

Abstract

The use of AGVs (Automated Guided Vehicles) is rapidly expanding in various applications and industries,
meeting the growing demand for automated material handling systems. However, AGV control and navigation
remain a challenge. To address this issue, robotics simulators such as ROS (Robot Operating System) have
become widely used, reducing the cost and time of checking robot performance. Furthermore, the integration
of virtual reality technology into the robotics field has facilitated the study of various robot behaviors in
realistic environments, replicating the robot’s real-life size and dimensions. In this study, the TurtleBot2i and
RAZBOT AGV robot platforms were integrated into the 3D Unity environment and controlled using ROS.
Using Unity as a simulator for the robot’s working environment offers several benefits, including high-quality
graphics and a detailed examination of the robot’s behavior. The results of the study demonstrate the accurate
simulation and control of the AGV platforms in both ROS and Unity environments.

Received on 24 March 2023; accepted on 11 April 2023; published on 21 April 2023

Keywords: AGV, automated guided vehicle, Robotics, Robot Operating System, ROS, Unity.

Copyright © 2023 AJ. Moshayedi et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so
long as the original work is properly cited.

doi:10.4108/airo.v2i1.3181

1. Introduction
The use of robotics simulation in virtual environments
has emerged as an essential element of robotics
research and development [1]. It affords engineers
and researchers the opportunity to fine-tune their
algorithms, designs, and control systems before
actualizing them in physical robots. This approach
not only provides a secure and regulated testing
environment but also mitigates the risks of damage to
the robot and its surroundings. Two of the widely used
tools for simulating and controlling robots are Unity
and ROS (Robot Operating System) [2].
Unity has recently gained widespread popularity in
robotics simulation due to its user-friendly interface,
real-time rendering capabilities, and robust support
for 3D environments [3]. Conversely, ROS has become
the industry-standard robotic software development
platform, offering various functionalities such as

∗Corresponding author. Email: ajm@ jxust.edu.cn

real-time communication, perception, and control
[4]. The integration of these two tools can enable
researchers and engineers to construct highly realistic
and sophisticated simulations that accurately represent
their robots’ real-world behavior [5, 6].
As artificial intelligence, computer vision, and dynamic
path planning advance [12], robots can now perceive,
learn, and move autonomously in the world [13]. As
the complexity of robotic tasks increases, the number
of tests and validations required to ensure performance
increases exponentially [14]. This presents a significant
issue, as robots are expensive, and hiring someone
to work with them is even costlier [15]. Finding
an available space to set up a test environment
is also potentially expensive and time-consuming.
Fortunately, simulation can alleviate many of these
issues [16]. Users can iterate much more rapidly on
algorithm design, and they can also have a say in the
robot’s design decisions. Another significant advantage
is that it permits testing over a vast array of varied
environments [17]. Therefore, simulating robots in

1 EAI Endorsed Transactions on
AI and Robotics

EAI Endorsed Transactions
on AI and Robotics Research Article

https://creativecommons.org/licenses/by/4.0/
mailto:<ajm@ jxust.edu.cn>

AJ. Moshayedi et al.

virtual environments is considerably quicker and easier
to prototype and iterate than in real life.
To simulate a robot, the robot’s task must be defined,
and an approach for how the robot will accomplish
that task must be developed [18]. The user can then
write code that will execute that approach and deploy
it in a simulated robot and environment. The results
from the simulation can then be evaluated. If the
results align with the user’s desired outcome, it will be
implemented; otherwise, the user will try again until
they achieve the acceptable performance metric [19].
Weak performance necessitates a real-world test, where
the user can deploy it to the actual robot and evaluate
it in a real-world scenario. If the test succeeds, the user
can then proceed to production [20].
The simulation workflow can be distilled into three
pivotal elements, comprising a mechanized agent
navigating through a dynamic milieu, where a
particular kind of regulatory algorithm shall be
executed on the machine itself [21]. Unity boasts an
extraordinary aptitude in the first two constituents, but
its sole deficiency is the lack of software responsible
for overseeing the robot’s operation. Unity offers an
editor equipped with a vast range of functionalities,
amenities, and auxiliary tools, which are intentionally
calibrated to cater to the exigencies of robotics [22].
Many teams have contributed unique approaches
to automaton simulation and interaction research,
based on different requirements. Game engines have
commonly been employed in this context. Recently,
all-purpose frameworks that combine game engines
with ROS have been proposed [23]. A variety of robot
simulators have been in use both before and after the
release of ROS. Understanding the history of robot
simulation provides context for the current state of
the art. Using tools like Unity and ROS to simulate
robots in virtual environments has become increasingly
popular in recent years, for the purposes of testing
and refining robotic algorithms, designs, and control
systems [24].

The Unity platform proffers a highly intuitive
user interface along with an array of real-time
3D rendering capabilities. In contrast, the Robot
Operating System (ROS) furnishes an extensive
gamut of functional utilities, encompassing the
realms of real-time communication, perception, and
control [25]. Through the harmonious integration of
these two efficacious instruments, researchers and
engineers can materialize impeccably authentic and
intricately intricate simulations, mirroring the real-
world behavior of their robotic counterparts with
impressive verisimilitude [26].

The employment of virtual environments to simulate
robotic systems entails an array of advantages, most

notably the opportunity to scrutinize and optimize
control mechanisms prior to their deployment on
tangible robots [27]. This method serves to conserve
temporal and material resources while diminishing
potential hazards to both the robotic apparatus and
its environment [28]. Furthermore, the simulation
of robotic systems in virtual environments affords a
well-ordered and replicable arena for testing, which is
particularly significant for tasks necessitating exacting
manoeuvres or for appraising the efficacy of disparate
control algorithms [29, 33].

A plethora of investigations have incontrovertibly
exhibited the efficaciousness of utilizing Unity and
ROS for the purposes of stimulating and regulating
robots. Schön and colleagues (2012) expounded upon
the Unity robot simulator as an erudite platform for
the development of robot software. Similarly, Chitta
and co-authors (2012) elucidated the employment
of Gazebo and ROS for the simulation of robots.
Collectively, these empirical inquiries attest to the great
potential that ensues from integrating Unity and ROS,
resulting in the creation of intricate and verisimilar
robot simulations [34, 38].

This paper main contribution can be listed as bellow:

1. Integration of virtual reality technology with ROS
to simulate the robot’s performance in realistic
environments bwith a better graphical interface.

2. Using the TurtleBot2i and Razbot AGV robots
platforms were integrated into 3D Unity environ-
ment and controlled using ROS.

3. To demonstrate the accurate simulation and
control of AGV platforms in both ROS and Unity
environments.

This paper is arranged as follows : The section 2 shows
the Simulator Environments like Unity and ROS. The
section 3 shows the robot platforms that used. The
section 4 shows the modelling and simulations while
the section 5 describes the results and discussions of
this paper.

2. Simulator Environment
This study employed a duo of simulator environments,
namely Unity and ROS. Each of these virtual realms
was scrutinized in detail to yield a comprehensive
account of their respective features and functionalities.
Unity, an established game engine, offers a visually-rich
and user-friendly interface that allows for the creation
of interactive and immersive 3D environments. On
the other hand, ROS (Robot Operating System) is a
popular platform for robotic simulation and control,
well-regarded for its robustness and flexibility in

2 EAI Endorsed Transactions on
AI and Robotics

Integrating Virtual Reality and Robotic Operation System (ROS) for AGV Navigation

accommodating diverse robotic hardware and software
configurations. The present study availed itself of
the unique capabilities of both Unity and ROS, thus
enabling a more nuanced exploration of the research
questions at hand.

