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Abstract

1. Introduction

This study introduces a hybrid rvGA-eNM (real-valued Genetic Algorithm with enhanced Nelder-Mead) optimization
approach for time series forecasting, specifically designed to address data scarcity and computational efficiency challenges
in operational environments. Unlike contemporary hybrid algorithms that prioritize accuracy through increased complexity,
rvGA-eNM employs adaptive algorithm orchestration that explicitly separates global exploration and local exploitation
phases through convergence-based transition mechanisms. Multi-domain validation across Indonesian crude oil prices (156
monthly observations), Gorontalo regional electricity consumption (26 annual observations), and Albania GDP (125
quarterly observations) demonstrates robust forecasting performance with MAPE values ranging from 3.37% to 6.33% and
convergence times between 0.93 and 3.31 seconds. Comparative benchmarking against state-of-the-art hybrid algorithms
reveals substantial computational advantages: rvGA-eNM achieves comparable accuracy with 72% faster computation than
deep learning hybrids and converges within 100 iterations compared to 200-500 iterations for contemporary methods. The
algorithm exhibits exceptional small-sample robustness, maintaining reliable forecasts with as few as 26 observations—a
critical capability for emerging markets and data-constrained applications. Cross-domain consistency, evidenced by narrow
MAPE variance (2.96 percentage points) across fundamentally different forecasting contexts, suggests genuine algorithmic
generalizability without domain-specific customization requirements. This research contributes Algorithm Orchestration
Theory, formalizing how complementary algorithm capabilities combine synergistically through adaptive phase transitions.
The findings challenge conventional assumptions about minimum data requirements in forecasting and demonstrate that
computational efficiency deserves elevation as a primary objective alongside accuracy. The hybrid rvGA-eNM offers
practitioners a practical, efficient solution for diverse operational forecasting applications, particularly valuable in resource-
constrained environments where sophisticated forecasting methods have traditionally been inaccessible.
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and robustness under data scarcity [1], [2]. While recent
advances in deep learning have demonstrated remarkable

Time series forecasting remains a fundamental challenge
across diverse operational domains, from energy system
planning to economic policy formulation, yet conventional
approaches increasingly struggle to balance three competing
imperatives: predictive accuracy, computational efficiency,
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forecasting capabilities, these methods typically demand
extensive historical datasets—often exceeding thousands of
observations—and substantial computational infrastructure,
rendering them impractical for emerging markets, regional
systems, and resource-constrained organizations where
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forecasting needs are equally critical but data availability
remains inherently limited [3], [4].

This fundamental tension between methodological
sophistication and practical applicability creates a persistent
research-practice gap, where organizations most in need of
robust forecasting tools find cutting-edge methods
operationally inaccessible due to data constraints and
computational limitations.

This study introduces a hybrid rvGA-eNM (real-valued
Genetic ~ Algorithm  with  enhanced  Nelder-Mead)
optimization framework specifically designed to address this
critical gap through three interrelated innovations. First, we
formalize an Algorithm Orchestration Theory that explicitly
separates global exploration and local exploitation phases
through adaptive convergence-based transitions, synthesizing
the complementary strengths of evolutionary computation
and direct search optimization while avoiding their individual
limitations. Second, the method demonstrates exceptional
performance under data scarcity, maintaining reliable
forecasts with datasets as limited as 26 observations—a
capability absent in contemporary hybrid approaches that
typically require hundreds to thousands of data points for
effective  training. Third, the algorithm achieves
computational efficiency measured in seconds rather than
minutes or hours, enabling real-time deployment and
interactive scenario analysis without sacrificing forecasting
accuracy. Multi-domain validation across Indonesian crude
oil prices (156 monthly observations), Gorontalo regional
electricity consumption (26 annual observations), and
Albania GDP (125 quarterly observations) establishes robust
performance with MAPE values ranging from 3.37% to
6.33% and convergence times between 0.93 and 3.31
seconds—representing substantial improvements over state-
of-the-art hybrid algorithms in both efficiency and small-
sample robustness [5], [6].

The theoretical contribution extends beyond algorithmic
performance to methodological insight: this research
demonstrates that parsimony—using only necessary
complexity—often proves advantageous in operational
forecasting contexts. By positioning computational efficiency
as a primary objective alongside predictive accuracy, and by
validating performance across genuinely data-constrained
scenarios rather than artificially subsampling large datasets,
this work addresses practical realities facing forecasters in
emerging markets, regional infrastructure systems, and
transitional economies. The hybrid rvGA-eNM offers
practitioners a methodologically sound, empirically validated
solution that democratizes access to sophisticated forecasting
tools where resources are limited but forecasting needs
remain critical, contributing both a specific algorithmic
advancement and a broader framework for designing
practical optimization methods suited to real-world
operational constraints.

2. Literature Review

The evolution of hybrid optimization algorithms in time
series forecasting reflects a persistent tension between
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theoretical sophistication and practical deployability.
Contemporary hybrid approaches predominantly combine
metaheuristic ~ algorithms—including  Particle =~ Swarm
Optimization (PSO), Genetic Algorithms (GA), Differential
Evolution (DE), and Grey Wolf Optimization (GWO)—with
machine learning models such as Support Vector Machines
(SVM), Artificial Neural Networks (ANN), and Long Short-
Term Memory (LSTM) networks to enhance forecasting
accuracy across diverse domains [7], [8]. Recent studies
demonstrate that triple-hybrid architectures, exemplified by
PSO-GWO-LSTM for energy demand forecasting and DE-
ABC-ELM for commodity price prediction, can achieve
superior accuracy compared to single-algorithm approaches
through synergistic integration of multiple optimization
strategies [9], [10]. However, these architectural complexities

introduce  significant computational overhead—often
requiring 200-500 iterations and computation times
exceeding  several  minutes—while  simultaneously

demanding extensive hyperparameter tuning that limits
generalizability across different forecasting contexts [11],
[12]. A comprehensive review by Zhang et al. (2025) [2]
analyzing hybrid optimization approaches in machine
learning reveals that while 78% of surveyed methods
prioritize accuracy improvements, only 23% explicitly
address computational efficiency as a design objective,
highlighting a systematic neglect of practical deployment
constraints that impede real-world adoption.

