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Abstract

Interleukin-4 (IL-4) plays a critical role in immune regulation and inflammation suppression, and therefore precise prediction
is important in immunotherapy and vaccine design. In this work, we present an innovative stacking ensemble-based
predictive model for IL-4-inducing peptide discovery. The method combines the group of feature extraction techniques, i.e.,
Amino Acid Composition (AAC), Amphiphilic Pseudo Amino Acid Composition (APAAC), and their combinations, and
their pruning using SHAP (SHapley Additive exPlanations) with only the most relevant features being retained. To solve
the class imbalance problem inherent in the peptide data, the ADASYN (Adaptive Synthetic Sampling) algorithm was
applied for synthetic oversampling. We applied eight machine learning classifiers: Logistic Regression, Random Forest,
Support Vector Classifier, Decision Tree, K-Nearest Neighbors, XGBoost, LightGBM, and a stacking ensemble model,
enabling the strong prediction on both imbalanced and balanced datasets. Our evaluation demonstrates the stacking model's
better performance on the imbalanced and balanced dataset. Surprisingly, with combined characteristics, the stacking model
over the independent test set yielded accuracy of 89.97% and Matthew's Correlation Coefficient (MCC) as 0.79. Accurate
comparisons of performance over AAC and APAAC feature spaces indicate that the stacking model performs better than
other classifiers in all instances, albeit more so under balanced scenarios, referring to data rebalancing requirements. This
research not only highlights the precision of stacking ensembles in peptide classification tasks but also urges the integration
of interpretable feature selection and data balancing in future immunoinformatic pipelines.
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has been recognized for playing multifunctional roles in both
immunomodulatory and anti-inflammatory  cascades.
. . Revealing the underlying mechanisms of IL-4 action is

The immune system is a complex network of cells,  ccial to devising effective therapeutics for immune
molecules, and signaling pathways that function coordinately  jisorders [2]. It is one of its primary functions to induce the
to defend. the body against 1nfect1(?n and to PIESCIVE  differentiation of naive T helper (Th) cells to Th2 cells, which
hqmeostasm. Of t.he enormous repertque of Compopents M has a critical function in helping with humoral immunity and
this system, cytokines are instrumental in conducting immune i dy response [3]. IL-4 stimulates B cell growth and the
responses, such as inflammation, repair of tissue, and immune production of immunoglobulins such as IgE and IgG1—both
modulation [1]. Interleukin-4 (IL-4) is a critical cytokine that important in the defence against extracellular pathogens. IL-
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4 also enhances the expression of major histocompatibility
complex (MHC) class II molecules on antigen-presenting
cells, thus maximizing immune response efficiency. All these
effects position IL-4 centrally in immune system regulation
[4]. While it has protective roles, IL-4 also plays a role in the
pathogenesis of allergic illnesses such as asthma, eczema, and
allergic rhinitis [5]. This is since IL-4 may augment IgE
production and cause Th2-polarized immune responses [6].
This contradictory characteristic of IL-4 being both a
regulator and a possible etiology of disease renders it a
slippery therapeutic target.

IL-4 impacts autoimmune diseases by modulating B cell
function and inducing Th2 responses, and research has linked
it with cancer development by its potential to block cell death
and induce tumor cell survival [7]. Computational
immunology advances have made way for new exploration of
cytokine interactions and regulatory mechanisms [8]. IL-4
has been emphasized for its potential as a therapeutic target
for disease modulation. Accurate prediction of IL-4-inducing
peptides would form the basis for new treatments that
selectively enhance or suppress IL-4 activity according to
clinical needs. However, acquiring high predictive accuracy
remains a problem due to the complexity of peptide-protein
interactions and variety in immune reactions. We address
these issues within this paper by focusing on the improvement
of IL-4-inducing peptide predictive accuracy.

Despite numerous machine learning efforts for IL-4-
inducing peptide prediction, most existing models suffer from
limited generalizability, class imbalance sensitivity, and a
lack of interpretability. Many previous works fail to
incorporate ensemble learning or deep feature engineering
that combines sequence-based and physicochemical
properties. Moreover, comparative evaluations with various
data balancing and encoding strategies remain underexplored.