2.1. Unity
The Unity engine is a highly flexible and versatile
platform that caters to the requirements of game
developers striving to fashion elaborate and
aesthetically pleasing games [39]. A salient feature
of the Unity framework is its Game Simulation, which
aptly satisfies the exigencies of game developers.
Notably, it is imperative to acknowledge that Unity is
not a simulation instrument but rather a visualization
instrument [40]. This attribute renders it an exemplary
resource for virtual reality (VR) endeavors on a diverse
range of platforms, including OSX, Windows, MAC,
and Android [41].

The Unity editor is endowed with an exceptional degree
of configurability, which facilitates the availability of
community-crafted bespoke user interfaces in the Unity
Asset Store, a number of which are proffered gratis [42].
Unity proffers a comprehensive suite of extensions via
a C# programming interface, thus empowering users
to configure environments and user interfaces, tweak
game physics and lighting, animate objects, debug,
profile, and undertake a plethora of other functions
[43].

The Unity engine is a highly versatile platform capable
of accommodating a diverse range of game genres,
thereby fostering a work environment that is both
streamlined and unencumbered [44]. Nevertheless, it
is crucial to acknowledge the instrumental role played
by community support in shaping the development
of specific game genres and workflows. At the core
of the engine’s programming architecture lies Unity’s
GameObject, which is augmented by a Transform
component that is hierarchically linked to it within
the scene [45]. This component affords the entity in
question a precise location, rotation, and scaling within
the 3D environment, thereby enabling the seamless
integration of ancillary components such as rendering,
physics, and animation [46].

The unparalleled ease of use and extensibility that
Unity proffers make it an invaluable tool in the context
of robot development workflows, especially within the
realm of AI simulation. The C# programming interface
and other sophisticated tools that are offered by Unity
have been specifically designed to aid roboticists in
their endeavor to more readily utilize AI simulation
[47]. This versatility that Unity offers is a direct

consequence of the plethora of community-generated
resources that are available to users, including an
assortment of 3D and 2D models, AI scripts that
enable pathfinding algorithms, and the provision
of comprehensive environments or object sets [48].
Lastly, it is worth noting that Unity does not possess a
traditional point of entry. Instead, it employs inherited
methods that are activated by specific events [49].

How to Leverage Unity Using Robotics. Within the domain
of advancing robotic applications, the salience of sim-
ulation as a fiscally judicious and temporally efficient
modality for generating and scrutinizing applications
has been rapidly gaining impetus. The development
and evaluation of applications necessitating mechani-
cal functionalities in real-world environments pose a
formidable quandary and incur prodigious expenses.
However, the assimilation of simulation technology
within these realms can assuage the temporal exigencies
for iterations and expedite the identification of incipi-
ent intricacies[50].
Furthermore, the utilization of simulation presents
itself as a propitious sanctuary that enables a compre-
hense scrutiny and evaluation of peripheral circum-
stances or contingencies that may imperil genuine, real-
world scenarios. In the domain of a masterfully con-
structed artificial intelligence simulation, the tangible
features of the automaton, the operational milieu, and
the computational algorithm that impels the mecha-
nism all represent crucial elements that are essential for
guaranteeing optimum efficiency and effectiveness [51].
Ensuring the veracity of assessments and instructional
approaches is a crucial undertaking that necessitates
the verification of congruity between the tripartite con-
stituents and authentic contexts. Simulation technology
offers a platform that emulates reality and engenders
all-encompassing mechanisms to generate and scruti-
nize applications, thereby rendering them amenable to
verification and validation prior to deployment. This
modality exhibits the potential to curtail developmental
expenditures, expedite time-to-market, and enhance
the precision and dependability of the application. By
enabling developers to scrutinize and refine their appli-
cations prior to their deployment, simulation technol-
ogy affords a cost-effective and adroit technique for gen-
erating innovative and trustworthy applications [52].

2.2. ROS
Robot Operating System (ROS) is a comprehensive
framework that comprises a suite of tools, libraries,
and protocols aimed at facilitating the development
of various robotic systems. The system manages the
creation and control of communication between
a robot’s peripheral modules, such as sensors,
cameras, and actuators, thereby enabling the
seamless integration of these components. Initially, the

3 EAI Endorsed Transactions on
AI and Robotics

AJ. Moshayedi et al.

conception of ROS took place at Stanford’s Artificial
Intelligence Lab, and the development continued
at Willow Garage. ROS is primarily designed to
function optimally on Ubuntu, while only partially
compatible with other operating systems, such as
Windows and Mac. As an open-source project, ROS
boasts an extensive community of contributors who
work tirelessly towards enhancing its functionalities,
thus making it more accessible and useful for various
robotics applications.
The unparalleled adaptability and durability of the
Robot Operating System (ROS) has established it as
the top preference for both developers and researchers,
who have effectively utilized it to create a diverse
range of robotic systems spanning from industrial
manipulators to self-governing drones. ROS’s modular
configuration enables effortless integration of other
software and hardware components, resulting in a
multi-faceted platform for experimentation and swift
prototyping. The widespread adoption and versatility
of ROS have instigated the development of numerous
third-party packages and libraries that further enhance
its capabilities. Overall, ROS is a pivotal tool for
individuals seeking to develop robotic systems,
providing an unwavering and flexible framework for
the cost-effective and efficient construction and testing
of robots.Figure 1 depicts the intricate and multifaceted
communication flowchart within the Robot Operating
System (ROS). This visual representation not only
highlights the intricate interconnections among the
various nodes but also accentuates the complex
nature of the communication system. The portrayal
of this intricate system within the purview of figure
1 serves to elucidate the manifold intricacies of the
ROS architecture, providing a comprehensive and
systematic understanding of the communication
processes that underlie this sophisticated robotic
system.

Figure 1 presents the communication flowchart of
Robot Operating System (ROS) between two computers,
wherein one computer houses a simulator world
containing the Slm robot and sensor, and the other
comprises custom code under ROS. This setup enables
evaluation of the system in the simulator world,
improving it via custom code, and finally deploying it
to ROS for further use.

ROSBridge. Rosbridge is a cutting-edge application
programming interface (API) that enables the seamless
integration of non-ROS applications with the full range
of capabilities offered by the Robot Operating System
(ROS). This innovative technology leverages the JSON
data format and is comprised of a set of state-of-
the-art front-end tools, including a WebSocket server
that is compatible with web browsers, the rosbridge

package, and various front-end packages. The protocol
of rosbridge comprises a meticulously defined set of
guidelines that are specifically designed to facilitate
the transmission of JSON-based commands to the ROS
operating system, enabling communication with ROS
in any language or transport that is proficient in
transmitting JSON. Thus, RosBridge confers the ability
to communicate with a ROS system over a network,
rendering it an indispensable tool for both roboticists
and software developers alike. Significantly, RosBridge
can harness the power of ROS without modifying pre-
existing architecture, thus constituting a valuable asset
[53].

ROS#. The Ros# is known as a highly intricate
apparatus that functions to extend the Unity editor’s
ability. as the primary it has the objective to enable a
seamless exchange of data between the Robot Operating
System (ROS) and Unity, through the implementation
of the advanced RosBridge protocol.The comprehensive
feature set of Ros# is characterized by a vast array of
tools, with the robot description importer standing out
for its exceptional proficiency in supporting URDF files,
thereby promoting streamlined integration with ROS.
This multifarious software tool finds heterogeneous
and multifaceted applications, spanning from the
visualization of robots and sensors to the facilitation
of system simulation and the enabling of remote
operations. The versatility of Ros# is supported by a
plethora of research studies, as attested by reference to
a substantial body of literature [54].
Figure 2 provides an overview of the communication

procedures in the simulation process, using the
ros-sharp/master repository with its three modules:
Libraries, ROS, and Unity3D. The ROS module has
three packages, with the file server package being
important as it contains the file server service node.
The Libraries module is an abstraction of the RosBridge
protocol, providing access to the file server service
and URDF transfer capability. The Unity3D module
expands the Unity Editor and 3D modelling and
offers Unity run-time scripts for example applications.
Some examples can be reused in future ROS-Unity
applications. Two binary files, RosBridgeClient.dll and
URDF.dll, are generated by the Libraries module and
must be placed in the Unity project folder.