The challenge of data scarcity in operational forecasting
environments remains critically underexplored in existing
hybrid algorithm literature. While deep learning-based
forecasting methods have dominated recent research
trajectories—with transformer architectures and foundation
models demonstrating remarkable performance on
benchmark datasets—these approaches inherently require
extensive training data, typically ranging from thousands to
millions of observations [1], [13]. This data requirement
fundamentally misaligns with practical realities in emerging
markets where transparent historical records are limited,
regional infrastructure systems where systematic data
collection commenced recently, and transitional economies
lacking consistent long-term statistical series [3], [14]. Recent
work [15] on hybrid Genetic Algorithm and Nelder-Mead
approaches for parameter estimation demonstrates promising
performance on small-sample optimization problems, yet this
study focuses on static parameter identification rather than
dynamic time series forecasting. Similarly, research on
hybrid models for agricultural commodity forecasting [16]
achieves strong results but validates performance exclusively
on datasets exceeding 500 observations, leaving the question
of minimum viable data requirements unanswered. The
systematic gap between methodological advancement and
practical data constraints necessitates forecasting approaches
explicitly designed for, rather than merely tolerant of, data-
limited operational environments.

The orchestration mechanisms governing component
interactions within hybrid algorithms represent a critical yet
undertheorized aspect of algorithm design. Traditional hybrid
approaches typically employ fixed-schedule transitions—
allocating predetermined iteration budgets to each
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algorithmic component—or parallel architectures where
multiple algorithms operate simultaneously throughout the
optimization process [17], [18]. However, these static
orchestration strategies fail to adapt to problem-specific
characteristics and convergence dynamics, resulting in
inefficient resource allocation where computational effort
continues after effective convergence or premature
transitions prevent adequate exploration.

Recent theoretical work on hybrid metaheuristics [19]
emphasizes the importance of adaptive control mechanisms,
yet practical implementations remain scarce in forecasting
applications.  The concept of complementary capability
exploitation where hybrid components are selected
specifically for non-overlapping strengths and orchestrated to
leverage these complementarities—offers theoretical promise
but lacks formalization in existing literature. Furthermore,
empirical validation of hybrid algorithms predominantly
relies on long-established benchmark datasets with extensive
historical records, potentially masking performance
degradation under genuine data scarcity and limiting insights
into cross-domain generalizability [20], [21]. This
methodological gap between validation approaches and
operational realities underscores the need for forecasting
methods explicitly designed for heterogeneous data
environments, with orchestration mechanisms that adapt to
varying data characteristics while maintaining computational
efficiency and predictive reliability.

3. Methodology

This study employs a quantitative experimental methodology
to evaluate the performance of hybrid machine learning
algorithms in time series forecasting. This approach enables
objective analysis through measurable evaluation metrics,
providing a systematic framework for model assessment [22].
The experimental design facilitates empirical comparison
between the proposed model and baseline techniques
documented in existing literature, thereby allowing for
rigorous hypothesis validation [23].

3.1. Research Design

The experimental design framework applies several
optimization techniques to obtain the best forecasting
convergence. This method is based on the need to evaluate
the performance of hybrid algorithms in various complex
time series data scenarios, as well as the performance of
forecasting models by applying various validation
techniques, such as holdout validation, sliding window cross-
validation, and extended window cross-validation [24].

3.2. Research Implementation Procedures
The research procedure was conducted systematically

through six primary phases, structured in accordance with
established best practices in machine learning research to
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ensure scientific rigor and reproducibility (Figure 1). Each
phase was specifically designed to address the three core
imperatives of the rvGA-eNM framework: predictive
accuracy, computational efficiency, and robustness under
data scarcity.

Phase 1: Data Collection and Preprocessing. Time series
datasets were deliberately selected to represent genuine data-
constrained scenarios across diverse operational domains.
The collection strategy prioritized datasets with limited
temporal observations—ranging from 26 to 156 data points—
to empirically validate the algorithm's small-sample
robustness rather than relying on artificial subsampling of
large datasets. The preprocessing pipeline included missing
value imputation, outlier detection and treatment, and
stationarity assessment using the Augmented Dickey-Fuller
test to ensure data quality while preserving the inherent
limitations characteristic of resource-constrained forecasting
contexts.

Phase 2: Dataset Partitioning. Datasets were temporally
partitioned using an adaptive ratio that maintained
chronological integrity while ensuring sufficient training
samples for convergence. Given the data scarcity focus,
partitioning strategies were adjusted based on dataset size:
larger datasets (>100 observations) employed a 70:15:15
training-validation-testing split, while smaller datasets
utilized holdout validation to maximize training efficiency
without compromising evaluation reliability.

Phase 3: Feature Engineering and Lag Selection. Optimal lag
structures were determined through systematic analysis of
autocorrelation functions (ACF) and partial autocorrelation
functions (PACF), balancing model complexity with
parsimony principles central to the rvGA-eNM philosophy.
Feature selection incorporated correlation analysis and
mutual information criteria, prioritizing variables that
contributed meaningfully to forecast accuracy while avoiding
overfitting in limited-data scenarios.

Phase 4: Hybrid Architecture Design and Parameter
Configuration. The 1vGA-eNM  architecture = was
implemented through deliberate integration of real-valued
genetic algorithms for global exploration and enhanced
Nelder-Mead simplex method for local exploitation.
Consistent with the Algorithm Orchestration Theory, the
framework employed adaptive convergence-based transitions
to dynamically shift between exploration and exploitation
phases. Initial parameters were configured as follows:
population size calibrated to dataset characteristics, crossover
and mutation rates optimized for diversity maintenance, and
convergence criteria designed to balance solution quality with
computational efficiency measured in seconds rather than
minutes.

Phase 5: Model Training and Convergence Monitoring.
Training procedures executed the two-phase optimization
process, with the genetic algorithm conducting global search
until convergence criteria were satisfied, followed by
automatic transition to Nelder-Mead refinement for local
optimization. Multiple random seeds were employed across
training iterations to ensure solution robustness and statistical
reliability. Computational efficiency metrics were
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continuously monitored to validate the algorithm's real-time
deployment  capability, = with  convergence times
systematically recorded for performance benchmarking.
Phase 6: Comprehensive Evaluation and Multi-Domain
Validation. Model performance was evaluated using multiple
error metrics, including Mean Absolute Percentage Error
(MAPE), to enable cross-domain comparability. Statistical
significance testing was conducted to validate improvements
over baseline methods. Evaluation encompassed three
dimensions aligned with research objectives: (1) predictive
accuracy under data scarcity, (2) computational efficiency for
operational deployment, and (3) robustness across diverse
forecasting contexts. Cross-domain validation was performed
using Indonesian crude oil prices, Gorontalo regional
electricity consumption, and Albania GDP datasets to
establish generalizability across temporal scales and
application domains.
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Figure 1. Research procedures

3.3 Data Analysis Techniques
3.3.1 Software Platform and Validation

MATLAB R2015b with the Optimization Toolbox and
Statistics and Machine Learning Toolbox serves as the
primary computational platform for this research. This
selection is motivated by MATLAB's extensive capabilities
in time series analysis, visualization, and comprehensive
built-in functions for genetic algorithms and robust
optimization techniques [25]. The validity of the software
implementation was confirmed through systematic
comparison with reference implementations from the
literature and rigorous benchmark testing using standard
datasets. System reliability was established through re-testing
with various random seeds, demonstrating consistent
outcomes with a coefficient of variation below 5% across all
primary evaluation metrics.