Based on recent literature and advances in technology, we
employ advanced machine learning techniques to improve
peptide prediction models. Specifically, the study employs a
stacking ensemble approach that integrates various amino
acid feature encoding methods with the aim of achieving
greater performance than to other predictive models [9]. The
model has been exhaustively tested against recognized
datasets and has demonstrated consistent improvement in
accuracy. Such consistency is a measure of its viability as a
valuable research tool as well as for possible clinical
application. The implications of this work have the potential
to contribute to the development of targeted therapies for
diseases in which interleukin-4 (IL-4) is a central
protagonist—e.g., allergic disease, autoimmune disorders,
and some cancers.

In this study, our contributions include, we employed a
comprehensive and diverse feature extraction strategy using
iLearnPlus. This multi-perspective representation captures
both sequence composition and physicochemical properties,
enabling the model to learn intricate peptide patterns crucial
for IL-4 induction. To address the significant class imbalance
in the dataset, we applied advanced data balancing techniques
like ADASYN, which dynamically generates synthetic
samples based on learning difficulty. This approach improves
the model's ability to accurately detect and classify minority
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class (IL-4-inducing) peptides, ensuring balanced learning
and reducing bias. We propose a robust stacking ensemble
learning framework that integrates diverse base classifiers—
Random Forest, Support Vector Machine, XGBoost, and
LightGBM—with Logistic Regression as a meta-learner.
This hierarchical architecture leverages the unique strengths
of each model to enhance predictive accuracy and
generalization for IL-4-inducing peptide identification.

2. Related Work

IL-4 is one of the most prominent immune regulatory
cytokines, and IL-4-inducing peptide prediction is a
significant consideration in vaccine development. Various
computational tools have been employed since the early days
to construct IL-4 peptide prediction models. Some of the
common tools used are motif-based search algorithms,
quantitative matrix (QM) algorithms, and more recently,
advanced machine learning models. The QM approach has
proved important in delineating a distinct image of the
function of individual amino acids in peptide recognition by
different MHC loci. Conventional approaches to T-cell
epitope prediction, often based on MHC class I binding
assumptions, may be sub-optimal at times [10]. IL-4-
inducing peptides identification using traditional lab
techniques has been cumbersome, time-consuming, and
labor-intensive in the past. Computational approaches offer a
robust alternative by dramatically reducing the burden of
experiments with improved prediction efficiency [11].

Machine learning (ML) is becoming a fundamental tool for
biomedical science. By analyzing large and complex data
sets, ML is capable of uncovering faint patterns that other
strategies often do not identify. It has been widely applied
across many disciplines, from disease diagnosis through drug
discovery to personalized medicine. Its strength lies in the
capacity to integrate heterogeneous data types—genomic,
proteomic, and clinical data sets, for instance—providing
greater understanding of biological processes [12].
Researchers have employed ML algorithms to enhance IL-4
peptide prediction accuracy.

Most of the existing models are overfitting-prone and are
not interpretable, especially when trained on small or noisy
biological datasets. Moreover, the lack of high-quality, well-
labelled data even further limits the generalizability of such
models [13]. To better handle these issues, this paper
proposes a stacking ensemble model—a powerful meta-
learning approach that integrates multiple classifiers with the
aim of achieving optimal predictive accuracy and robustness
in IL-4 peptide prediction. Machine learning provides
unprecedented potential in biological study, especially using
supervised algorithms such as support vector machines,
random forests, and neural networks. All these approaches
have unique contributions to biomedical data analysis.
Nevertheless, model validation, interpretability, and quality
of data are crucial for the success of ML applications.
Through the suggestion of a strong stacking ensemble
approach, this article adds an even more accurate and reliable
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computer method for IL-4 peptide prediction—thus further
pushing the boundary of rational vaccine design.