3. Robot Platforms
There are several robot platforms available for use in
both ROS and Unity, but two platforms, in particular,
stand out as being highly prominent.TurtleBot2i
[55] is a highly acclaimed mobile robot platform
that has been tailored for research, educational and
experimental purposes. It is outfitted with an array
of sensors, including a 3D camera and laser scanner,
and can be flexibly adapted with supplementary

4 EAI Endorsed Transactions on
AI and Robotics

Integrating Virtual Reality and Robotic Operation System (ROS) for AGV Navigation

Figure 1. Communication Flowchart [59]

Figure 2. Communication Flow Chart

hardware and software. A notable advantage of
TurtleBot2i is its seamless amalgamation with Razbot, a
formidable open-source robot simulation environment.
By leveraging Razbot, researchers and developers can
meticulously scrutinize their algorithms and control
strategies within a simulated environment prior to
deploying them on a physical robot, resulting in
notable reductions in time, and resources and enabling
rapid prototyping and experimentation. in this section
mentioned on platforms are described in detail.

3.1. Turtlebot2i

The TurtleBot2i embodies an advanced robotic plat-
form, leveraging the Robot Operating System (ROS) and
powered by the Intel Joule. This platform represents
the groundwork for the development of cutting-edge
robotic systems that promise to transcend the bound-
aries of contemporary technology. Recently, Interbotix
Labs has announced the debut of the TurtleBot 2i
Mobile manipulator robot, which is operated through
an open-source Robotics Foundation (OSRF). By har-
nessing the potential of the ROS-based AI platform, the
TurtleBot 2i [56] showcases a range of sophisticated fea-
tures that are readily accessible, allowing for the swift
prototyping of advanced robots. With its restructured
framework, support for robotic arms, and integration
with the Intel Joule 570x cipher module, the TurtleBot
2i has been crafted to simplify the development process
of the next generation of robots. The architecture of the
TurtleBot 2i is visible in figure 3, while the technical
specifications of the TurtleBot are elaborated in table
1. The TurtleBot is an affordable personal robotics
kit with open-source code that allows users to build
a robot capable of navigating, perceiving 3D, and per-
forming tasks with power. The TurtleBot 2i offers built-
in support for robotic arms and a standardized chassis,
making it a highly-capable mobile manipulator. The
TurtleBot is used for Ambient Assisted Living, navi-
gation research, mapping, and educational purposes,

5 EAI Endorsed Transactions on
AI and Robotics

AJ. Moshayedi et al.

Figure 3. Turtlebot 2i structure

Table 1. The turtile bot robot specification

CPU TurtleBot 2i Sensors
Intel Joule 570X SR300 RealSense 3D Camera
Gumstix Nodana Car-
rier Board

ZR300 RealSense 3D Camera

4GB RAM Accelerometer/Gyro/Compass
16GB eMMC Storage Edge Detection & Bumper

Sensors
802.11AC WiFi / Blue-
tooth 4.0
Ubuntu 16.04 / ROS
Kinetic

as well as in multi-robot systems and mobile manip-
ulation. Despite being budget-friendly, the platform
has necessary certifications for household use, and it
may constitute an integral part of a final service robot
design. The TurtleBot’s high functionality shows that
even affordable solutions can be suitable for ranking
analyses [57].

3.2. Razbot
The RAZBOT robotic platform is an exceptionally
adaptable and configurable mechanism that has
been specifically conceptualized for research and
academic objectives. The said robotic platform has
been developed on the bedrock of the Robot Operating
System (ROS), which not only simplifies but also
expedites the process of tailoring the RAZBOT to
perform a wide spectrum of assignments ranging from
rudimentary navigation to intricate manipulation and
supervision [58]. Figure 4 shows the structure of razbot
robot and specifications of the razbot are shown in table
2. The RAZBOT robotic platform is an adaptable and
multifunctional tool that provides an array of benefits
for scholars and educators. One of its key advantages
is its modular design, which comprises interchangeable
components that facilitate customization to suit specific

Figure 4. Razbot robot

Table 2. Razbot Specification

Features Quantity
Raspberry Pi B, B+, 2 1
Raspberry Pi Camera 1
Turnigy 3S 2200mAh Lithium Poly-
mer Pack

1

25mm 100rpm 12V DC Gearmotor 4
PCB and Electronics Components
or OTS motor controller & voltage
regulator / Bluetooth 4.0

1

SD Card Image with Raspbian
Jessie, ROS, and razbot packages
installed/ ROS Kinetic

1

3D printed components 12
Wires and connectors 1
Socket cap screw hardware 1

requirements.
Moreover, the platform is compatible with ROS, a
middleware that furnishes tools and libraries for the
efficient programming and control of robots. This
compatibility enables users to exploit pre-existing
code and tools, thereby fostering a collaborative
and cooperative research and educational milieu.
Nonetheless, the RAZBOT platform has potential
drawbacks. The complete kit’s cost may be prohibitive
for individuals on a limited budget, and the modular
design can render the platform more intricate to operate
and maintain, necessitating a profound understanding
of programming and robotics.
Overall, the RAZBOT platform presents numerous
advantages, but it may not be suitable for all users
due to its intricacy and expense. Nevertheless, for those
equipped with the requisite expertise and resources, the
platform constitutes an extraordinary tool for research
and education, capable of accomplishing a diverse
range of tasks.

6 EAI Endorsed Transactions on
AI and Robotics

Integrating Virtual Reality and Robotic Operation System (ROS) for AGV Navigation

3.3. Gazebo, overview and advantage
Gezbo, an advanced and high-fidelity physics-based
robot simulator, constitutes a viable and versatile solu-
tion that can be leveraged within the Robot Operating
System (ROS) to devise, assess, and authenticate robotic
algorithms and systems. By means of a virtual envi-
ronment that closely emulates the physical attributes
of tangible objects, Gezbo furnishes a simulated setting
that affords users the capability to scrutinize numerous
robot configurations, and evaluate them across different
scenarios and under various conditions.
As an open-source platform, Gezbo seamlessly inte-
grates with ROS, endowing a comprehensive suite of
features that encompasses physics-based sensor models,
motion planning, and visualization [59]. Its modular
design enables facile assimilation with extant ROS
packages, thereby empowering users to leverage pre-
existing code and tools. Gezbo constitutes a highly
valuable tool for robotics researchers and developers,
delivering an efficacious and cost-efficient mechanism
for verifying and validating their algorithms and sys-
tems prior to deploying them in the physical realm.
Gezbo is an innovative software application that facili-
tates the creation of virtual environments for simulating
robotic systems. This tool bridges the gap between
the Robot Operating System (ROS) and Unity, thereby
enabling the development of more accurate and effec-
tive algorithms for simulating realistic robotic sys-
tems. Specifically, Gezbo allows users to create ROS
nodes and topics that can interact with Unity in real-
time, thereby simplifying the process of data transfer
between the two platforms. The Unity plugin associ-
ated with Gezbo further enhances this functionality,
enabling users to import ROS messages and sensor data
into their Unity projects. This capability is particularly
significant because it facilitates the development of
more sophisticated and realistic algorithms for simulat-
ing robotic systems. Overall, Gezbo is a vital tool for
researchers and practitioners seeking to enhance the
accuracy and effectiveness of algorithms and systems
by connecting ROS to Unity and enabling seamless data
transfer. Its open-source nature, customization capabil-
ities, and integration with other robotics tools make it a
popular choice in the field of robotics.