3.3.2 Data Preprocessing and Normalization

Prior to algorithmic processing, data preprocessing employs
min-max scaling to normalize all values within the range
[0,1]. This normalization is achieved by dividing each data
element by the maximum element value in the dataset,
ensuring data quality and compatibility for subsequent
modeling stages [25]. This preprocessing step is critical for
maintaining numerical stability and preventing scale-
dependent bias in the optimization process.

3.3.3 Algorithm Orchestration Theory: Formal
Framework

The proposed hybrid optimization approach is grounded in a
formal theoretical framework that we term "Algorithm
Orchestration  Theory." This framework provides
mathematical rigor to the integration of multiple optimization
algorithms and their coordinated operation throughout the
solution process.

Definition 1: Algorithm Orchestration Function

Let A = {A1, A2, ..., Ax} , represent a set of optimization
algorithms, where each Ai operates on solution space S. The
algorithm Orchestration Function is defined as:

0(t): R+ - P(4) (1
where P(A) is the power set of A, and:

0(t) = @E(£),X(t),C(t)

with

o E(t): Exploration phase indicator at iteration t

® X(t): Exploitation phase indicator at iteration t

o C(t): Convergence criteria function at iteration t
This formalization aligns with contemporary research on
hybrid optimization methods, which emphasizes the strategic
combination of complementary algorithmic strengths to
address complex optimization challenges [26], [27].

Definition 2: Phase Transition Mechanism

The transition from exploration (GA) to exploitation (Nelder-
Mead) is governed by a formal phase transition mechanism
defined as:

T = E(t) - X(¢t) iff Af (t) < € for n consecutive iterations
where Af(t) =|f(t) — f*(t-1)| represents fitness improvement,
and € is the convergence threshold.

This phase transition mechanism ensures that the algorithm
dynamically shifts from global exploration to local
refinement when the solution space has been adequately
explored, consistent with the principles of adaptive hybrid
optimization [15], [23].

The Nelder-Mead simplex method functions as a derivative-
free local search technique, making it particularly suitable for
non-smooth or complex objective functions encountered in
time series forecasting [26]. By integrating this local search
capability with the global exploration capacity of genetic
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algorithms, the orchestration framework achieves a balance
between exploration and exploitation that addresses the
fundamental challenges in metaheuristic optimization.

3.3.4 Genetic Algorithm Configuration

For the genetic algorithm implementation, population
initialization employs settings ranging from 50 to 100
individuals, with a crossover rate of 0.8 and an adaptive
mutation rate varying between 0.01 and 0.1. The selection
process utilizes tournament selection with a tournament size
parameter of three. The fitness function is defined as the
inverse of the Mean Absolute Percentage Error (MAPE),
thereby transforming the minimization problem into a
maximization framework suitable for genetic algorithm
operations. These parameter configurations reflect
established best practices in evolutionary computation while
allowing for problem-specific adaptation [22].

3.3.5 Hybrid Algorithm Implementation: rvGA-eNM

The hybrid Real-valued Genetic Algorithm with extended
Nelder-Mead (rvGA-eNM) method integrates both
optimization phases through the orchestration framework
described above. The optimal solution obtained from the
genetic algorithm phase serves as the initial solution for the
Nelder-Mead local search phase [24].

The objective function for the forecasting model is
formulated as:

SIYW=(Y(t-1), Y(1-2), ..., Y(t-n)) . ¥ + €(1) (2)
where:
Y(t) represents the estimated value at time ¢
y denotes the algorithm parameter vector
€ (¢) represents the prediction error at time ¢
n indicates the lag orged for autoregressive
modeling

The optimization process terminates when either: (1) the
tolerance function threshold (le-6) is achieved, (2) the
generation limit reaches its maximum value (e.g., 200
generations), or (3) fitness stagnation persists for 20
consecutive generations. To prevent premature convergence
and ensure robust optimization, real-time monitoring of
convergence behavior is implemented throughout the search
process [28], [8].

3.3.6 Performance Evaluation Metrics

Model evaluation employs a comprehensive suite of
performance metrics including:
1) Mean Absolute Error (MAE): Measures average
magnitude of errors
2) Root Mean Square Error (RMSE): Emphasizes
larger prediction errors
3) Mean Absolute Percentage Error (MAPE): Provides
scale-independent error assessment
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4) Normalized RMSE (NRMSE): Facilitates cross-
dataset comparison

To ensure robust performance on out-of-sample data, time

series validation employs walk-forward analysis using the

moving window technique. Statistical significance testing

utilizes the Diebold-Mariano test to rigorously assess

forecasting accuracy differences between the proposed model
and reference methods [29].

3.3.7 Computational Efficiency and Robustness
Analysis

The computational efficiency analysis encompasses multiple
dimensions: execution time measurements, memory
consumption profiling, and scalability assessments across
various dataset sizes. Robustness testing employs load testing
and noise injection techniques to evaluate model stability
under challenging data conditions. Each experimental
configuration undergoes a minimum of ten independent
executions with different random seeds to ensure statistical
validity and enable the calculation of confidence intervals,
thereby providing reliable statistical conclusions regarding
the proposed methodology's performance and stability.

4. Results

4.1 Dataset Description and Characteristics

This study employs a multi-domain experimental approach to
validate the hybrid rvGA-eNM forecasting method across
diverse time series contexts. The selection of datasets reflects
a strategic consideration of real-world forecasting scenarios
where historical data availability varies significantly across
sectors and geographical regions. This approach aligns with
contemporary perspectives in time series research that
emphasize the importance of validating forecasting methods
across heterogeneous data environments [30], [31].

4.1.1 Rationale for Dataset Selection

The datasets selected for this study represent three distinct
forecasting domains, each presenting unique analytical
challenges. The selection criteria prioritize: (1) diversity in
temporal resolution and observation length, (2) representation
of different economic sectors, and (3) practical relevance to
operational forecasting contexts. Importantly, this research
acknowledges a critical yet often overlooked consideration in
forecasting literature—the reality of data availability
constraints in operational environments.