3. Methodology

The approach employed in the present research is a
meticulous process of organized and adhered-to procedures
shows in figure 1. First, the dataset includes 985 IL-4-
inducing peptides and 744 non-inducing peptides. In the case
of addressing the class imbalance, feature extraction is
conducted, and both ADASYN (Adaptive Synthetic
Sampling) is employed. The use of advanced resampling
techniques is crucial in helping the dataset attain an equal split
of the two classes, thereby reducing the potential bias from
the original imbalance. The resampling process is followed
by an efficient 5-fold cross validation method. The use of this

cross-validation technique is crucial in model evaluation and
in ensuring the model to perform adequately on various
subsets of the data. The data are divided into five folds, and
the model is rigorously tested iteratively, using four folds for
training and a validation one. Feature selection is performed
to find out the relevant features using SHAP. In the third step,
the constructed model undergoes a critical evaluation and is
found to be effective in making good-quality predictions for
IL-4 inducing peptides. Predictability of the approach
adopted is examined using various performance measures to
make it reliable and practical for IL-4-inducing peptides
identification. Research methodology employed here uses
rich reproducing techniques, cross-validation processes, and
selection processes to enable improvement in robustness and
accuracy as far as model efficiency is concerned to predict
inducing peptides IL-4.

Dataset Construction | | reeemeemmeeeemeee oo
- AAC,
— Composition-Based DPC, PAAC
IEDB ]
IL4:985 =
|_NonmiL4:744 | - Gomposition cTDC, APAAC,
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5 | Sth Performance 5! 2
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Figure 1. Our Proposed Methodology for prediction of IL 4 and Non-IL 4.
3.1. Dataset Class imbalance is a common challenge in machine learning

The dataset was downloaded from the Immune Epitope
Database (IEDB), a clinical research database of antibody and
T cell epitopes. The dataset was produced by IEDB, which
were experimentally confirmed for their ability to induce IL-
4. Peptides that were not IL-4-inducing peptides were
referred to as IL-4-non-inducing peptides. The final dataset
included 744 IL-4-non-inducing peptide variants and 985 IL-
4-inducing peptide variants.

3.2. Data Balancing

that can lead to biased models which overestimate the
majority class in most cases, with impaired minority class
prediction accuracy. There is considerable class imbalance in
the dataset used in this study: 985 peptides are IL-4-inducing,
and 744 peptides are not IL-4-inducing. This class imbalance
can reduce model performance, particularly in the correct
identification of minority class instances. To fight against this
issue, the Adaptive Synthetic Sampling (ADASYN)
algorithm was used [14]. ADASYN is a strong oversampling
method that seeks to reduce bias by generating synthetic
samples for minority classes. ADASYN differs from the
previous methods in that it dynamically adjusts the number of
the generated synthesized samples based on the learning
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difficulty of each minority instance. Synthetic example
generation in ADASYN is governed using a weight
parameter, A, which controls the number of synthesized
examples to be created for each minority instance. This
weight is determined based on the minority class's density
distribution in relation to how close it is to majority class
neighbors. The closer a minority sample is to majority
samples, the higher the A value it is assigned, and
consequently, more synthetic points are created around it.
This guarantees that the new samples maintain the
distributional characteristics of the original data but improve
on class balance. Synthetic samples are prepared using the
formula equation (1):

s; = x; + A — x;) (D

3.3. Feature Extraction

Feature extraction is a central step in applying machine
learning techniques to peptide sequence analysis [15] [16].
Feature extraction used in this study: Amino Acid
Composition (AAC), Amphiphilic Pseudo Amino Acid
Composition (APAAC), Composition of k-spaced Amino
Acid Pairs (CKSAAP), Composition-Transition-Distribution
(CTDC), Conjoint Triad of Codons (CTRAID), Dipeptide
Composition (DPC) and Pseudo Amino Acid Composition
(PAAC). These methods are categorized into three general
classes: amino acid composition-based, composition-
transition-distribution models, and sequence-order-based
descriptors. To streamline and enhance the computational
efficiency in feature encoding for the identification of I1L-4-
inducing peptides from sequences, the iLearnPlus platform
was used [17]. The platform consolidates four functionalities
of utmost significance into a streamlined, user-friendly
interface, enhancing the feature encoding process.

1) Amino Acid Composition (AAC): The AAC method
establishes the relative frequency of each amino acid in a
protein or peptide sequence [17]. AAC provides a
complete structural composition profile of the sequence
and identifies significant patterns that are indicative of IL-
4-inducing capacity. AAC is instrumental in enhancing
model performance by identifying distinctive amino acid
patterns that are vital to IL-4 induction.

2) Amphiphilic Pseudo Amino Acid Composition
(APAAC): APAAC interacts both sequence information
at local and global levels by examining the amphiphilic
nature of amino acids their hydrophobicity, and
hydrophilicity [18]. It considers the way these chemical
features are distributed across amino acid pairs and yields
a more advanced feature vector. This enables the model to
better identify IL-4 inducing structural motifs.

