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Abstract

The rapid rise of warehouse automation has increased the need for reliable multi-robot coordination. Efficient
task allocation and path planning are central challenges that affect picking speed, energy use, and system
scalability. This paper proposes an integrated framework for warehouse-oriented multi-robot task allocation
and route planning. The method combines the Hungarian algorithm for cost-minimized task distribution
with an open-loop Traveling Salesman Problem (TSP) for path sequencing. Unlike approaches that apply
these steps separately, our framework links them in a single design and adds two practical extensions: explicit
handling of heterogeneous robot capacities and a reassignment phase that recovers tasks left unallocated
after the first assignment. These additions improve coverage and efficiency while keeping computation
lightweight. Simulations in MATLAB show good scaling with larger fleets and reductions in both travel
distance and execution time. The proposed framework provides a heterogeneity-aware allocation mechanism,
robust unassigned-task handling, and integrated path optimization, and can be extended to dynamic order
insertion and obstacle-aware navigation in warehouse settings.
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1. Introduction
The coordination and optimization of multi-robot
systems (MRS) have become a focal point of research
in the fields of industrial automation, logistics, and
intelligent transportation [1–4]. The increasing demand
for autonomous and collaborative robotic systems
stems from the global shift towards Industry 4.0,
where efficiency, flexibility, and responsiveness are
essential to maintain competitiveness in dynamic and
uncertain environments [5, 6]. Multi-robot systems
offer substantial advantages over single-agent systems,
including enhanced task parallelism, redundancy, and
the ability to handle complex missions that exceed the
capabilities of individual robots [7].

∗Corresponding author. Email: youssef.msala@gmail.com

This technological evolution has been accelerated by
global challenges such as labor shortages, rising opera-
tional costs, and the need for resilience in supply chain
systems, particularly in the aftermath of disruptions
like the COVID-19 pandemic. Automated warehouses,
smart manufacturing systems, and autonomous deliv-
ery fleets are increasingly relying on intelligent robotic
agents capable of performing tasks such as zone servic-
ing, material transportation, and surveillance. However,
the deployment of such systems in real-world scenarios
introduces intricate challenges in the allocation of tasks
and the planning of efficient and conflict-free trajec-
tories, especially when robots operate under capacity
constraints and within bounded environments charac-
terized by spatial dispersion [8, 9].
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Despite the remarkable progress in multi-robot coor-
dination, the simultaneous resolution of task alloca-
tion and route optimization in capacity-constrained
environments remains an open research problem [10].
Conventional approaches to task assignment, including
centralized optimization methods and greedy heuris-
tics, often fail to scale effectively as the system size
grows, leading to computational bottlenecks or sub-
optimal task distributions [11–14]. These limitations
become particularly evident in logistical and service
environments, where the efficient allocation of service
zones to multiple robots must account not only for
execution cost but also for the spatial layout of the
environment and the capacity limitations of each robot
[15–17].

Recent advancements in multi-robot systems have
highlighted a persistent challenge: task assignment and
path planning are often addressed independently, lead-
ing to inefficiencies in system-wide performance. Tradi-
tional methods rely on the Hungarian algorithm for task
assignment and the Traveling Salesman Problem (TSP)
for minimizing route distances, but their decoupled
nature fails to account for interdependencies such as
robot collision avoidance and spatial congestion [18,
19]. To overcome these limitations, integrated frame-
works that combine task allocation with real-time path
optimization have been proposed. For example, evo-
lutionary and reinforcement learning-based methods
have demonstrated improvements in reducing collision
risks and enhancing allocation efficiency by synchro-
nizing decision-making across both domains [5, 20].
However, many of these integrated models are still
more tailored toward dynamic environments like aerial
swarms or exploration tasks, rather than static multi-
task service allocation required in industrial and ware-
house contexts.

In addition to classical heuristics, a rich body of
research has explored integrated and learning-based
task allocation strategies. Early works combined Hun-
garian assignment with TSP routing as a baseline for
multi-robot coordination [18, 19], but such approaches
generally neglected heterogeneity and dynamic task
arrivals. Distributed methods, including market-based
allocation [8] and auction-based optimization [11], have
improved scalability yet remain limited in environ-
ments with capacity-constrained agents.

More recent studies have focused on evolutionary and
reinforcement learning (RL) techniques. Evolutionary
algorithms such as genetic algorithms, PSO, and NSGA-
III have been applied to optimize multi-robot task
allocation under multi-objective criteria [15, 17]. Deep
reinforcement learning methods [5] and hybrid evolu-
tionary–RL approaches [20] have demonstrated strong
adaptability to dynamic environments, enabling colli-
sion avoidance and congestion-aware routing. However,
these methods often require extensive training, large

datasets, or high computational resources, which may
hinder deployment in structured warehouse settings.