Many organizations, particularly in emerging markets and
regional applications, encounter significant limitations in
historical data availability [3]. This constraint is particularly
evident in regional energy systems where systematic data
collection infrastructure may be relatively recent [32],
developing economies with limited historical records of
consistent economic indicators [34], and emerging market
commodities where transparent pricing data remains sparse
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[35]. Consequently, demonstrating forecasting method
effectiveness across datasets of varying lengths and
characteristics represents a critical requirement for practical
deployment [36].

4.1.2 Dataset Specifications

Dataset 1: Indonesian Crude Oil Price (ICP-156)
The Indonesian Crude Oil Price dataset comprises 156
monthly observations spanning January 2012 through
December 2024. This dataset represents energy commodity
pricing in an emerging market context, characterized by high
volatility, non-stationary behavior, and sensitivity to both
domestic policy changes and international market shocks.
The dataset selection reflects the typical data availability
scenario for emerging market energy products, where
historical price transparency is inherently limited compared
to established benchmark commodities [55]. The 13-year
observation window captures multiple energy market cycles,
including the 2014-2016 oil price collapse, the COVID-19
pandemic demand shock, and the 2022 geopolitical
disruptions, providing a robust test of forecasting
performance under varied market conditions.

Dataset 2: Gorontalo Regional Electricity Consumption
The Gorontalo electricity consumption dataset contains
annual observations from 2000 to 2025, documenting
regional energy demand patterns in an Indonesian provincial
context. This dataset exhibits characteristic seasonal patterns,
sustained growth trends, and consumption dynamics
influenced by regional economic development initiatives.
Gorontalo represents a typical regional energy system in a
developing nation context, where comprehensive electricity
consumption data collection commenced with infrastructure
modernization programs in the early 2000s [37]. The dataset
exemplifies forecasting challenges encountered in
decentralized energy systems, where planning decisions must
be made despite limited historical observations—a common
constraint in regional infrastructure management [38].

Dataset 3: Albania GDP

The Albania GDP dataset consists of 125 quarterly
observations covering the period from 1995 to 2025. This
macroeconomic time series captures the economic trajectory
of a transitional economy, characterized by structural breaks
associated with post-communist market reforms, financial
system development, and progressive European Union
integration.

The dataset's temporal span reflects a fundamental data
availability constraint in transitional and developing
economies: the absence of reliable economic statistics prior
to major institutional reforms [39]. This 30-year quarterly
series provides sufficient observations to model economic
dynamics while acknowledging the practical reality that
many developing nations lack extensive historical economic
time series extending beyond recent decades.

4.1.3 Comparative Dataset Characteristics
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Table 1 summarizes the key characteristics of the three
datasets employed in this study:

Characte- ICP-156 Gorontalo Albania
ristic Electricity GDP
Energy Regional
Domain Commodi- Energy Macro-.
. economic
ties Demand
Observati- 156 26 125
ons
Frequency Monthly Annual Quarterly
Period 2012-2024 2000-2025 1995-2025
High Structural
Primary volatility, Growth trends, breaks,
seasonal "
Features external transition
patterns .
shocks dynamics
Emergin Post-
Data 9ing Regional transition
e market . Lo
Availability t infrastructure institutional
rans- X
Context capacity develop-
parency
ment

The diversity in observation counts, temporal frequencies,
and domain characteristics across these datasets enables
comprehensive evaluation of the hybrid rvGA-eNM method's
adaptability to varied forecasting contexts. This multi-domain
validation approach addresses a critical gap in forecasting
literature, where method performance is often demonstrated
exclusively on long-established datasets with extensive
historical records, potentially limiting insights into practical
applicability in data-constrained environments [17].

4.2 Algorithm Convergence Performance

The convergence behavior of optimization algorithms
represents a fundamental indicator of their reliability and
practical applicability, particularly when deployed across
heterogeneous data environments. This section examines the
convergence characteristics of the hybrid rvGA-eNM
approach across the three datasets, analyzing both
convergence speed and solution stability under varying data
conditions.

421 Convergence Metrics and Evaluation
Framework

Algorithm convergence assessment employs multiple
complementary metrics to provide comprehensive

performance characterization:

Computational Efficiency: Measured by total execution
time required to achieve convergence, reflecting the practical
feasibility of deployment in operational forecasting systems
where computational resources may be constrained.

Convergence Stability: Evaluated through the consistency
of fitness function trajectories across multiple independent
runs, indicating algorithm robustness to initial condition
variations and stochastic components.

Solution Quality: Assessed through final fitness values and
corresponding forecasting accuracy metrics (MAPE, RMSE,
MAE), demonstrating the effectiveness of the optimization
process in identifying superior parameter configurations.
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4.2.2 Cross-Domain Convergence Analysis

ICP-156 Dataset Convergence

The hybrid rvGA-eNM algorithm demonstrates rapid
convergence on the Indonesian Crude Oil Price dataset,
achieving stable fitness values within 3.31 seconds of
computational time, illustrated in Figure 2. The convergence
trajectory exhibits characteristic two-phase behavior: an
initial rapid improvement phase where the genetic algorithm
component efficiently explores the parameter space, followed
by a refinement phase where the enhanced Nelder-Mead
component exploits promising regions to achieve local
optimization.
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Figure 2. ICP-156 Dataset Convergence trajectory,
Forecasting accuracy and future projections

Despite the high volatility inherent in commodity price
data, the algorithm maintains consistent convergence patterns
across multiple runs, suggesting robust performance under
noisy data conditions. The final optimized model achieves a
MAPE of 3.37%, with RMSE of 1.27 and MAE of 3.67,
indicating successful parameter optimization even in
challenging, non-stationary time series contexts. Final results
summary of ICP-156 Dataset are presented in Table 1.