3) Composition of k-spaced Amino Acid Pairs (CKSAAP):
CKSAAP captures sequence-order information by
analyzing the frequency of amino acid pairs separated by
k residues [19]. This operation imputes spatial proximities
between amino acids, enhancing the model's ability to

identify sequential patterns that determine biological
processes like I1L-4 activation.

4) Conjoint Triad Descriptor of Codons (CTRAID): This
method analyzes the frequency and organization of codon
triplets based on their physicochemical attributes [20]. By
grouping codons and identifying their frequency in sets of
three, CTRAID  provides a  comprehensive
characterization of gene sequences. It is particularly
beneficial in separating patterns of gene expression and
biological function.

5) Dipeptide Composition (DPC): DPC examines the
sequence in terms of dipeptide frequency—two
consecutive amino acids [21]. It reflects short-range
interactions in the sequence and gives information about
structural and functional elements accountable for IL-4
induction. It facilitates building more precise predictive
models.

6) Pseudo Amino Acid Composition (PAAC): PAAC differs
from standard AAC in that it uses sequence-order
information and physicochemical characteristics of amino
acids [22]. PAAC-based feature vectors consider both the
frequency and distribution of amino acids, as well as their
biochemical characteristics. PAAC is particularly adept at
describing complex biological processes such as IL-4
production.

After feature extraction, SHAP (SHapley Additive
exPlanations) [27] identified AAC, APAAC, and their
combination as the most influential for IL-4-inducing peptide
prediction [23]. The top retained features included AAC
frequencies of leucine, lysine, and glycine, and APAAC
descriptors related to hydrophobicity, polarity, and solvent
accessibility. These features are optimal because AAC
captures overall residue composition, while APAAC encodes
key physicochemical properties, providing complementary
information that improved prediction performance compared
to CKSAAP or DPC.

3.4. Model Development

We observe from Table I, that all machine learning models
contribute uniquely to IL-4-inducing peptide prediction. The
Random Forest model uses an ensemble of decision trees
based on the Gini Index to classify peptide sequences
accurately. Logistic Regression is a probabilistic approach to
IL-4 induction prediction using maximum likelihood
estimation. Support Vector Machine (SVM) identifies
optimal hyperplanes to distinguish inducing and non-
inducing peptides. XGBoost and LightGBM, both of which
are gradient boosting algorithms, learn complex nonlinear
relationships and possess regularization for improvement in
generalization. K-Nearest Neighbors (KNN) applies
localized distance-based measurements for identifying
similarities among peptides. The Decision Tree model
provides interpretable rules to explain IL-4 induction. Finally,
Stacking Classifier stacks a collection of base learners—
KNN, Decision Tree, LightGBM, and SVM—upon a meta-
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learner (Logistic Regression) to achieve better overall
prediction accuracy through the combined strength of each

model.
Table 1. Our Applied Model Description and Workflow of the Models in Term Peptide Prediction
Model Model Work for Peptide Captures
This ensemble method utilizes a fusion of many decision trees to produce predictions by means of a majority
voting procedure. The Gini index shows in equation 2, which quantifies the lack of purity in a dataset, is
Rl?ndoin computed in the following manner where we use this metric to evaluate the effectiveness of decision trees in
ores

distinguishing between peptides that induce IL-4 and those that do not.

Gini Index = Z?:l p? )

Logistic We use logistic regression to predict the probability that a peptide induces IL-4 based on its features. MLE-
Regression  based training is used to the model so that it can optimize its coefficients optimally for the data. It uses the
logistic function, Equation (3), to give a probability value between 0 and 1 for the induction of IL-4:

Py(|x) = o(BO + B1xs + ) 3)

Support A discriminative method is used by SVM to find a hyperplane that effectively separates peptides that cause IL-

Vector 4 from those that do not shows in equation 4. The weight vector, denoted as W, represents the weights assigned
Machine to the input characteristics, represented by x. The bias component, denoted as b, is a constant term.

wix+b=0 “

XGBoost has ability to manage intricate data structures and handle missing information makes it highly
effective at forecasting IL-4 induction. The model utilizes gradient boosting to optimize performance by

XGBoost  ¢ombining numerous weak learners into a robust predictive model. In XGBoost, the objective function O(0)
consists of two components: the loss function L(0) and the regularization term €(6) shows in equation 5:

0(6) = L) +02(0) ()

Light LightGBM well suited for larger dataset and its great option for IL-4 induction prediction. LightGBM’s work

Gradient fllow shows in equation 6 objective function O(t) is composed of the loss function L(t), a regularization term
Boosting Q(t), and an additional parameter C to control tree complexity and mitigate overfitting.