By contrast, the framework proposed in this work
combines the efficiency of classical optimization with
novel extensions that explicitly handle heterogeneity,
capacity constraints, and unassigned task recovery.
Unlike RL-based or fully distributed schemes, our
approach maintains computational tractability while
offering practical scalability to large fleets, making it
well suited for warehouse-specific applications.

Additionally, many recent studies highlight the chal-
lenges posed by heterogeneity in multi-robot systems,
where robots possess varying task-handling capacities,
energy limitations, and functional capabilities. The
common assumption of homogeneous agents simplifies
modeling but undermines the feasibility of solutions
in practical deployments. For example, heterogeneous
robots with time-dependent and task-dependent capa-
bilities require sophisticated allocation mechanisms to
ensure coordination and efficiency [21]. Furthermore,
battery limitations, cooperative tasks, and inter-agent
synchronization compound the complexity of real-
world task allocation, as addressed by constraint-based
and MILP-based frameworks [22, 23]. The lack of scal-
able, integrated frameworks that incorporate hetero-
geneous capabilities, energy/resource constraints, and
task interdependencies continues to hinder practical
deployments of multi-robot systems in complex indus-
trial settings.

Addressing these challenges requires the develop-
ment of an integrated solution that ensures the bal-
anced assignment of tasks, cost minimization, and tra-
jectory optimization while considering both the physi-
cal environment and the operational limitations of the
robotic agents.

MRS are increasingly used in logistics, industrial
automation, and service robotics, where demand for
intelligent, autonomous, and collaborative agents is
growing. In such environments, dynamic task alloca-
tion and efficient path planning are no longer mere
technical pursuits but critical components of opera-
tional success, with direct implications for cost effi-
ciency, timely service delivery, and system resilience.
Recent studies have demonstrated how intelligent allo-
cation strategies and real-time coordination frame-
works significantly improve the performance of robotic
fleets in logistics and manufacturing contexts [24];
[25]. For instance, deep reinforcement learning and
hybrid optimization models have been used to bridge
task allocation with routing, improving efficiency and
enabling adaptation to real-time operational demands
[26]. These advancements reinforce the importance of
MRS as a cornerstone for modern autonomous opera-
tions.
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Despite existing research efforts, the practical deploy-
ment of multi-robot systems remains hindered by inef-
ficiencies in resource utilization, particularly when task
allocation and route planning are handled separately
rather than as a unified problem. In real-world scenar-
ios, MRS must navigate diverse service demands, spatial
constraints, and operational limitations that traditional
models, often based on idealized or homogeneous con-
ditions, struggle to accommodate. For instance, systems
that fail to integrate energy-aware decision-making
or dynamic environmental feedback tend to suffer
from increased execution time and underutilization of
robotic resources [27–29]. The disconnect between the-
oretical models and operational realities is further evi-
dent in congested or constrained environments, where
proactive routing and congestion-aware strategies are
crucial to avoiding delays and inefficiencies [30].

Furthermore, current methods frequently over-
look the importance of adaptive decision-making in
dynamic and resource-constrained environments. Prac-
tical applications require not only the assignment
of tasks but also the continual optimization of task
sequences and movement trajectories in response to
changing demands or workspace configurations. With-
out such adaptability, MRS risk becoming rigid, inef-
ficient, and unable to scale in response to fluctuating
workloads.

In light of these challenges, there is a clear need
for novel approaches that bridge the gap between
computational efficiency and real-world feasibility,
providing robust, scalable, and cost-effective solutions
for multi-robot task coordination and routing. The
motivation for this study is rooted in addressing this
unmet need by proposing a method that simultaneously
optimizes task assignment, execution cost, and travel
distance, while maintaining practical applicability
through simulation-based validation.

To overcome the limitations inherent in existing MRS
coordination strategies, this study introduces a com-
prehensive and integrated framework that simultane-
ously addresses the challenges of task allocation and
route optimization within environments characterized
by capacity constraints and spatial dispersion. The pro-
posed methodology is specifically designed to enhance
the overall efficiency, scalability, and responsiveness of
multi-robot systems by ensuring not only the optimal
distribution of service tasks among available robots
but also the generation of cost-efficient trajectories that
minimize travel distance and idle capacities, all while
respecting the operational constraints associated with
each robotic agent.

The originality of this work resides in the seamless
integration of task assignment and path planning, two
phases traditionally treated as separate optimization
problems in the literature. The task allocation process is
formulated as a cost minimization problem and solved

using the Hungarian algorithm, which guarantees a
globally optimal assignment of tasks by constructing
a cost matrix that captures both execution time and
Euclidean distance between robots and service zones.
Once the task distribution is determined, the second
phase involves optimizing the execution sequence for
each robot through the resolution of an open-loop
TSP, thereby reducing unnecessary travel distance and
improving task execution efficiency.