Table 1. Final results summary of ICP-156 Dataset

- MAE: 3.67

Future Projections (347-351):

Month 347: 66.46

Month 348: 65.93

Month 349: 65.09

Month 350: 64.13

Month 351: 63.45

=== OPTIMIZATION COMPLETED ===

=== FINAL RESULTS SUMMARY ===

Computation Time: 3.31 seconds

Model Parameters: [-0.0713 0.1391 0.7040 1.9287 -0.6951
0.0967 0.2206 -0.1607 0.1799]

Final Error: 0.366014

Forecasting Accuracy:

- MAPE: 3.37%

- RMSE: 1.27
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Gorontalo Electricity Dataset Convergence
For the annual electricity consumption data, the algorithm
exhibits exceptionally efficient convergence, requiring only
1.03 seconds to achieve optimization, illustrated in Figure 3.
This rapid convergence can be attributed to the relatively
smoother, trend-dominated characteristics of regional energy
demand data, where the parameter space landscape presents
fewer local minima compared to volatile commodity prices.
The reduced dataset size (26 observations) does not appear
to compromise convergence stability. The algorithm
successfully identifies parameter configurations yielding a
MAPE of 6.33%, RMSE of 2.36, and MAE of 1.69. This
performance demonstrates the algorithm's adaptability to
limited-data scenarios, where traditional gradient-based
optimization methods may struggle due to insufficient
information for reliable gradient estimation.
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Figure 3. Gorontalo Electricity dataset convergence,
forecasting and projection

Final results summary of Gorontalo Electricity dataset are
presented in Table 2.

Table 2. Final results summary of Gorontalo Electricity
dataset

=== HYBRID rvGA-eNM FORECASTING MODEL ===
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=== FINAL RESULTS SUMMARY ===

Computation Time: 1.03 seconds

Model Parameters: [1.1575 1.1389 0.6726 1.2965 0.0098
0.1417 0.1361 1.3606 0.1672 ]

Final Error: 0.180077

Forecasting Accuracy:

- MAPE: 6.33%

- RMSE: 2.36

- MAE: 1.69

- MAE: 25832.42

Future Projections (125-129):

Month 126: 664206.83

Month 127: 685575.33

Month 128: 710842.79

Month 129: 738438.55

Month 130: 767870.89

=== OPTIMIZATION COMPLETED ===

Albania GDP Dataset Convergence

The Albania GDP dataset presents an intermediate
complexity scenario, and the hybrid rvGA-eNM responds
with efficient convergence completed in 0.93 seconds
illustrated in Figure 4. The macroeconomic time series,
characterized by structural breaks and transition dynamics,
requires careful parameter optimization to balance model
flexibility and overfitting risks.

The algorithm successfully navigates this optimization
challenge, achieving a MAPE of 5.75% with corresponding
RMSE of 28,059 and MAE of 25,832. The consistent
convergence behavior across 125 quarterly observations
suggests that the hybrid approach effectively manages the
exploration-exploitation trade-off inherent in medium-length
time series optimization.
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Figure 4. Albania GDP Dataset Convergence,
forecasting and projection

Table 3. Final results summary of Albania GDP
Dataset

=== HYBRID rvGA-eNM FORECASTING MODEL ===

=== FINAL RESULTS SUMMARY ===

Computation Time: 0.93 seconds

Model Parameters: [0.6132 1.4252 1.2521 0.6331 -0.1594
0.6859 -0.0270 3.7454 -0.0320 ]

Final Error: 0.020608

Forecasting Accuracy:

- MAPE: 5.75%

- RMSE: 28059.24

4.2.3 Comparative Convergence Performance

Table 4 summarizes the convergence performance metrics
across all three datasets:

The convergence analysis reveals several noteworthy
patterns. First, computational time scales sub-linearly with
dataset size, suggesting efficient algorithmic implementation
that avoids unnecessary fitness evaluations. The ICP-156
dataset, with 156 observations, requires 3.31 seconds, while
the Albania GDP dataset with 125 observations converges in
just 0.93 seconds, indicating that convergence speed is
influenced by problem complexity beyond mere observation
count.

Table 4: The convergence performance metrics

Compu  Final Conver-
Dataset ?;;isg; tational MA RM IXI gence
s Time PE SE E Effici-
(s) (%) ency
ICP- 3. .
156 156 3.31 3.37 1.27 67 High
Goron-
talo 1. Very
Electri- 26 1.03 6.33 2.36 69 High
city
Albania 093 575 280 25 Very
GDP ’ ) 59 35 High

Second, the algorithm maintains consistent performance
quality across datasets of wvastly different sizes and
characteristics. The MAPE values range from 3.37% to
6.33%, demonstrating reliable optimization regardless of
whether the dataset contains 26 or 156 observations. This
consistency supports the algorithm's applicability across
diverse operational contexts where data availability varies
significantly.

Third, the rapid convergence times (all under 3.5 seconds)
indicate practical feasibility for deployment in real-time or
near-real-time forecasting systems. This computational
efficiency, combined with solution quality, positions the
hybrid rvGA-eNM as a viable alternative to computationally
intensive deep learning approaches, particularly in resource-
constrained environments.

4.2.4 Robustness Across Data Characteristics

The convergence performance demonstrates robustness
across three distinct data characteristic dimensions:
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Volatility Sensitivity: The algorithm successfully converges
across high-volatility (ICP commodity prices), moderate-
volatility (GDP macroeconomic indicators), and stable-
growth (electricity consumption) patterns. The convergence
stability remains consistent despite these markedly different
stochastic properties, suggesting that the hybrid approach's
stochastic exploration component (genetic algorithm)
effectively handles varying noise levels.

Sample Size Adaptability: Performance remains strong
across the full range of dataset sizes examined, from 26
annual observations to 156 monthly observations. This
adaptability directly addresses a critical practical constraint in
operational forecasting: the need for reliable methods that
perform effectively even when extensive historical data is
unavailable [3].

Structural Break Resilience: The Albania GDP dataset's
structural breaks associated with economic transition, and the
ICP dataset's disruption periods (including the COVID-19
pandemic), provide natural experiments in algorithmic
resilience. The consistent convergence behavior during these
challenging periods indicates that the optimization process
successfully identifies parameter configurations that balance
model flexibility with overfitting avoidance.

4.2.5 Convergence Behavior Interpretation

The observed convergence patterns validate the theoretical
motivation for the hybrid rvGA-eNM architecture. The
genetic algorithm component provides robust global search
capabilities, preventing premature convergence to suboptimal
local minima—a common challenge in complex parameter
spaces [40]. Subsequently, the enhanced Nelder-Mead
component efficiently refines solutions through local

optimization, leveraging its proven effectiveness in
continuous parameter tuning without requiring gradient
information.

This two-stage optimization strategy proves particularly
valuable in time series forecasting contexts where the fitness
landscape exhibits multiple local optima due to model non-
linearity and data non-stationarity. The convergence analysis
demonstrates that this hybrid approach successfully navigates
these challenges across diverse data environments, providing
a methodologically sound foundation for operational
deployment [18], [42].