Machine
oNH=LM+2T)+C (6)

It is particularly useful for detecting local relationships within the feature space of IL-4-inducing peptides. K-
K-Nearest  nearest neighbors (KNN) algorithm assigns a class label to a new instance by examining the k closest data points
Neighbors  in the feature space and determining the most common class among its neighbors. The distance metric shows in
equation 7, often measured using the Euclidean distance formula:

dx,y) = 2k (x — y)? @)

We use a decision tree to guess peptides that cause IL-4 by looking at different parts of the peptides and seeing
Decision how they affect IL-4 production. This makes an excellent model for understanding and predicting IL-4 induction
Tree patterns based on peptide properties.

The Stacking Classifier is an ensemble technique that stacks a number of base learners in a hierarchical fashion

Stacking to learn higher-order features in peptide data. In this work, we employed it to improve IL-4-inducing peptide

Classifier prediction. KNN, Decision Tree, SVM, and LightGBM base classifiers were trained using stratified 5-fold
cross-validation. For each fold, the out-of-fold probability scores from these classifiers were collected and
concatenated to create a new meta-feature matrix. The meta-learner, a Logistic Regression model with L2
regularization (C=1), was trained on this matrix, stacking the probability-based outputs to arrive at the final
prediction. The base models were tuned with default hyperparameters: KNN (k=3-15, Euclidean distance),
Decision Tree (max depth 5-50, Gini/entropy criterion), SVM (RBF kernel, y=0.001-0.1), and LightGBM
(estimators 100-500, learning rate 0.01-0.2, depth 3—10). The whole workflow of this two-level stacking
method is presented in Figure 2.
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3.5. Performance Evaluation

Performance evaluation of predictive models is a critical step
towards ensuring robustness and accuracy. In this study, a
cautious selection of evaluation criteria for IL-4-inducing
peptide prediction is practiced throughout. The modeling
process follows a rigorous protocol with both 5-fold cross-
validation. To compare the models in an exhaustive manner,
several performance metrics are calculated like sensitivity,
specificity, accuracy, and Matthews Correlation Coefficient
(MCC) as shown in Equations 8 to 11. Area Under the
Receiver Operating Characteristic Curve (AUC) is also
calculated as a threshold-free measure to verify the overall
discriminative ability of every model. Greater AUC shows
more predictive capability. Specificity shows Equation 10,
determines the rate of true negative cases correctly identified,
gauging how well the model avoids false positives.
Sensitivity, which is interested in how well the model
correctly identifies IL-4-inducing peptides, gauges the
effectiveness of the model at recognizing positive cases.
Accuracy, shows in Equation 8, is the proportion of correctly

KNN —> D;?\Iisli\?n
DT —> Df:[c)i'sli‘on
LshGBM ™| e
SV\M | > Dgiqs\i;n

Estimators

predicted outcomes over the number of total predictions and
gives a general indication of model accuracy. The Matthews
Correlation Coefficient (MCC) is a balanced metric that

considers true and false positives and negatives. In contrast
with accuracy, MCC is particularly useful when dealing with
imbalanced datasets since it provides a better understanding of
the performance of the model over the two classes [24 - 26].

Accuracy = — PN % 100% ®)
TP+TN+FN+FP
i . TP
Sensitivity = Trarm X 100% 9)
T TN
Specificity = ——x 100% (10)

TN + FP

(TP X TN)—(FP X FN)

McC = V(TP+FP)(TP+FN)(TN+FP)(TN+FN)

X 100% (11)

Here, TP = True Positive, TN = True Negative, FP = False
Positive, and FN = False Negative.

LR Stacking
Ensemble

Meta Learner

Final Stacking Ensemble Model

Figure 2. Our proposed stacking ensemble model architecture diagram.