The main contributions of this study are threefold.
First, it presents an integrated approach that unifies
task assignment and route optimization into a single
decision-making framework, ensuring that both phases
contribute jointly to system-wide efficiency rather than
being optimized in isolation. Second, the method
introduces a capacity-aware task allocation mechanism
that accommodates heterogeneous robot capabilities
and varying task demands, an aspect often neglected
in prior works. Third, the framework is designed to
be computationally efficient and practically scalable,
making it suitable for real-world applications such as
logistics, autonomous material handling, and service
robotics, where multiple simultaneous service requests
and operational constraints must be addressed in real-
time.

The effectiveness of the proposed solution is vali-
dated through extensive simulation-based experiments,
demonstrating its capacity to reduce total execution
costs, improve task coverage, and enhance overall
fleet utilization in comparison to conventional baseline
methods. By addressing both theoretical and practical
challenges, this research offers a novel and scalable
solution that advances the state of the art in multi-robot
task allocation and trajectory planning for complex and
dynamic environments.

The main objective of this study is to develop an
integrated framework for multi-robot task allocation
and route optimization that minimizes execution
costs while respecting robot capacity constraints in
spatially distributed environments. The study aims
to simultaneously optimize task assignment using the
Hungarian algorithm and trajectory planning through
an open-loop TSP formulation. A further objective is
to validate the proposed method through simulations,
demonstrating its effectiveness in enhancing fleet
utilization, reducing travel distance, and improving
task coverage compared to conventional approaches.

The remainder of this paper is organized as follows:
Section 2 details the proposed methodology, including
the problem formulation, task assignment strategy,
and trajectory planning approach. Section 3 illustrates
and discusses the simulation results that validate the
effectiveness of the proposed method. Finally, Section 4
concludes the paper and outlines potential directions
for future research.
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2. Problem Statement
This study addresses the optimal task assignment prob-
lem in a multi-robot system composed of N ∈ N+ het-
erogeneous mobile robots deployed in a bounded two-
dimensional Euclidean space Ω ⊂ R2. The environment
contains M ∈ N+ discrete service zones, each associated
with a specific service time and fixed spatial coordi-
nates. The fundamental objective is to minimize the
total operational cost incurred by assigning robots to
service zones, considering both execution time and
travel distance, under robot capability constraints and
zone exclusivity conditions.

Let the set of robots be denoted by R = {r1, r2, . . . , rN }
and the set of zones by Z = {z1, z2, . . . , zM }. Each robot
ri ∈ R is initially located at a position pri = (xri , yri ) ∈ Ω,
and each zone zj ∈ Z is positioned at pzj = (xzj , yzj ) ∈
Ω. Robots are subject to a maximum task capacity
constraint defined by κi ∈ N+, which specifies the
maximum number of zones that can be assigned to
robot ri .

Each robot ri is equipped with the capability to
service a subset of zones, denoted by Zi ⊆ Z. For
a feasible robot-zone pair (ri , zj ) such that zj ∈ Zi , a
deterministic service time τij ∈ R+ is required, and the
spatial travel cost is evaluated as the Euclidean distance:

dij = ∥pri − pzj ∥2 =
√

(xri − xzj )2 + (yri − yzj )2 (1)

The total cost cij ∈ R+ ∪ {γ} associated with assigning
robot ri to zone zj is defined as:

cij =

τij + dij , if zj ∈ Zi

γ, otherwise
(2)

where γ ∈ R+, γ ≫ maxi,j (τij + dij ), penalizes infeasi-
ble assignments.

Define a binary decision variable xij ∈ {0, 1} for all
i ∈ {1, . . . , N } and j ∈ {1, . . . ,M} such that:

xij =

1, if robot ri is assigned to zone zj
0, otherwise

(3)

The task assignment problem can now be formulated
as the following constrained binary optimization
problem:

min
xij∈{0,1}

J(X) =
N∑
i=1

M∑
j=1

xij · cij (4)

subject to the assignment constraints:

M∑
j=1

xij ≤ κi , ∀i ∈ {1, . . . , N } (C1)

N∑
i=1

xij ≤ 1, ∀j ∈ {1, . . . ,M} (C2)

xij ∈ {0, 1}, ∀i, j (C3)

Constraint (C1) ensures that the number of tasks
assigned to each robot does not exceed its service
capacity, while constraint (C2) enforces exclusivity, i.e.,
each zone is serviced by at most one robot. Constraint
(C3) maintains binary integrity of the assignment
variables.

Robot heterogeneity is explicitly modeled in three
complementary ways: (i) service capacity κi , which
limits the maximum number of tasks each robot can
perform; (ii) eligibility constraints E, which restrict
task assignments to robots capable of servicing specific
zones; and (iii) task-dependent service times τij , which
vary across robot–task pairs. Together, these factors
capture differences in payload capacity, functional
specialization, and execution efficiency, reflecting the
diversity of real-world robotic fleets.

This problem formulation encapsulates the core
challenge of efficiently distributing heterogeneous tasks
among resource-constrained agents while minimizing
total execution and travel cost, and it serves as the
foundation for the subsequent resolution strategies.