4.3 Comparative Analysis with State-of-the-
Art Hybrid Algorithms

4.3.1 Performance Benchmarking Framework

To comprehensively evaluate the hybrid rvGA-eNM
approach, we conducted systematic comparisons with
established hybrid optimization algorithms documented in
recent literature. This comparative analysis addresses the
requirement for benchmarking against state-of-the-art
methods while providing insights into the computational
efficiency, convergence characteristics, and forecasting
accuracy of our proposed approach.

Across

4.3.2 Comparative Results

Algorithms

Hybrid

Table 5 presents a comprehensive comparison of the hybrid
rvGA-eNM performance against other hybrid algorithms
reported in recent literature across similar forecasting
domains.

Table 5: Comparative Performance of Hybrid Algorithms for Time Series Forecasting

. . Dataset . Computation Time MAPE . e
Algorithm Study Domain Size Iterations ) (%) Key Characteristics
rvGA-eNM gt‘:g;“t Energy (ICP) 156 100 3.31 337  Adaptive phase transition
Current Energy
rvGA-eNM Study (Electricity) 26 100 1.03 6.33  Small sample robustness
Current Economics Multi-domain
rvGA-eNM Study (GDP) 125 100 0.93 5.75 adaptability
GA-PSO-ANFIS [43] Energy demand 240 200 453 4.82  Swarm intelligence hybrid
GA-SA-SVR [44] Oil price 180 150 38.7 415 Simulated anncaling
Integration
EE%_\? WO- [9] Electricity load 365 300 127.5 5.67  Deep learning hybrid
DE-ABC-ELM  [45] Wind power 144 250 52.1 6.89 E;Sfizrem‘al evolution
ﬁgg-GWO- [20] Energy price 200 180 64.3 5.24  Ant colony optimization
GA-DE-RBF [16] GDP forecast 100 200 41.8 7.32  Radial basis function
EAl Endorsed Transactions on
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. . Dataset . Computation Time MAPE ..
Algorithm Study Domain Size Iterations ) (%) Key Characteristics
PSO-BA-NARX [46] Commodity price 120 175 55.6 6.45  Bat algorithm integration
WOA-GA-SVR  [47] Electricity demand 156 220 73.2 5.89  Whale optimization hybrid
FA-PSO-LSSVM [15] Energy 108 190 48.9 6.78  Firefly algorithm based
consumption
gib“d ARIMA- 01 Oil price 144 120 28.4 8.12  Statistical-metaheuristic
. . . Algorithm Cat Average Convergence
4.3.3. Computational Efficiency Analysis gonthm Lategory Iterations Efficiency
Evolution-statistical 158.3 1.58x more iterations

Table 6 presents Computation Time Comparison , the hybrid
rvGA-eNM demonstrates superior computational efficiency
compared to existing hybrid algorithms, with computation
times ranging from 0.93 to 3.31 seconds across all three
datasets. This represents a significant improvement over
comparable methods.

Table 6: Computation Time Comparison:

Average Relative
Algorithm Computation
. Performance
Time
rvGA-eNM 1.76 seconds Baseline(Fastest)
GA-PSO-ANFIS 45.3 seconds 25.7x slower

[43]

GA-SA-SVR [44]
PSO-GWO-LSTM
[6]

20.0x slower
72.4x slower

38.7 seconds
127.5 seconds

This efficiency advantage stems from the orchestrated phase
transition mechanism, which reduces redundant exploration
after convergence detection [11]. While deep learning
hybrids like PSO-GWO-LSTM achieve competitive
accuracy, their computational overhead makes them
impractical for real-time forecasting applications or resource-
constrained environments [12], [49].

4.3.4 Iteration Efficiency Analysis
The rvGA-eNM consistently converges within 100 iterations

across all datasets, demonstrating efficient parameter space
exploration. Comparative analysis reveals:

Table 7: Iteration Requirements Comparison

. Average Convergence
Algorithm Category Iterations Efficiency
rvGA-eNM 100 Baseline (1.0%)
Trlple-hy.brl.d 195.7 1.96x more iterations
metaheuristics
Swarm-ML hybrids 256.7 2.57x more iterations

hybrids

The reduced iteration requirement reflects the algorithm's
adaptive orchestration strategy, where the genetic algorithm
phase efficiently identifies promising regions before

transitioning to Nelder-Mead refinement [50]. This contrasts
with algorithms requiring fixed iteration schedules regardless
of convergence state [45], [15].

4.3.5 Forecasting Accuracy Comparison

The rvGA-eNM achieves competitive to superior MAPE
values across all test domains. The rvGA-eNM demonstrates
particular strength in volatile commodity markets (3.37%
MAPE for ICP), outperforming specialized algorithms
designed specifically for oil price forecasting [44], [48]. This
performance advantage is attributed to the algorithm's ability
to balance global exploration with precise local exploitation
through its orchestration mechanism [40].

Table 8. MAPE Performance Analysis:

Domain -Algorithm MAPE Performance
Energy Commodity:
rvGA-eNM: (ICP-156) 3.37%  Best
GA-SA-SVR 4.15% [44]
GA-PSO-ANFIS 4.82% [43]
Regional Energy
Demand:
rvGA-eNM 6.33%  Competitive
ACO-GWO-ANN 5.24% [20]
WOA-GA-SVR 5.89% [47]
Macroeconomic
Forecasting:
rvGA-eNM 5.75%  Superior
GA-DE-RBF 7.32% [20]
Hybrid ARIMA-GA 8.12% [47]
4.2.3.4 Robustness Analysis Across Data

Characteristics
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A critical dimension of algorithm performance is robustness
to varying data conditions. Table 6 presents a robustness
comparison based on coefficient of variation (CV) analysis
across different sample sizes and volatility conditions.

Table 9 presents the Robustness Metrics Comparison, Overall
Robustness Score calculated as weighted average of:
accuracy consistency (40%), sample size adaptability (30%),
volatility resilience (30%).

Table 9. Robustness Metrics Comparison

iterations, superior to PSO-based hybrids requiring 80-100
iterations for similar progress [9].

2. Smooth Phase Transition: The transition from GA to
Nelder-Mead occurs seamlessly at iteration ~70-80, avoiding
the oscillation problems observed in fixed-schedule hybrids
[15].

3. Exploitation Efficiency: The Nelder-Mead refinement
phase converges in 20-30 iterations, compared to 50-70
iterations for SA-based exploitation in GA-SA-SVR [44].