4. Modelling and Simulation
This section is aimed to simulate a Unity scene using
Turtlebot2i and Razbot Urdf to create a near-realistic
environment and move the robots with different
methods [7]. the modelling can be divided into 3 steps;
which are described as follows:

(a) Step 1 is the general step used for both platform

(b) Step 2: Setting up turtlebot2i Scene and razsbot
Scene.

(c) Step3: robot platform navigation.

Step 1: The General Step Used For Both Platform
There are 6 basic Footsteps for the simulation which
are shown in table 3.

Table 3. Simulation Basic Steps

Simulation General basic steps
Footstep 1: Enabling Hyper- V
Footstep 2: Installing Ubuntu on Hyper-V in Windows
10
Footstep 3: Installing ROS Melodic on Ubuntu
Footstep 4: Installing Unity 2019.4.32f on Windows
10
Footstep 5: Making ROS Environment
Footstep 6: Making Unity Environment

All of the above six steps are explained in detail
below.

• Footstep 1: Enabling Hyper- V

Hyper-V constitutes Microsoft’s hardware virtualization
offering, which facilitates the creation and execution
of virtual machines, compand uter simulations realized
in software. Hyper-V confers to each virtual machine a
distinct and self-contained setting, thereby empowering
users to operate multiple virtual machines concurrently
on identical hardware. In order to activate Hyper-V
through PowerShell, a series of sequential actions must
be pursued, as tabulated in table 4.

Table 4. Simulation Basic Steps

Steps for Hyper-V Enabling
A. Open a PowerShell console as an administrator
B. Type “Enable-Windows Optional Feature -Online -
Feature Name Microsoft-Hyper-V -All” in the terminal.

• Footstep 2: Installing Ubuntu 18.04 on Hyper-V
in Windows 10

Ubuntu 18.04 represents a prospective Long-Term
Support (LTS) iteration, imbued with the capacity
to receive updates and technical assistance from
Canonical until the April of 2023. This version’s
advent, nearly seven years following Canonical’s egress
from the GNOME 2 sphere in favor of the Unity
desktop, connotes the latter’s somber disintegration,
inciting Canonical’s decision to concentrate on its
server and IoT systems. To initiate the installation
of Ubuntu in the Hyper-V environment, users are
implored to meticulously adhere to the instructions
delineated in table 5.

Figure 5 shows the whole footstep 2 by step.

7 EAI Endorsed Transactions on
AI and Robotics

AJ. Moshayedi et al.

Table 5. Installing the Ubuntu 18.04 version on Hyper-V in
windows 10, step by step

Installing Ubuntu 18.04
A. Open Hyper-V from the Start menu.
B. “Click on new from the actions tab in the Hyper-
V GUI and select Virtual machine”.
C. “Select generation and click on next button”.
D. Assign “memory size in MB in the startup
memory box and click next”.
E. “Select default network switch from the Connec-
tion drop-down box” for network connection.
F. “Create the virtual hard disk and assign the size
and the machine’s location.”
G. The user needs to Choose an OS Iso image
to install it on the virtual machine. To do so
the user should download the Iso from the
link releases.ubuntu.com/18.04/ and select the
downloaded iso.
H. “Click on the finish button” to finish the
installation.
I. Start the virtual machine and start the OS
installation process. To do so the user needs to select
the virtual machine and click on start.
J. Select any language from the list and select Install
Ubuntu.
K. Select the keyboard layout.
L. In this step, User needs to specify the installation
of the start-up software. To do that user needs to
select normal installation.
M. Select Erase disk and install Ubuntu.
N. Confirm the installation space and click on the
continue button.
O. Select the location and click next.
P. In this step, user needs to make the user account
and the login password.
Q. When the installation is done restart the system.

• Footstep 3: Installing ROS Melodic on Ubuntu
Virtual machine

To expedite the simulation process, it is imperative
to leverage a sophisticated software suite referred to
as Robot Operating System (ROS) that functions as
an interface with autonomous machines. Despite its
nomenclature implying an operating system, ROS is,
in fact, a complex application that enables seamless
interaction with robotic systems. As a Linux-centric
software, ROS mandates its installation onto a Linux-
based operating system, necessitating the user to
comply with meticulous directives outlined in table 6
to ensure proper installation.

• Footstep 4: Installing Unity 2019.4.32f on
Windows 10

Figure 5. Installation of Ubuntu, Step by Step. 1: Shows the
installation of Ubuntu. 2: Shows the installing in process for
Ubuntu. 3: shows downloading of Unity Hub. 4: Shows the
installation of editor.

Table 6. Installing ROS Melodic on Ubuntu Virtual Machine

Installing ROS Melodic
A. Open a new terminal by pressing Ctrl + Alt + t
and type the following command “ sudo sh -c ’echo
"deb packages.ros.org/ros/ubuntu $(lsb_release -sc)
main">/etc/apt/sources.list.d/ros-latest.list’
B. Type the command in the terminal “ sudo apt
install curl”
C “curl -s raw.githubusercontent.com/ros/rosdistro
/master/ros.asc | sudo apt-key add.
D. Type the command in the terminal. “sudo apt
update”
E. Type the command “sudo apt install ros-melodic-
desktop-full” in a terminal to install ROS melodic.

Unity is a potent and versatile game engine that
enables users to construct dynamic and interactive
environments for game development, facilitating the
creation of immersive and engaging simulations. The
installation process for this software necessitates a
rigorous adherence to a prescribed set of steps, as
enumerated in table 7.

• Footstep 5: Making ROS Environment

In order to leverage the full capabilities of the Robot
Operating System (ROS), it is imperative to establish

8 EAI Endorsed Transactions on
AI and Robotics

(https://releases.ubuntu.com/18.04/)
http://packages.ros.org/ros/ubuntu
https:// raw.githubusercontent.com

Integrating Virtual Reality and Robotic Operation System (ROS) for AGV Navigation

Table 7. Installing Unity 2019.4.32f on Windows 10

Installing Unity 2019.4.32f
A. Unity hub is needed to install the unity editor. To
do so the user needs to go to the unity website and
download Unity Hub from the link unity.com/unity-
hub
B. Select the Install tab and choose the editor version.
C Select the module they need.
D. Click on the install button, The installation of the
editor will start.

an efficient and streamlined ROS configuration, as
explicated in prior research. The establishment of
a robust ROS environment is a prerequisite for
optimal system functionality and successful execution
of requisite tasks. In order to craft an effective ROS
environment, users are advised to meticulously adhere
to the procedural steps delineated in table 8. Such a
methodical approach towards ROS setup will guarantee
seamless and efficient functioning of the system in
accordance with user requirements.

Table 8. Making of the ROS Environment

Making ROS Environment
A. Press “Ctrl+Alt+t” to open a new terminal and type
“source/opt/ros/melodic/setup.bash”
B. cd ~/catkin_ws/src
C. Open a browser and go to the link
github.com/siemens/ros-sharp to download the
ros-sharp-master file.
D. Extract the zip file by right-clicking the mouse and
selecting Extract here.
E. Navigate inside to ros-sharp-master > ROS and
select the "file_server" and "unity_simulation_scene"
folders.
F. Navigate inside to catkin_ws > src and paste the
"file_server" and "unity_simulation_scene" folders.

Figure 6 shows the whole footstep 5 step by step.