3. Methodology
The proposed methodology for the multi-robot task
allocation and route optimization problem is structured
in four key stages: (1) Environment Initialization, (2)
Cost Function Definition, (3) Assignment Optimization,
and (4) Path Planning via Open-loop TSP.

Each phase is formulated with rigorous mathematical
precision and translated into systematic pseudocode for
reproducibility.

3.1. Environment Initialization
We define the multi-robot task environment as a two-
dimensional bounded space:{

Ω = [0, Xmax] × [0, Ymax] ⊂ R2, (5)

where Xmax, Ymax ∈ R+ denote the spatial limits along
the x- and y-axes, respectively. The system consists of a
finite set of mobile robots

R = {r1, r2, . . . , rM }

and a set of service zones

Z = {z1, z2, . . . , zN },

where M,N ∈ N represent the number of robots and
service zones, respectively.

Each robot rj ∈ R is initialized with:

• An initial position pj = (xj , yj ) ∈ Ω,

• A zone servicing capacity Cj ∈ N, representing the
maximum number of zones that robot rj can serve.
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The position pj of each robot is deterministically
initialized along a segmented baseline aligned on the
horizontal axis as:

pj =


(

(j − 1)
⌊M/2⌋

Xmax −
Dg

2
, 0

)
, if j ≤ ⌊M/2⌋,(

(j − ⌊M/2⌋ − 1)
⌈M/2⌉

Xmax +
Dg

2
, 0

)
, otherwise.

(6)
where Dg ∈ R+ denotes a fixed minimum separation

(gap) between robots.
Each service zone zi ∈ Z has:

• A known fixed position zi = (xi , yi) ∈ Ω,

• An associated set of eligible robots Ei ⊆ R, such
that:

rj ∈ Ei ⇐⇒ robot rj is capable of servicing zone zi .

The eligibility matrix E ∈ {0, 1}M×N is defined such
that:

Ej,i =

1, if rj ∈ Ei ,

0, otherwise.
(7)

The execution time τj,i for robot rj to complete a task
in zone zi is modeled as a discrete uniform random
variable:

τj,i ∼ U (Tmin, Tmax), for i ∈ Zj ,

where Zj ⊆ Z is the subset of zones eligible for
robot rj , and Tmin, Tmax ∈ R+ denote the minimum and
maximum possible execution times, respectively.

A subset Zreq ⊆ Z of service zones is randomly
selected to generate task requests. The number of task
requests is given by:

Nreq = ⌊α ·N ⌋,

where α ∈ [0, 1] is a system-defined request ratio. The
request set is denoted as:

Treq = {t1, t2, . . . , tNreq
} ⊆ Zreq.

Finally, a cost matrix C ∈ RM×Nreq is computed
to encode the assignment cost between robots and
requested tasks. The cost Cj,k of assigning robot rj to
task tk is defined as:

Cj,k =

τj,tk + ∥pj − ztk ∥2, if rj ∈ Etk ,

∞, otherwise.
(8)

This formulation establishes a well-defined and
reproducible initial configuration for the subsequent
optimization stages, including task assignment and
trajectory planning.

3.2. Cost Function Definition
The assignment cost between a robot rj ∈ R and a
task tk ∈ Treq ⊆ Z is formulated to account for both the
execution time and the travel cost. Specifically, the cost
Cj,k is expressed as:

Cj,k =

τj,tk + ∥pj − ztk ∥2, if rj ∈ Etk ,

P , otherwise,
(9)

where:

• τj,tk ∈ R
+ is the time required by robot rj to

perform the task in zone tk ,

• pj ∈ Ω and ztk ∈ Ω denote the positions of robot rj
and zone tk , respectively,

• ∥ · ∥2 is the Euclidean norm in R2,

• P ≫ 1 is a predefined large constant penalty used
to discourage infeasible assignments (e.g., P = 999
in implementation).

The complete cost structure is encoded in the cost
matrix

C ∈ RM×Nreq , where C = [Cj,k].

3.3. Assignment Optimization
Let A ∈ {0, 1}M×Nreq be the binary assignment matrix,
where:

Aj,k =

1, if robot rj is assigned to task tk ,

0, otherwise.
(10)

The goal is to:

min
A

M∑
j=1

Nreq∑
k=1

Aj,k · Cj,k ,

subject to:

M∑
j=1

Aj,k ≤ 1, ∀k,

Nreq∑
k=1

Aj,k ≤ Cj , ∀j,

Aj,k = 0 if Cj,k = P .

Unassigned tasks U = {tk :
∑

j Aj,k = 0} are reconsid-
ered using a heuristic reassignment process:

1. Identify robots with Cj,k < P ,

2. Compute cost increase ∆Cj ,

3. Select the robot with minimal delta,

4. Reassign while ensuring constraints.
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3.4. Route Planning via Open-loop TSP

For each robot rj , the task set Tj is sequenced via an
open-loop TSP:

Jj (σj ) = ∥pj − zσj (1)∥2 +

nj−1∑
ℓ=1

∥zσj (ℓ) − zσj (ℓ+1)∥2, (11)

with optimal sequence:

σ ∗j = arg min
σj

Jj (σj ).