4. Result and Discussion

Results of different machine learning models applied to
various feature representations and dataset versions are
reported and discussed below. Our aim was to investigate
how stacking ensemble learning, together with ADASYN-
balanced training data and chosen features, improves IL-4-
inducing peptide prediction. Both imbalanced and ADASYN-
balanced datasets are explored, tested on AAC, APAAC, and
merged feature representations. Performance metrics such as
accuracy, AUC, MCC, sensitivity, and specificity were
compared between models and feature sets with particular
interest in stacking model performance.

This study was directed towards the prediction of I1L-4
producing peptides from an imbalanced APAAC features.
Among the models experimented with, the Stacking classifier
presented top scores, reaching accuracy of 88.74%, MCC of

2 EA

0.7754, AUC of 0.8879, with sensitivity and specificity
scores of 90.30% and 87.27%, respectively. These measures
show that the Stacking model not only performs extremely
well overall but is also extremely robust at making correct
predictions of peptides that activate IL-4, even in the face of
negative consequences of data imbalance. As a point of
comparison, the Logistic Regression (LR) model fared the
worst with an accuracy of 63.00%, MCC of 0.2629, AUC of
0.6252, sensitivity of 47.65%, and specificity of 77.40%. This
means that LR struggles to capture the complex dependencies
in the data as well as the other models. The other notable
classifiers, including Random Forest (RF) and XGBoost
(XGBClassifier), also did well with accuracy rates of 85.79%
and 82.57%, respectively, as well as similar MCC and AUC
values, which show that they are appropriate for this
classification task. Stacking model in improving the accuracy
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of IL-4-producing peptide prediction in imbalanced class

distribution datasets.

Table 2. Performance Comparison of Diverse Classifiers Employing APAAC Features on Imbalanced Dataset

Classifier Accuracy MCC AUC Sensitivity Specificity
LR 0.6300 0.2629 0.6252 0.4765 0.7740
RF 0.8579 0.7162 0.8568 0.8227 0.8909
SvC 0.7064 0.4164 0.7031 0.5983 0.8078
XGB 0.8257 0.6552 0.8235 0.7535 0.8935
DT 0.7802 0.5691 0.7767 0.6676 0.8857
KNN 0.6635 0.3258 0.6617 0.6039 0.7195

LGBM 0.8083 0.6222 0.8056 0.7202 0.8909

Stacking 0.8874 0.7754 0.8879 0.9030 0.8727

Table 3. Performance Comparison of Diverse Classifiers Employing AAC Features on Imbalanced Dataset

Classifier Accuracy MCC AUC Sensitivity Specificity

LR 0.6046 0.2099 0.5995 0.4432 0.7558
RF 0.8472 0.6958 0.8456 0.7978 0.8935
SvC 0.6327 0.2722 0.6271 0.4515 0.8026
XGB 0.8097 0.6262 0.8067 0.7147 0.8987
DT 0.7761 0.5664 0.7719 0.6399 0.9039
KNN 0.6501 0.2988 0.6481 0.5845 0.7117
LGBM 0.8177 0.6393 0.8153 0.7424 0.8883

Stacking 0.8807 0.7628 0.8815 0.9058 0.8571

Table 4. Performance Comparison of Diverse Classifiers Employing AAC Features on Balanced Dataset

Classifier Accuracy MCC AUC Sensitivity Specificity
LR 0.5685 0.1370 0.5685 0.5638 0.5732
RF 0.8782 0.7579 0.8780 0.8444 0.9116
SvC 0.6650 0.3299 0.6649 0.6531 0.6768
XGB 0.8388 0.6887 0.8384 0.7474 0.9293
DT 0.7830 0.5779 0.7825 0.6786 0.8864
KNN 0.7018 0.4042 0.7016 0.6684 0.7348
LGBM 0.8160 0.6356 0.8157 0.7602 0.8712
Stacking 0.8959 0.7919 0.8960 0.9005 0.8914

Table 5. Performance Comparison of Diverse Classifiers Employing APAAC Features on Balanced Dataset