• Setting up ROS Environment

For experimenting ROS Melodic is used on Ubuntu
18.04 LTS. to set up the ROS a user should follow the
steps below in table 12:

• Footstep 6: Making Unity Environment

To commence the experimental phase, the user must
first establish the UNITY environment, specifically
utilizing version 2019.04 L. T. S. The process to achieve
this objective involves a series of sequential steps that
are elaborated in table 9, which must be meticulously
followed to ensure optimal results.

Figure 6. The ROS Environment Setup. 1: Shows the creation
of Unity Scene. 2: Shows the Asset store for ROS#. 3: Shows
the view of asset store. 4: Shows importing the ROS# asset.

Table 9. Setting up the ROS Environment step by step

ROS Environment Set up
A. Open a browser and go to the link
github.com/siemens/ros-sharpto download the ros-
sharp-master file. (Figure 9) in Ubuntu operating
system.
B. Extract the zip file by right-clicking the mouse
and selecting Extract here. (Figure 10)
C. Navigate inside to "ros-sharp-master
> ROS" and select the "file_server" and
"unity_simulation_scene" folder. (Figure 10)
D. Navigate to the "catkin_ws" workspace and paste
the 2 folders inside "catkin_ws > src".
E. Open a terminal by pressing Ctrl+Alt+T
F. Type the command "cd catkin_ws"
G. Build the workspace by typing “catkin_make”

Step 2: Setting up turtlebot2i /Razbot Scene
To initiate the movement of the robotic system, the
user is advised to adhere to a prescribed sequence
of actions. Specifically, for the present inquiry, the
turtlebot2i URDF model has been implemented. The
aforementioned steps are delineated in a meticulous
and orderly fashion within the confines of table 10.

9 EAI Endorsed Transactions on
AI and Robotics

https://unity.com/unity-hub
https://unity.com/unity-hub
https://github.com/siemens/ros-sharp to download the ros-sharp-master file
https://github.com/siemens/ros-sharp to download the ros-sharp-master file
https://github.com/siemens/ros-sharp

AJ. Moshayedi et al.

Table 10. Making Unity Environment

Unity Environment Steps
A. Open the UNITY and create a new 3D unity
scene.
B. Type ROS# in the search box in the Asset store
tab.
C. Import the ROS# asset from the unity
asset store. Or directly download the asset
from the GitHub link. assetstore.unity.com/
packages/tools/physicss/ros-107085

Figure 7. Turtlebot Setup step by step. Fig 7(1); Download
page of Turtlebot-Unity-URDF, Fig 7(2); Creating a plane, Fig
7(3); Importing Turtlebot URDF, Fig 7(4); Turtlebot2i Outlook in
simulation

Table 11. Setting up ROS Environment for Unity Import

ROS Environment Set up for Unity
A. Move the razbot_discription folder to the src
folder of the catkin_ws.
B. Type the command “cd catkin_ws” in a new
terminal.
C. Type the command “catkin_make” to build the
workspace.
D. Type “cd src/razbot_discription/urdf” in the
same terminal.
E. Run the command “rosrun xacro xacro
razbot.urdf.xacro > razbot.urdf” in the same
terminal.
F. Copy or move razbot.urdf into Assets/Urdf folder
in Unity project.

Table 12. Setting up the turtlebot 2i/RAzbot Scene step by step

Turtlebot Setup Step by Step
A. Download the Turtlebot-Unity-URDF file from
the link: github.com/mirellameelo/Turtlebot-
Unity-URDF and import the Turtle-
bot2i_discription file into the asset folder of
UNITY Scene.
B. Create a plane from the Hierarchy tab and put
the x y z scale to 100 in the inspector tab. (Figure
7(1))
C. Right-click in the Hierarchy tab and import
URDF from the create 3D object menu and import
turtle bot URDF.
D. Right-click on the Hierarchy tab > create an
empty game object > rename it as ROSConnector.
(Figure 7(2))
E. In the inspector tab add a component called
ROSConnector Script.
F. In the inspector tab select ROSConnector Script
> change the protocol as web socket.NET. (Figure
7(3))
G. In the inspector tab add a component named
Joint State Patcher script.
H. From Hierarchy tab select turtlebot URDF > drag
and drop > URDF Robot Box of Joint State Patcher
script in the inspector tab.
I. Click on the Enable button of Publish Joint State
to create the Joint State Publisher script.
J. in Joint State Publisher Script, Rename the topic
as “/joint_states”.
K. Add another Script named Joy Subscriber and
rename the topic as “/joy”.
L. Add another Script name Pose Stumped Pub-
lisher and rename the topic as “/odom”.
M. From the Hierarchy tab, navigate inside the
turtlebot URDF and select the base_link and drag
and drop it in the Publish Transform box of Pose
Stumped Publisher Script.
N. Add a Script name Image Publisher and rename
the topic as “/unity_image/compressed”.
O. In the Hierarchy tab navigate inside the turtlebot
URDF and select camera_rgb_frame and in the
inspector, the tab add a camera component.
P. Select the ROSConnector from the Hierarchy
tab and in the Inspector tab, drag and drop the
camera_rgb_frame in the image camera box of the
Image Publisher script as shown in the (figure 7(4))
Q. Select the turtlebot from the Hierarchy tab and
in the inspector tab in URDF Robot Script Enable
the Gravity and Convex button.
R. Select both of the wheels from the turtlebot
URDF in the Hierarchy tab in the Inspector tab Joy
Axis add Joint Motor Writer and set the max velocity
to 2000 by the user.

10 EAI Endorsed Transactions on
AI and Robotics

https:// assetstore.unity.com/ packages/tools/physicss/ros-107085
https:// assetstore.unity.com/ packages/tools/physicss/ros-107085
https://github.com/mirellameelo/Turtlebot-Unity-URDF
https://github.com/mirellameelo/Turtlebot-Unity-URDF

Integrating Virtual Reality and Robotic Operation System (ROS) for AGV Navigation

S. Under the Hinge Joint tab check the use motor
box and set force to 0.01 and Connected Mass Scale
to 240.
T. Selected both of the caster_link from the
Hierarchy tab and in the Inspector tab under Fixed
Joint change the Connecter Mass to 240.
U. Select the ROS Connector from the Hierarchy tab
and in the Joy Subscriber set Joy Axis Writer size to
2 and drag and drop the left and write wheel in the
Element 0 and 1 box.

Footstep1: Setting up ROS Environment
The turtlebot2i robot configuration employs the xacro
framework as the primary method for defining its struc-
tural properties. However, due to the incompatibility of
the xacro format with Unity, the user is compelled to
initiate the generation of a URDF file from the xacro
format table 11 to enable the rendering of the robot
model in Unity. The figure 8 shows the whole ROS envi-
ronment setup for Unity step by step from downloading
the ros-sharp master to navigating the source folder.

Figure 8. ROS Environment Setup Step by Step. 1: Shows
Downloading the ros-sharp-master, 2: Shows Extracting the Zip,
3: Shows Copying files from the Zip, 4: Shows Navigating to src
folder

Footstep2: Import to Unity
The subsequent segment is exclusively dedicated to the
transfer of the project onto the Unity platform. This
endeavor necessitates a scrupulous method towards
the fastidious achievement of two cardinal phases,

specifically the customization of the Robot Operating
System (ROS) and the configuration of the Unity
. By adhering to these imperative protocols, the
seamless amalgamation of the project into Unity
can be warranted, thus hastening the efficacious
accomplishment of the envisaged objectives. Step 3:
Robot Navigation
The pursuit of robot navigation was undertaken with
assiduity, whereby the utilization of multifarious input
modalities, including but not limited to the computer
mouse, keyboard, and command line, were executed
with meticulousness and precision.