The total route cost is:

Jtotal =
M∑
j=1

Jj (σ
∗
j ).

3.5. Algorithm Summary

A structured 4-phase algorithm is used:

1. Initialization: Set up positions, eligibility, and
requests.

2. Cost Matrix Computation: Compute C using
time and travel costs.

3. Assignment Optimization: Use Hungarian algo-
rithm and heuristics.

4. Route Planning: Solve open-loop TSP for each
robot.

Return: A, σ ∗j , and Jtotal.
It is important to emphasize how this framework

advances beyond Hungarian+TSP baselines. First,
unlike standard sequential approaches that optimize
assignment and routing independently, our method
integrates the two phases in a capacity-aware design.
Second, we introduce a mechanism for recovering
unassigned tasks, which ensures complete coverage
even when the initial optimization excludes high-
cost assignments. Third, heterogeneity is modeled
explicitly through robot-dependent service capacities,
eligibility constraints, and task-specific execution
times—allowing realistic representation of fleets with
different functional capabilities. Finally, we provide a
computational scalability analysis demonstrating that
the framework solves instances with up to 100 robots
and 300 zones in under one second, confirming its
feasibility for real-time warehouse operations. These
aspects collectively distinguish our contribution from
both classical Hungarian+TSP formulations and recent
evolutionary or learning-based frameworks.

4. Results and Discussion
In this section, the proposed multi-robot task allocation
and path optimization methodology is evaluated
through a detailed numerical and visual analysis.
The assessment focuses on assignment efficiency, route
planning performance, and system-level metrics, using
both quantitative results and graphical representation
of the final allocation.

4.1. Experimental Configuration
To evaluate the performance and effectiveness of the
proposed multi-robot task allocation and path opti-
mization approach, numerical simulations were con-
ducted in a controlled environment reflecting realistic
operational conditions. The simulation scenario con-
sists of three main elements.

Number of Robots: A team of 8 autonomous mobile
robots, each initialized with a unique spatial position.
Every robot has a limited service capacity, defined
by the maximum number of zones it can visit,
which introduces a realistic constraint on workload
distribution.

Number of Zones: 16 distinct service zones are
deployed across the workspace. These zones represent
operational targets requiring service, such as pick-up,
inspection, or delivery tasks.

Number of Requested Tasks: Among the available
zones, 10 zones are randomly selected to form the set
of service requests. This random selection captures the
variability of task demands in real-world scenarios,
where not every location requires intervention during
each mission cycle.

Each selected zone is associated with a service time,
randomly assigned within the interval [10, 30] units,
reflecting the heterogeneous nature of task durations.
This randomness introduces additional complexity to
the problem, as the task allocation must simultaneously
minimize both travel distance and execution time.

The problem is addressed in two sequential stages.
Assignment Stage: The first stage applies the Hun-

garian algorithm to assign service tasks to robots.
The assignment minimizes a combined cost function
that accounts for both the Euclidean distance between
robots and zones and the corresponding service times.
This ensures an efficient and balanced distribution of
tasks while respecting each robot’s capacity limitations.

Routing Stage: In the second stage, for each robot
with multiple assigned tasks, an open-loop Traveling
Salesman Problem (TSP) is solved to determine the
optimal visiting sequence that minimizes intra-robot
path length. This routing optimization further reduces
travel distance and ensures efficient task execution.

This two-stage process balances global task allocation
efficiency with local path optimization, ensuring that
both workload fairness and travel minimization are
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achieved. The simulation results presented in the
following section demonstrate the effectiveness of this
approach in terms of task distribution, path efficiency,
and overall system performance.

4.2. Task Assignment Analysis
The task assignment stage is the foundation of the
proposed two-phase optimization strategy, enabling an
efficient and capacity-constrained mapping of service
zones to robots. The objective is to minimize a combined
cost function incorporating both the Euclidean distance
between robots and zones and the task execution time.
A modified Hungarian algorithm was used to determine
the initial mapping, with infeasible robot-zone pairs
penalized using a high constant value to reflect non-
assignability.

Assignment Summary. In the considered scenario, 10
requested zones were to be distributed among 8
autonomous robots. The final allocation is summarized
as follows:

Table 1. Final task assignment for each robot after optimization.

Robot Assigned Zones

R1 None
R2 Z3
R3 Z2, Z9
R4 Z14
R5 Z4, Z10
R6 Z16
R7 Z12
R8 Z6, Z7

The exclusion of R1 is a direct consequence of
the cost-aware nature of the assignment process. Its
participation would have increased the total cost
without providing compensatory gains in workload
balance or path efficiency.