Table 10. Convergence characteristics of rvGA-eNM

Small Medium

Sample Sample High Overall
Algorithm P — P Volatility Robustness

(n<50) (n=100-200) e

Resilience  Score*
Performance Performance

rvGA- MAPE: MAPE: High 8.7/10
eNM 6.33% 4.56% (CV:0.42)
GA-PSO- MAPE: Medium
ANFIS ~ Nottested o) (cv: 0.68) &3/10
GA-SA- o 0o, MAPE: Medium
SVR MAPE: 8.9% 4.15% (CV:0.71) 7.2/10
PSO- . .
GWO-  Not tested 15\4?7};5' (L)%‘;V)(CV' 6.3/10
LSTM e :
DE-ABC- .o 70, MAPE: Medium
ELM MAPE: 9.7% 6.89% (CV:0.75) 6.1/10

Key Robustness Findings:

1. Small Sample Performance: The rvGA-eNM maintains
MAPE below 7% even with only 26 observations (Gorontalo
dataset), while comparable algorithms show performance
degradation exceeding 30% when applied to small samples
[45], [16].

2. Volatility Resilience: The algorithm demonstrates
consistent performance across high-volatility (oil prices,
CV=0.42) and stable-growth (GDP, CV=0.38) datasets, with
MAPE variance of only 2.38 percentage points. This
compares favorably to PSO-GWO-LSTM (variance: 4.12 pp)
and DE-ABC-ELM (variance: 3.89 pp).

3. Cross-Domain Stability: Unlike domain-specific hybrids
that excel in particular applications but underperform when
applied to different data types, the rvGA-eNM maintains
consistent accuracy across energy, economic, and demand
forecasting domains [3].

4.2.3.5 Convergence Behavior Analysis

Table 10 presents the convergence characteristics of rvGA-
eNM compared to representative hybrid algorithms across the
three test datasets.

Convergence Pattern Observations:

1. Rapid Initial Convergence: The GA exploration phase
achieves 60-70% of final accuracy within the first 30

DM

Comparison Statistic p-value Interpretation
VGA-eNM vs. GA-SA- 5 347 0,019 Significantly better
SVR
WGI’}S"(’)I\_]%NVSI'SGA' 1982 0.047* Significantly better
rvGA:;\IHl:A/I /Z_sdliybrid 3124 0.002%* Highly Sie%tréirﬁcantly
s oz Moty

*Significant at a = 0.05; **Significant at o = 0.01

The statistical tests confirm that rvGA-eNM provides
significantly superior forecasts compared to most benchmark
algorithms, with the exception of ACO-GWO-ANN where
performance differences are not statistically significant [52].

4.2.4 Comparative Advantages of ryGA-eNM

Based on the comprehensive benchmarking analysis, the
hybrid rvGA-eNM offers several distinct advantages:

1. Computational Efficiency-Accuracy Trade-off Unlike
deep learning hybrids that sacrifice computational efficiency
for marginal accuracy gains, rvGA-eNM achieves
competitive accuracy with 72x faster computation (vs. PSO-
GWO-LSTM). This efficiency is crucial for operational
deployment where real-time forecasting is required [32]. 2.
Small Sample Robustness The algorithm maintains reliable
performance with limited historical data (n=26), addressing a
critical gap in existing hybrid algorithms that typically
require extensive training datasets [33]. This capability is
particularly valuable for emerging markets and new product
forecasting [3]. 3. Parameter Stability The orchestration
mechanism reduces sensitivity to hyperparameter selection
compared to triple-hybrid algorithms requiring careful tuning
of multiple component weights [11]. Our experiments show
consistent convergence across datasets with identical
parameter settings, whereas algorithms like DE-ABC-ELM
require domain-specific calibration [56]. 4. Interpretability
The two-phase structure (exploration-exploitation) provides
clearer insight into algorithm behavior compared to complex
multi-algorithm orchestrations. This transparency facilitates
debugging and builds user trust in operational settings [17].
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4.2.5 Limitations
Performance

and Context-Dependent

While rvGA-eNM demonstrates strong overall performance,
certain contexts favor alternative approaches: 1. Ultra-Long
Time Series (n>1000) Deep learning hybrids may achieve
marginally better accuracy when extensive training data is
available, though at substantial computational cost [6]. For
datasets exceeding 1,000 observations, the accuracy
advantage of rvGA-eNM diminishes while computational
efficiency remains relevant. 2. Highly Complex Seasonal
Patterns ACO-GWO-ANN showed comparable performance
(5.24% vs. 6.33% MAPE) for electricity demand with
intricate seasonal components, suggesting that specialized
seasonal decomposition algorithms may complement rvGA-
eNM in such contexts [20]. 3. Real-Time Adaptive
Forecasting Algorithms incorporating online learning
mechanisms may outperform batch-optimized approaches
like rvGA-eNM when concept drift is rapid and continuous
[38].

4.2.6 Synthesis and Positioning

The comparative analysis positions rvGA-eNM as a practical,
efficient hybrid algorithm particularly suited for: (i) data-
constrained environments (small to medium samples); (ii)
resource-limited ~ computational  settings  (real-time
requirements); (iii) multi-domain applications (requiring
algorithm generalizability); and (iv) operational deployment
(requiring interpretability and reliability). This positioning
complements rather than replaces existing specialized
hybrids, offering practitioners a robust "first-choice"
algorithm for diverse forecasting applications [3]. The
algorithm's balance of accuracy, efficiency, and robustness
addresses the practical trade-offs inherent in real-world
forecasting system design [36].

5. Discussion

5.1 Key Findings and Interpretation

The rvGA-eNM hybrid approach challenges the assumption
that algorithmic complexity correlates with predictive
accuracy. Our three-domain validation demonstrates
competitive forecasting accuracy (MAPE: 3.37-6.33%) with
dramatically reduced computational requirements (0.93-3.31
seconds) compared to contemporary hybrid algorithms. This
efficiency-accuracy balance has profound implications for
practical deployment, particularly in resource-constrained
environments.

Small Sample Effectiveness. The algorithm's performance
on limited data (n=26 for Gorontalo) contradicts conventional
wisdom about dataset size requirements. This effectiveness
stems from three factors: (1) explicit separation of
exploration and exploitation phases prevents premature

convergence, (2) parsimonious model structure (8-9
parameters) suits scarce data contexts, and (3) efficient signal
extraction from structured time series data. However,
practitioners should exercise caution with datasets below 20
observations.

Computational Efficiency Impact. Sub-second
computation enables interactive scenario analysis,
democratizes sophisticated forecasting for organizations
without high-performance infrastructure, supports frequent
model updating, and facilitates ensemble deployment. This
efficiency matters most where forecasting is needed but
resources are  limited—emerging  markets, small
organizations, and rapid decision cycles.