(a) Turtlebot2i Control by Mouse

In order to manipulate the movements of the
turtlebot2i through the utilization of a mouse,
it is incumbent upon the operator to adhere
scrupulously to the sequence of actions delineated
in table 13.

Table 13. Turtlebot2i Controlling by Mouse

ROS Environment setting
A. Navigate to the “catkin_ws”
workspace and paste the file_server
and unity_silulation_scene folder inside
catkin_ws > src. The flowchart for these
process are shown in figure 9
UNITY Environment setting
B. Open the Scene and click on the play
button.
C. If the mouse is moved in ROS, the
turtlebot2i will start to move in the Unity
scene.

Figure 9: The code flowchart for using the mouse
to joy.

Figure 9. The code flowchart for using the mouse to joy

(b) RAZBOT Control by Keyboard:

11 EAI Endorsed Transactions on
AI and Robotics

AJ. Moshayedi et al.

Table 14 provides a thorough and meticulous
exposition of the methodology involved in manip-
ulating Razbot through the use of keyboard-based
control. Each stage of this procedure is presented
in a systematic and exacting fashion, affording
readers a comprehensive and perspicuous syn-
opsis of the complex intricacies inherent to the
keyboard-operated functionality of the Razbot.

(c) RAZBOT Control by command Terminal: The
governance of the platform via the keyboard
teleportation plugin, obtainable in the Unity
plugin section, may be accomplished by executing
a series of meticulously planned actions. In order
to navigate the robot through the use of the
keyboard, the prescribed steps are explicated in
detail in table 15.

Figure 10. RAZbot Simulations Results

The results obtained from the simulation process are
presented graphically in figure 10. This figure provides
a clear and concise representation of the outcome,
allowing for a comprehensive understanding of the
simulated phenomena. The outlook results depicted in
fig 10 offer an in-depth and cogent elucidation of the
underlying trends and patterns that emerged from the
simulation exercise. The figure demonstrates a high
degree of accuracy and precision in portraying the
simulation outcome, thereby facilitating a profound
comprehension of the intricacies of the simulated
phenomena.

Table 14. RAZBOT controlling by Keyboard

RAZBOT controlling by keyboard step by step
A. Open the Razbot scene in Unity.
B. Open the unity scene and navigate to plugins
inside the razbot in the hierarchy tab.
C. Add Urdf plugin script.
D. Add the following codes inside the plugin text
box

<gazebo>
<plugin name=" s k i d _ s t e e r _ d r i v e _ c o n t r o l l e r "
f i lename=" l i b g a z e b o _ r o s _ s k i d _ s t e e r _ d r i v e . so ">
<updateRate>100.0</ updateRate>
<robotNamespace>/</robotNamespace>
< l e f t F r o n t J o i n t>f r o n t _ l e f t _ w h e e l _ j o i n t</ l e f t F r o n t J o i n t>
<r i g h t F r o n t J o i n t>f r o n t _ r i g h t _ w h e e l _ j o i n t</ r i g h t F r o n t J o i n t>
<l e f t R e a r J o i n t>b a c k_ l e f t _ w he e l _ j o i n t</ l e f t R e a r J o i n t>
<r i g h t R e a r J o i n t>back_r ight_wheel_ jo int</ r i g h t R e a r J o i n t>
<wheelSeparation>0.4</ wheelSeparation>
<wheelDiameter>0.215</ wheelDiameter>
<robotBaseFrame>base_l ink</ robotBaseFrame>
<torque>20</ torque>
<topicName>cmd_vel</topicName>
<broadcastTF> f a l s e</ broadcastTF>
</ plugin>
</ gazebo>

E. In ubuntu Open a new terminal by pressing
Ctrl+Alt+T.
F. Type the command

sudo apt −get i n s t a l l ros −melodic −teleop −twist −
keyboard

G. Open a new terminal by pressing Ctrl+Alt+T.
H. Install ROS Bridge server by typing the
command

sudo apt −get i n s t a l l ros −melodic −rosbridge −
serv er

I. "After installing the ROS bridge type the
following command"

roslaunch rosb r idge _serv er rosbr idge_
websocket . launch

J. Open a new terminal by pressing Ctrl+Alt+T.
K. Run the python script of the keyboard teleporta-
tion.

rosrun teleop_twist_keyboard t e l e o p _ t w i s t _
keyboard . py

L. The terminal will show this information.

12 EAI Endorsed Transactions on
AI and Robotics

Integrating Virtual Reality and Robotic Operation System (ROS) for AGV Navigation

Table 15. Razbot Control by Command Terminal

Razbot Control by Command Terminal
A. Open a new terminal by pressing Ctrl+Alt+T.
B. Type

roslaunch ros br idge _serv er rosbr idge_
websocket . launch

C. Type the command

r o s t o p i c pub −r 1 /cmd_vel geometry_msgs/
Twist " { l i n e a r : { x : 2 0 0 . 0 , y : 0 . 0 , z : 0 . 0 } ,
angular : { x : 0 . 0 , y : 0 . 0 , z : 0 . 0 } } "

in a new terminal.
D. Open another terminal by pressing Ctrl+Alt+T.
E. To move the robot to a specific location, user
should type the command

r o s t o p i c pub −r 1 / pose geometry_msgs/
PoseStamped ’ { header : { frame_id : " Unity " } ,
pose : {
p o s i t i o n : { x : 5 . 2 , y : 2 . 7 , z : 0 ␣ } ,
o r i e n t a t i o n : { x : 1 , y : 5 , z : 2 ,w: 1 }
}
} ’

in a new terminal

5. Results and Discussion
This research paper aimed to demonstrate the feasi-
bility of conducting robot simulation using the Robot
Operating System (ROS) and Unity game engine.
Various Automated Guided Vehicle (AGV) platforms
were tested, and two robot platforms, RAZBOT and
TURTLEBOT2i URDF, were used to explore the per-
formance of the simulation. The research showed that
ROS is a comprehensive operating system for robotics,
and no other system can match its capabilities. Dur-
ing the research, ROS was installed on Ubuntu 18.04
L.T.S. Linux, and Unity hub was installed, and Unity
Editor version 2019.4.32f was obtained from the hub.
Specific ROS packages, such as ROS#, were downloaded
to connect ROS and Unity. The research demonstrated
the potential for ROS and Unity to be leveraged in
robot simulation. While ROS is better suited for large-
scale industrial robotics projects, Unity is a potent
tool for gaming, design, and industry. The research
also highlights the importance of proper sourcing of
the workspace to avoid issues during the simulation
process. In summary, the use of Unity and ROS for AGV
simulation and modeling in Unity provides developers
with a new pathway, and these tools have potential
applications in various fields such as medicine, con-
struction, and factories.The present study endeavours
to explore the performance of alternative autonomous

guided vehicle (AGV) platforms and conduct a com-
prehensive evaluation of the discernible disparities
between their actual and simulated executions. To this
end, in future work a meticulous analysis will be carried
out to assess the efficacy of diverse AGV models vis-à-
vis one another, in order to gain a nuanced understand-
ing of their respective merits and drawbacks. In doing
so, the study aims to provide an empirical basis for
drawing reliable inferences about the relative efficacy
of AGV platforms, both in real-world scenarios and in
simulation environments.

References
[1] Hu, Y., & Meng, W. (2016). ROSUnitySim: Development

and experimentation of a real-time simulator for multi-
unmanned aerial vehicle local planning. Simulation,
92(10), 931-944.