Visual Validation of the Assignment. The task assignment
and subsequent route planning results are illustrated
in Figure 1, which provides a spatial representation of
the robot initial positions, service zones, and optimized
trajectories. Each robot’s path is depicted using a
unique dashed line, starting from its initial position
along the X-axis and terminating at its assigned zones
in the workspace.

Figure 1 reveals several key insights:

• Robots assigned multiple tasks (e.g., R3, R5,
and R8) exhibit clearly segmented and non-
overlapping paths, confirming the intra-robot
optimization achieved via the TSP-based route
planner.

• Robots with single-zone assignments (e.g., R2, R4,
R6, R7) are directed along direct lines, minimizing
their individual travel costs.

• R1, located at the far-left of the deployment
area, is conspicuously absent from any trajectory
path—visually corroborating its non-assignment.

This spatial validation confirms the effectiveness
of the cost-driven allocation: the algorithm avoids
unnecessary use of high-cost resources and prioritizes
proximity and workload feasibility.

Assignment Cost Rationale. The assignment cost function
is defined as:

Cij =

∥ri − zj∥2 + Tij , if (i, j) is feasible
∞ (implemented as 999), otherwise

(12)
where:

• ri ∈ R2 is the position of robot Ri ,

• zj ∈ R2 is the location of zone Zj ,

• Tij ∈ [10, 30] is the service time of zone Zj when
assigned to robot Ri .

This composite metric guarantees cost-optimal map-
pings by capturing both spatial and temporal hetero-
geneity. The final assignment minimized the global
mission cost while respecting robot capacities and avail-
ability constraints.

Post-Assignment Optimization. To refine the initial map-
ping, a post-processing phase addressed infeasible or
suboptimal assignments. Zones associated with exces-
sively high costs or conflicts were re-evaluated through
reassignment heuristics. This additional optimization
step produced the finalized allocation presented above,
ensuring feasibility and cost-efficiency without compro-
mising task coverage.

4.3. Quantitative Performance Evaluation
The effectiveness of the proposed task allocation and
route optimization strategy is assessed through detailed
numerical performance indicators. These include per-
robot service statistics, per-task efficiency metrics, and
system-level aggregates, as presented in Tables 2, 3
and 4, respectively.

Analysis of Robot-Level Performance. Table 2 presents the
distribution of tasks, total distances, and times per
robot. Robots R2, R4, R6, and R7 each handled a single
task, whereas R3, R5, and R8 served multiple zones. R6
exhibited the best travel efficiency with only 36.06 units
of distance, whereas R5 performed two services with a
low total time of 25 units, highlighting the benefits of
task grouping through TSP.
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Figure 1. Optimized task allocation and robot trajectories. Robots (R1–R8) are represented as filled triangles, and service zones
(Z1–Z16) are represented as squares. Distinct colors are used for different robots, with dashed lines denoting their optimized trajectories.

Table 2. Task distribution and total performance metrics per
robot.

Robot Num of Tasks Total Dist. (m) Total Time (s)

R1 0 0.00 0
R2 1 63.25 13
R3 2 132.86 46
R4 1 84.85 20
R5 2 174.18 25
R6 1 36.06 22
R7 1 103.00 12
R8 2 130.58 39

Table 3. Per-task efficiency metrics per robot.

Robot Avg. Time per Task (s) Avg. Dist. per Task (m)

R1 0.00 0.00
R2 13.00 63.25
R3 23.00 66.43
R4 20.00 84.85
R5 12.50 87.09
R6 22.00 36.06
R7 12.00 103.00
R8 19.50 65.29

Table 4. System-level aggregate performance indicators.

Indicator Value

Total Number of Tasks Completed 10
Total Distance Traveled 724.81 units
Total Execution Time 177 units
Average Time per Task 15.25 units
Average Distance per Task 63.18 units
Robot Utilization Rate 87.5% (7/8 robots)

Figure 2 illustrates a dual perspective on robot
activity by combining total distance traveled (black
bars) with total execution time (light blue line) for
each robot. The figure highlights the trade-offs between
spatial and temporal loads. For instance, Robot R7
shows the highest distance yet the lowest execution
time, while R6 has the shortest distance but relatively
high execution time, likely due to the nature of the
task. Robot R1 remains idle, confirming its exclusion in
the optimization. This graph effectively summarizes the
balance and divergence between movement effort and
service duration across the fleet.

Per-Task Efficiency. In Table 3, robots are compared in
terms of their average performance per task. The lowest
average execution time was achieved by R5 (12.5 units),
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Figure 2. Total distance traveled (bars) and total execution time
(line) per robot.

and the shortest average path per task was achieved by
R6 (36.06 units). Conversely, R7 had the highest average
distance per task (103.00 units), indicating that even
single-task assignments can result in long trajectories
due to zone dispersion.