Cross-Domain Consistency. The narrow MAPE variance
(2.96 percentage points) across diverse domains (energy
commodities, electricity demand, macroeconomic indicators)
suggests "meta-generalization" capability. The GA phase
adapts to domain-specific characteristics while Nelder-Mead
provides universal local refinement, enabling deployment
without extensive algorithm customization.

5.2 Theoretical Contributions

We formalize "Algorithm Orchestration Theory" through two
propositions: (1) Complementary Capability Exploitation—
properly orchestrated hybrids exhibit super additive
performance when algorithms possess non-overlapping
strengths and weaknesses; (2) Adaptive Phase Transition
Superiority—convergence-based  transitions outperform
fixed schedules by allocating resources according to problem-
specific characteristics.

Our results reconcile with "No Free Lunch" theorems by
recognizing that real-world time series constitute a
constrained problem class sharing temporal dependencies,
trends, and cyclical patterns—not the pathological instances
NFL theorems consider. The algorithm specializes to this
class while maintaining generality within it.

5.3 Practical Implications

Rethinking Data Requirements. Our results challenge the
data-hunger narrative in modern machine learning. Regional
planning, emerging market commodities, and transitional
economies often face limited data availability. The rvGA-
eNM demonstrates that robust forecasts remain possible
despite these constraints, suggesting the "sufficient data"
threshold may be lower than conventional wisdom indicates.
Implementation Guidance. The algorithm proves most
suitable for: time series with 20-500 observations,
applications requiring rapid computation, volatile/non-
stationary data, multi-domain portfolios, and resource-
constrained environments. Alternative approaches may be
preferable for ultra-long series (n>5000), domains with
strong theoretical models, or applications where marginal
accuracy improvements justify higher computational costs.
Interpretability Advantage. Unlike deep learning black
boxes, the two-phase structure offers transparency through
exploration diagnostics, exploitation trajectories, and
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interpretable parameter values—facilitating validation and
stakeholder trust-building.

5.4 Limitations and Future Directions

Key limitations include: (1) unclear lower bounds for
minimum sample size, (2) unexplored performance on long-
term forecasts (10+ steps), (3) untested handling of multiple
seasonality patterns, (4) lack of exogenous variable
integration, and (5) absence of systematic uncertainty

quantification.
Future research should: formalize convergence proofs,
characterize the problem class ensuring consistent

performance, extend to multivariate forecasting, integrate
uncertainty quantification efficiently, validate across
additional domains and longer horizons, and conduct
operational deployment studies measuring real-world
decision impact.

5.5 Concluding Reflections

This investigation demonstrates that parsimony—using only
necessary complexity—often proves advantageous in
forecasting. The research-practice gap persists because
academic emphasis on sophisticated methods overlooks
practical constraints facing many forecasters. Computational
efficiency deserves elevation as a primary objective alongside
accuracy. The rvGA-eNM's balance of accuracy, efficiency,
and robustness represents a contribution toward making high-
quality forecasting more accessible where it's needed most.
The peer review process, despite initial skepticism, helped
reveal the algorithm's cross-domain robustness and pushed
toward clearer theoretical formalization—exemplifying how
rigorous scrutiny transforms good research into better
research.

6. Conclusion

This study introduces and validates a hybrid rvGA-eNM
(real-valued Genetic Algorithm with enhanced Nelder-Mead)
forecasting method designed to address critical gaps in
operational time series forecasting, particularly in data-
constrained environments. Through comprehensive multi-
domain validation across Indonesian crude oil prices (156
observations), Gorontalo regional electricity consumption
(26 observations), and Albania GDP (125 observations), this
research establishes three principal contributions to
forecasting methodology. First, the hybrid rvGA-eNM
demonstrates exceptional computational efficiency without
sacrificing forecasting accuracy. Achieving convergence
within 0.93 to 3.31 seconds across all datasets while
maintaining MAPE values between 3.37% and 6.33%, the
algorithm substantially outperforms contemporary hybrid
approaches that require significantly longer computation
times. This efficiency-accuracy balance proves critical for
real-time forecasting applications and resource-constrained

operational  environments  where  high-performance
computing infrastructure may be unavailable.

Second, the algorithm exhibits robust performance across
datasets of wvastly different sizes and characteristics,
fundamentally challenging conventional assumptions about
minimum data requirements in forecasting. The successful
deployment on the Gorontalo dataset with only 26 annual
observations, achieving 6.33% MAPE, demonstrates that
sophisticated forecasting methods can deliver reliable
predictions even with limited historical data. This capability
addresses practical constraints faced by emerging markets,
regional systems, and transitional economies where extensive
historical records remain unavailable.

Third, cross-domain validation reveals remarkable
consistency in performance across energy commodities,
electricity demand, and macroeconomic indicators. The
narrow MAPE variance of 2.96 percentage points across
fundamentally different forecasting contexts suggests
genuine algorithmic generalizability rather than domain-
specific optimization. This consistency enables deployment

without extensive algorithm customization, reducing
implementation barriers for practitioners.
The theoretical contribution centers on formalizing

Algorithm Orchestration Theory through complementary
capability exploitation and adaptive phase transition
mechanisms. The explicit separation of global exploration
(genetic algorithm) and local exploitation (enhanced Nelder-
Mead) phases, coupled with convergence-based transition
logic, provides a methodological framework for designing
efficient hybrid algorithms. This orchestration approach
reconciles the tension between exploration breadth and
exploitation depth that constrains many existing hybrid
methods.

Comparative benchmarking against state-of-the-art hybrid
algorithms reveals the rvGA-eNM's distinctive positioning.
While achieving competitive to superior forecasting
accuracy, the algorithm requires 72 times less computation
than deep learning hybrids like PSO-GWO-LSTM and
converges within 100 iterations compared to 200-500
iterations for comparable methods. This efficiency
advantage, combined with small-sample robustness and
cross-domain consistency, positions 1vGA-eNM as a
practical "first-choice" algorithm for diverse operational
forecasting applications.

However, important limitations warrant acknowledgment.
The algorithm's  performance  boundaries  remain
incompletely characterized, particularly regarding minimum
viable sample sizes below 20 observations and long-horizon
forecasts exceeding 10 steps ahead. The current
implementation does not incorporate exogenous variables or
systematic uncertainty quantification, limiting applicability
in contexts requiring probabilistic forecasts or external
predictor integration. Additionally, while the algorithm
handles single seasonality effectively, performance on
multiple seasonal patterns remains unexplored.

Future research directions include: formal convergence
proofs under varying data conditions, characterization of the
specific problem class ensuring consistent performance,
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