[2] Sita, E., Horváth, C. M., Thomessen, T., Korondi, P.,
& Pipe, A. G. (2017, December). Ros-unity3d based
system for monitoring of an industrial robotic process.
In 2017 IEEE/SICE International Symposium on System
Integration (SII) (pp. 1047-1052). IEEE.

[3] Krupke, D., Starke, S., Einig, L., Zhang, J., & Steinicke,
F. (2018). Prototyping of immersive HRI scenarios. In
Human-Centric Robotics: Proceedings of CLAWAR 2017:
20th International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines
(pp. 537-544).

[4] Moshayedi, A. J., Roy, A. S., Taravet, A., Liao, L., Wu,
J., & Gheisari, M. (2023). A Secure Traffic Police Remote
Sensing Approach via a Deep Learning-Based Low-
Altitude Vehicle Speed Detector through UAVs in Smart
Cites: Algorithm, Implementation and Evaluation. Future
Transportation, 3(1), 189-209.

[5] Das, S. K., & Pasan, M. K. (2016). Design and methodology
of automated guided vehicle-a review. IOSR Journal of
Mechanical and Civil Engineering (IOSR-JMCE), 29-35.

[6] Reveliotis, S. A. (2000). Conflict resolution in AGV
systems. Iie Transactions, 32(7), 647-659.

[7] Feledy, C., & Schiller Luttenberger, M. (2017). A State of
the Art Map of the AGVS Technology and a Guideline for
How and Where to Use It.

[8] Pedan, M., Gregor, M., & Plinta, D. (2017). Implemen-
tation of automated guided vehicle system in healthcare
facility. Procedia engineering, 192, 665-670.

[9] Moshayedi, A. J., Zanjani, S. M., Xu, D., Chen, X., Wang,
G., & Yang, S. (2022, December). Fusion BASED AGV
Robot Navigation Solution Comparative Analysis and
Vrep Simulation. In 2022 8th Iranian Conference on
Signal Processing and Intelligent Systems (ICSPIS) (pp. 1-
11). IEEE.

[10] Kato, H., Hirano, D., Mitani, S., Saito, T., & Kawaguchi,
S. (2021, March). ROS and cFS System (RACS): Easing
Space Robotic Development. In 2021 IEEE Aerospace
Conference (50100) (pp. 1-8). IEEE.

[11] Chi, H., Zhan, K., & Shi, B. (2012). Automatic guidance
of underground mining vehicles using laser sensors.
Tunnelling and Underground Space Technology, 27(1),
142-148.

13 EAI Endorsed Transactions on
AI and Robotics

AJ. Moshayedi et al.

[12] Miljković, Z., Vuković, N., Mitić, M., & Babić, B. (2013).
New hybrid vision-based control approach for automated
guided vehicles. The International Journal of Advanced
Manufacturing Technology, 66, 231-249.

[13] Moshayedi, A. J., Abbasi, A., Liao, L., & Li, S. (2019,
June). Path planning and trajectroy tracking of a mobile
robot using bio-inspired optimization algorithms and
PID control. In 2019 IEEE International Conference on
Computational Intelligence and Virtual Environments for
Measurement Systems and Applications (CIVEMSA) (pp.
1-6). IEEE.

[14] Shengfang, L., & Xingzhe, H. (2006, October). Research
on the AGV based robot system used in substation
inspection. In 2006 International Conference on Power
System Technology (pp. 1-4). IEEE.

[15] Xu, G., Khan, A. S., Moshayedi, A. J., Zhang, X., &
Shuxin, Y. (2022). The Object Detection, Perspective
and Obstacles In Robotic: A Review. EAI Endorsed
Transactions on AI and Robotics, 1(1).

[16] Whitney, D., Rosen, E., Ullman, D., Phillips, E.,
& Tellex, S. (2018, October). Ros reality: A virtual
reality framework using consumer-grade hardware for
ros-enabled robots. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (pp.
1-9). IEEE.

[17] Ferreira, T., & Gorlach, I. A. (2016). Development of an
automated guided vehicle controller using a model-based
systems engineering approach. South African journal of
industrial engineering, 27(2), 206-217.

[18] Moshayedi, A. J., Kolahdooz, A., & Liao, L. (2022). Unity
in Embedded System Design and Robotics: A Step-by-step
Guide. CRC Press.

[19] B. Gerkey et al., “The robot operating system (ROS): A
platform for robot software development,” in Proc. of the
ICRA workshop on Open source software, vol. 3, 2004,
pp. 5–53.

[20] R. W. Goodrich et al., “ROS: An open-source Robot
Operating System,” in Field and Service Robotics, 2007,
pp. 15-20.

[21] S. R. Chitta et al., “Simulating robots with Gazebo and
ROS,” in Robotics Automation Magazine, IEEE, vol. 19,
no. 3, 2012, pp. 56-66.

[22] Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker,
M., Mair, E., ... & Burschka, D. (2012). Toward a
fully autonomous UAV: Research platform for indoor
and outdoor urban search and rescue. IEEE robotics &
automation magazine, 19(3), 46-56.

[23] Qiu, W., & Yuille, A. (2016). Unrealcv: Connecting com-
puter vision to unreal engine. In Computer Vision–ECCV
2016 Workshops: Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part III 14 (pp. 909-
916). Springer International Publishing.

[24] Moshayedi, A. J., Xu, G., Liao, L., & Kolahdooz, A. (2021).
Gentle Survey on MIR Industrial Service Robots: Review
& Design. J. Mod. Process. Manuf. Prod, 10(1), 31-50.

[25] Lee, J., Hyun, C. H., & Park, M. (2013). A vision-
based automated guided vehicle system with marker
recognition for indoor use. Sensors, 13(8), 10052-10073.

[26] Lavrenov, R., Zakiev, A., & Magid, E. (2017, May).
Automatic mapping and filtering tool: From a sensor-
based occupancy grid to a 3D Gazebo octomap. In 2017

International Conference on Mechanical, System and
Control Engineering (ICMSC) (pp. 190-195). IEEE.

[27] Krupke, D., Einig, L., Langbehn, E., Zhang, J., &
Steinicke, F. (2016, November). Immersive remote grasp-
ing: realtime gripper control by a heterogenous robot con-
trol system. In Proceedings of the 22nd ACM Conference
on Virtual Reality Software and Technology (pp. 337-
338).

[28] Moshayedi, A. J., Li, J., Sina, N., Chen, X., Liao,
L., Gheisari, M., & Xie, X. (2022). Simulation and
validation of optimized pid controller in agv (automated
guided vehicles) model using pso and bas algorithms.
Computational Intelligence and Neuroscience, 2022.

[29] Christopher, C., Graylin, J., Sarah, O., & Odest, C. J.
(2016). Rosbridge: Ros for non-ros users. Springer Tracts
in Advanced Robotics, 493-504.

[30] Craighead, J., Burke, J., & Murphy, R. (2008, September).
Using the unity game engine to develop sarge: a case
study. In Proceedings of the 2008 Simulation Workshop
at the International Conference on Intelligent Robots and
Systems (IROS 2008) (Vol. 4552).

[31] Unity Technologies. (2021). Unity-Manual:
Open-source repositories [Web page].
Unity. Retrieved December 17, 2021, from
https://docs.unity3d.com/Manual/OpenSourceRepositories

[32] Bartneck, C., Soucy, M., Fleuret, K., & Sandoval,
E. B. (2015, August). The robot engine—Making the
unity 3D game engine work for HRI. In 2015 24th
IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN) (pp. 431-437).
IEEE.

[33] Mizuchi, Y., & Inamura, T. (2017, December). Cloud-
based multimodal human-robot interaction simulator
utilizing ros and unity frameworks. In 2017 IEEE/SICE
International Symposium on System Integration (SII) (pp.
948-955). IEEE.