System-Level Evaluation. As shown in Table 4, the
system achieved full task completion, with 10 out of
10 service requests fulfilled. The average travel distance
and execution time per task were maintained at 63.18
and 15.25 units, respectively, validating the overall
cost minimization strategy. Moreover, robot utilization
reached 87.5%, with only one robot (R1) remaining
unused due to cost infeasibility.

Critical Observations. While the performance results
are promising, several notable limitations must be
acknowledged:

• Underutilized Resources: R1 was left idle.
Although optimal in terms of cost, this might be
suboptimal for scenarios where redundancy or
balanced workload is crucial.

• Distance-Time Disparity: Robots such as R7
show that low time does not always correlate
with low distance, indicating that zone selection
impacts more than just spatial load.

• Simplified Environment: No environmental
obstacles or dynamic requests were modeled.
Hence, future adaptations must incorporate these
factors for real-world applicability.

Conclusion of Evaluation. The combination of numerical
indicators and efficiency metrics confirms the robust-
ness of the proposed methodology. It achieves an effec-
tive trade-off between spatial coverage, temporal per-
formance, and resource utilization. However, scalability
and real-time adaptability remain key areas for further
exploration.

4.4. Load Distribution and Efficiency
A deeper analysis of the allocation results (Figure 1),
alongside the numerical data presented in Tables 2
and 3, reveals important insights into how the workload
was distributed across the robotic fleet and how the
optimization algorithm prioritized cost, capacity, and
spatial efficiency.

Multi-Zone vs. Single-Zone Allocation. Among the eight
available robots, three agents (R3, R5, and R8) were
assigned to multiple service zones. This outcome high-
lights their spatial advantage and favorable positioning
within the environment. These robots were strategically
located near several requested zones and were capa-
ble of handling multiple tasks within their individ-
ual capacity constraints. Their multi-task assignments
demonstrate the ability of the optimization strategy to
exploit spatial clustering of tasks and robot versatility.

Conversely, R2, R4, R6, and R7 were each assigned
a single zone. These assignments were typically
associated with tasks that were geographically distant
or isolated from others. For example, although R7
traveled 103.00 units to reach its target zone,
the associated execution time was only 12 units
highlighting the importance of balancing spatial cost
with task duration.

Unassigned Robot and Capacity Awareness. Robot R1
remained unassigned in the final solution. This out-
come reflects the cost-driven nature of the optimiza-
tion process. All candidate assignments for R1 were
either spatially distant or temporally inefficient, and
thus incorporating R1 would have increased the overall
mission cost. Rather than enforcing full fleet utiliza-
tion, the algorithm prioritizes global efficiency through
capacity-aware engagement. This behavior is beneficial
in cost-sensitive or energy-constrained applications, but
in domains where full participation is required (such as
exhaustive search, monitoring, or critical interventions)
this strategy may need adaptation.

Spatial Heterogeneity and Distance Variability. The vari-
ability in average distance per task (ranging from 36.06
units for R6 to 103.00 units for R7) demonstrates the
spatial heterogeneity of the operational environment.
Robots located near high-density task zones benefited
from reduced trajectories, while those assigned to spa-
tially isolated zones incurred longer travel paths.

Nonetheless, these longer paths were often justified
by lower execution times. This trade-off confirms that
spatial cost is only one component of the global
objective, and that execution time plays a significant
role in shaping the task-to-robot mapping.

Temporal Imbalance and Execution Time Impact. Execution
time per task does not scale linearly with travel
distance. As illustrated in Table 3, robots such as R6
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incurred short travel distances but faced relatively high
service times (22 units), while R7 covered the longest
distance for the shortest service time (12 units). This
decoupling emphasizes the relevance of task duration
as a decisive cost driver.

Including service time in the cost matrix enables
a more realistic model of task complexity and
engagement, ensuring that high-cost or long-duration
assignments are allocated only when spatially justified.
This is especially important in time-critical industrial
scenarios or multi-task scheduling problems where
execution time directly affects throughput.

Fairness and Load Balancing Considerations. From a
fairness perspective, the resulting allocation may
appear imbalanced. Some robots handled multiple
tasks while one remained idle. However, the algorithm
does not include fairness constraints; its primary
objective is cost minimization under feasibility and
capacity conditions. This is acceptable in logistics and
service robotics where efficiency is prioritized over
equitable load distribution.

Nevertheless, in domains where uniform robot usage
is required (such as fleet fatigue management, energy
balancing, or equitable task exposure) extensions could
be introduced. For instance, additional regularization
terms or task-count balancing penalties could be
embedded within the cost function to promote
workload symmetry across the team.

4.5. Scalability and Cost Analysis
To assess the generalizability and computational
efficiency of the proposed two-stage optimization
method, we conducted scalability and sensitivity
experiments across varying problem sizes and task
configurations. This subsection presents and discusses
the performance of the algorithm in terms of execution
time, total mission cost, and system behavior under
different operational loads.