[34] Codd-Downey, R., Forooshani, P. M., Speers, A., Wang,
H., & Jenkin, M. (2014, July). From ROS to unity:
Leveraging robot and virtual environment middleware
for immersive teleoperation. In 2014 IEEE International
Conference on Information and Automation (ICIA) (pp.
932-936). IEEE.

[35] December17, 2021,from https://blog.unity.com/unity-
2019-1

[36] Moshayedi, A. J., Roy, A. S., Sambo, S. K., Zhong, Y., &
Liao, L. (2022). Review on: the service robot mathematical
model. EAI Endorsed Transactions on AI and Robotics,
1(1).

[37] Udemy Blog. (2021, February 12). What is the Unity
Game Engine? [Blog post]. Udemy Blog. Retrieved
December 10, 2021, from https://blog.udemy.com/unity-
game-engine/

[38] Christopher, C., Graylin, J., Sarah, O., & Odest, C. J.
(2016). Rosbridge: Ros for non-ros users. Springer Tracts
in Advanced Robotics, 493-504.

[39] Roldán, J. J., Peña-Tapia, E., Garzón-Ramos, D., de León,
J., Garzón, M., del Cerro, J., & Barrientos, A. (2019). Multi-
robot systems, virtual reality and ROS: developing a new
generation of operator interfaces. Robot Operating System
(ROS) The Complete Reference (Volume 3), 29-64.

14 EAI Endorsed Transactions on
AI and Robotics

Integrating Virtual Reality and Robotic Operation System (ROS) for AGV Navigation

[40] Lee, U. G., Choi, K. J., & Park, S. Y. (2021, August).
The Design and Implementation of Autonomous Driving
Pallet Robot System using ROS. In 2021 Twelfth
International Conference on Ubiquitous and Future
Networks (ICUFN) (pp. 372-374). IEEE.

[41] Gerkey, B., Vaughan, R. T., & Howard, A. (2003,
June). The player/stage project: Tools for multi-robot and
distributed sensor systems. In Proceedings of the 11th
international conference on advanced robotics (Vol. 1, pp.
317-323).

[42] Moshayedi, A. J., & Gharpure, D. C. (2017, May).
Evaluation of bio inspired Mokhtar: Odor localization
system. In 2017 18th international carpathian control
conference (ICCC) (pp. 527-532). IEEE.

[43] Ma, X., Fang, F., Qian, K., & Liang, C. (2018, May).
Networked robot systems for indoor service enhanced
via ROS middleware. In 2018 13th IEEE Conference on
Industrial Electronics and Applications (ICIEA) (pp. 852-
857). IEEE.

[44] Anggraeni, P., Mrabet, M., Defoort, M., & Djemai, M.
(2018, October). Development of a wireless communica-
tion platform for multiple-mobile robots using ROS. In
2018 6th International Conference on Control Engineer-
ing & Information Technology (CEIT) (pp. 1-6). IEEE.

[45] Kerr, J., & Nickels, K. (2012, March). Robot operating
systems: Bridging the gap between human and robot. In
Proceedings of the 2012 44th Southeastern Symposium on
System Theory (SSST) (pp. 99-104). IEEE.

[46] Huang, A. S., Olson, E., & Moore, D. (2009). Lightweight
communications and marshalling for low latency inter-
process communication. Computer Science and Artificial
Intelligence Laboratory Technical Report, Massachusetts
Institute of Technology, MA.

[47] Alberri, M., Hegazy, S., Badra, M., Nasr, M., Shehata,
O. M., & Morgan, E. I. (2018, September). Generic ros-
based architecture for heterogeneous multi-autonomous
systems development. In 2018 IEEE International Confer-
ence on Vehicular Electronics and Safety (ICVES) (pp. 1-
6). IEEE.

[48] Dosoftei, C. C., Popovici, A. T., Sacaleanu, P. R., &
Budaciu, C. (2021, October). Real-Time Motion Control of
an Electric Driven OMR using a ROS to Matlab Bridged
Approach. In 2021 25th International Conference on
System Theory, Control and Computing (ICSTCC) (pp.
160-165). IEEE.

[49] Guzman, R., Navarro, R., Beneto, M., & Carbonell, D.
(2016). Robotnik—Professional service robotics applica-
tions with ROS. Robot Operating System (ROS) The Com-
plete Reference (Volume 1), 253-288.

[50] Wang, T., Zhao, Y., Zhu, L., Liu, G., Ma, Z., &
Zheng, J. (2020, November). Design of robot system
for radioactive source detection based on ROS. In 2020
Chinese Automation Congress (CAC) (pp. 1397-1400).
IEEE.

[51] Nurrohmah, E. A., Wibowo, I. K., Bachtiar, M. M.,
& Lathief, M. M. (2021, September). Improvement of
the Processing Speed of The Robot’s Vision System
Using Robot Operating System. In 2021 International
Electronics Symposium (IES) (pp. 482-487). IEEE.

[52] Hazem, Z. B., Ince, R., & Dilibal, S. (2022, September).
Joint Control Implementation of 4-DOF Robotic Arm
Using Robot Operating System. In 2022 International
Conference on Theoretical and Applied Computer Science
and Engineering (ICTASCE) (pp. 72-77). IEEE.

[53] Moshayedi, A. J., & Gharpure, D. C. (2012, May).
Development of position monitoring system for studying
performance of wind tracking algorithms. In ROBOTIK
2012; 7th German Conference on Robotics (pp. 1-4). VDE.

[54] Aagela, H., Al-Nesf, M., & Holmes, V. (2017, September).
An Asus_xtion_probased indoor MAPPING using a
Raspberry Pi with Turtlebot robot Turtlebot robot. In
2017 23rd International Conference on Automation and
Computing (ICAC) (pp. 1-5). IEEE.

[55] Stan, A. C. (2022, June). A decentralised control method
for unknown environment exploration using Turtlebot
3 multi-robot system. In 2022 14th International
Conference on Electronics, Computers and Artificial
Intelligence (ECAI) (pp. 1-6). IEEE.

[56] Li, K., & Tu, H. (2021, October). Design and implemen-
tation of autonomous mobility algorithm for home service
robot based on turtlebot. In 2021 IEEE 5th Information
Technology, Networking, Electronic and Automation Con-
trol Conference (ITNEC) (Vol. 5, pp. 1095-1099). IEEE.

[57] Alajami, A. A., Pous, R., & Moreno, G. (2022, September).
Simulation of RFID Systems in ROS-Gazebo. In 2022 IEEE
12th International Conference on RFID Technology and
Applications (RFID-TA) (pp. 113-116). IEEE.

[58] Kim, Y., Lee, S. Y., & Lim, S. (2020, September).
Implementation of PLC controller connected Gazebo-
ROS to support IEC 61131-3. In 2020 25th IEEE
International Conference on Emerging Technologies and
Factory Automation (ETFA) (Vol. 1, pp. 1195-1198). IEEE.

[59] Moshayedi, A. J., Jinsong, L., & Liao, L. (2019). AGV
(automated guided vehicle) robot: Mission and obstacles
in design and performance. Journal of Simulation
and Analysis of Novel Technologies in Mechanical
Engineering, 12(4), 5-18.

15 EAI Endorsed Transactions on
AI and Robotics

	1 Introduction
	2 Simulator Environment
	2.1 Unity
	How to Leverage Unity Using Robotics

	2.2 ROS
	ROSBridge
	ROS#

	3 Robot Platforms
	3.1 Turtlebot2i
	3.2 Razbot
	3.3 Gazebo, overview and advantage

	4 Modelling and Simulation
	5 Results and Discussion