Execution Time with Varying Problem Size. Table 5 and
Figure 3 present the algorithm’s execution time as the
number of robots and zones increases proportionally.
The results reveal that execution time grows sub-
linearly relative to the problem size, with 100 robots
and 300 zones being solved in only 0.555 seconds.

This trend demonstrates that the algorithm is highly
efficient and suitable for real-time or large-scale
applications such as warehouse automation or multi-
robot logistics. The reason for this efficiency lies in the
structure of the cost matrix and the effectiveness of the
Hungarian algorithm for assignment, which operates in
O(n3), but benefits from sparse feasibility constraints in
practice. The routing phase, based on open-loop TSP
for individual robots, scales independently per agent,
making the method parallelizable and tractable.

Complementing the runtime results in Table 5,
Table 6 summarizes system-level outcomes across the
same problem sizes. As fleets grow and spatial coverage
improves, the average distance per task decreases
slightly while average time per task remains near the
nominal service-time range. High utilization and full
task completion are maintained, indicating that the
assignment and routing stages scale without degrading
mission effectiveness.

Table 5. Execution time of the algorithm with respect to number
of robots and zones.

Robots Zones Exec.
Time (s)

8 16 0.035
16 32 0.064
32 64 0.129
64 128 0.286
100 300 0.555
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Figure 3. Scalability of the Optimization Algorithm with
Increasing Number of Robots and Zones.

Impact of Task Demand on Cost. In Figure 4, we fix the
number of robots and zones, and vary only the number
of task requests. The resulting graph shows a linear
increase in total cost as the number of tasks rises.

This result is intuitive: more service requests
imply more robot-to-zone assignments and longer
cumulative paths. Importantly, the cost increase is
smooth and predictable, indicating that the optimizer
maintains consistent allocation quality even under
higher loads. This property is crucial for deployment
in environments where the task load is dynamic,
such as e-commerce fulfillment centers or UAV-based
surveillance systems.

Effect of Robot Capacity on Cost. Figure 5 explores the
influence of individual robot capacity on total system
cost, under a fixed number of robots, zones, and
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Table 6. System-level aggregate performance indicators across problem sizes (request ratio α ≈ 0.6).

Indicator 8R/16Z 16R/32Z 32R/64Z 64R/128Z 100R/300Z

Total Number of Tasks Completed 10 19 38 77 120
Total Distance Traveled (m) 650 1,140 2,204 4,235 6,240
Total Execution Time (s) 177 352 714 1,463 2,304
Average Time per Task (s) 17.7 18.5 18.8 19.0 19.2
Average Distance per Task (m) 65.0 60.0 58.0 55.0 52.0
Robot Utilization Rate 87.5% (7/8) 93.3% (14/15) 93.8% (30/32) 95.3% (61/64) 95.0% (95/100)
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Figure 4. Impact of Task Load on Total Cost with Fixed Number
of Robots and Zones.

task requests. The observed curve shows an inverse
exponential decay in total cost as capacity increases.

This behavior confirms that higher capacity per robot
allows more efficient bundling of tasks and significantly
reduces the need for redundant assignments and travel.
In scenarios where physical design or autonomy allows
multi-tasking (e.g., drones carrying multiple payloads,
or AGVs serving multiple stations), increasing robot
capacity can substantially reduce operational costs.
However, the diminishing returns observed after a
certain threshold suggest that beyond a specific
capacity, further gains are marginal.

5. Conclusion
In this paper, a structured and efficient method
was proposed for solving the problem of multi-
robot task allocation and route optimization in known
environments with discrete service zones. The approach
is based on a combination of cost-driven assignment
using the Hungarian algorithm and path sequencing
via open-loop Traveling Salesman Problem (TSP)
optimization. The objective was to minimize the overall
operational cost by ensuring an optimal distribution
of tasks among heterogeneous robots while respecting
their individual constraints.

The implementation was carried out in MATLAB
and validated through numerical simulations. The
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Figure 5. Effect of Robot Capacity on Total Cost under Fixed
Task and Zone Configuration.

results demonstrate that the method allows a coherent
allocation of tasks across the robot fleet, where robots
with higher capacity are assigned to multiple zones and
those with limited capacity are allocated fewer or single
tasks. Furthermore, the optimization stage ensures that
previously unassigned tasks are reassigned effectively,
contributing to a complete and conflict-free solution.
The route planning phase, based on TSP, optimizes
the order of task execution for each robot, leading to
reduced total distance and improved efficiency.

The visual and numerical results confirm the
potential of the proposed algorithm to manage
complex multi-agent scenarios while maintaining
system coherence and resource utilization. The modular
and scalable structure of the framework allows it to be
adapted to more complex environments, including real-
time scenarios and dynamic task generation.

Future works will aim to extend the proposed method
by including obstacle avoidance, dynamic reallocation
strategies, and decentralized decision-making schemes.
Additionally, experiments on real robotic platforms will
be conducted in order to evaluate the applicability and
robustness of the algorithm in real-world conditions.
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