Classifier Accuracy MCC AUC Sensitivity Specificity

LR 0.5787 0.1573 0.5786 0.5663 0.5909

RF 0.8807 0.7625 0.8806 0.8520 0.9091

SVC 0.7018 0.4037 0.7017 0.6811 0.7222

XGB 0.8236 0.6534 0.8232 0.7526 0.8939

DT 0.8046 0.6284 0.8039 0.6786 0.9293

KNN 0.6954 0.3914 0.6953 0.6633 0.7273

LGBM 0.8211 0.6469 0.8207 0.7577 0.8838

Stacking 0.8947 0.7903 0.8948 0.9184 0.8712
EAI Endorsed Transactions on
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Table 6. Performance Comparison of Diverse Classifiers Employing AAC+APAAC Features on Balanced Dataset

Classifier Accuracy MCC AUC Sensitivity Specificity
LR 0.5647 0.1293 0.5647 0.5718 0.5575
RF 0.8604 0.7274 0.8609 0.7960 0.9258
SVC 0.6865 0.3754 0.6869 0.6398 0.7340
XGB 0.8261 0.6612 0.8267 0.7481 0.9054
DT 0.7944 0.6078 0.7953 0.6751 0.9156
KNN 0.7043 0.4102 0.7046 0.6675 0.7417
LGBM 0.8096 0.6260 0.8102 0.7406 0.8798
Stacking 0.8997 0.7995 0.8997 0.9018 0.8977
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Figure 3. ROC Curve (A) AAC Feature (B) APAAC Feature

This study was directed towards the prediction of IL-4
producing peptides from an imbalanced AAC features.
Performance comparison of several classifiers made, and the
results are shown in Table 3. Of the models compared, the
Stacking Classifier was the best, with accuracy of 88.07%,
MCC of 0.7628, AUC of 0.8815, sensitivity of 90.58%, and
specificity of 85.71%. These results refer to the model's
strong ability to combine several base learners and improve
predictive accuracy overall. In comparison, the Logistic
Regression (LR) model was worst, achieving only 60.46%
accuracy, MCC of 0.2099, AUC of 0.5995, 44.32%
sensitivity, and 75.58% specificity, showing that LR is less
appropriate for the task at hand.

This comparison underscores the valuable role of
advanced ensemble methods like Stacking in handling
complex biological data and enhancing the precision of IL-4
peptide prediction. After that, the classifiers were tested on
the balanced dataset and the outcomes are shown in Table 4.
The Stacking Classifier performed best among them with
89.59% accuracy, 0.7919 MCC, 0.8960 AUC, 90.05%
sensitivity, and 89.14% specificity. In contrast, the Logistic
Regression model also performed the worst here with an
accuracy of 56.85%, MCC of 0.1370, AUC of 0.5685,
sensitivity of 56.38%, and specificity of 57.32%. This clearly
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indicates that LR is not very useful for this feature. These
findings also indicate the dominance of ensemble approaches
like Stacking in handling complex biological datasets and
improving predictive capability for IL-4 producing peptides.

We tested the classifiers on the balanced APAAC dataset,
as shown in Table 5. The Stacking Classifier again gave
improved results with accuracy of 89.47%, MCC of 0.7903,
AUC of 0.8948, sensitivity of 91.84%, and specificity of
87.12%. Logistic Regression remained the poorest
performing model with accuracy of 57.87%, MCC of 0.1573,
AUC of 0.5786, sensitivity of 56.63%, and specificity of
59.09%. The results indicate the performance of advanced
ensemble techniques, such as Stacking, in improving the
accuracy and correctness of the detection of IL-4 producing
peptides in balanced data sets. Among different combined
feature settings examined in this study, the concurrent use of
AAC and APAAC features yielded the optimal outcome. For
context-independent IL-4 inducing peptides prediction with
the AAC+APAAC balanced dataset shows in Table VI, the
Stacking Classifier was better with 89.97% accuracy, 0.7995
MCC. AUC of 0.8997, sensitivity of 0.9018, and specificity
of 0.8977, indicating that it is excellent at aggregating the
predictions of multiple base models. The poorest
performance was by the Logistic Regression (LR) model with
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56.47% accuracy, an MCC of 0.1293, an AUC of 0.5647,
sensitivity of 0.5718, and specificity of 0.5575.

The findings of this study validate that ensemble learning,
in the form of stacking, provides a material performance
advantage in IL-4-inducing peptides prediction. Comparison
revealed that the stacking model performed better than each
individual base learner on all feature types and dataset
variants. In case of combined feature set (AAC + APAAC),
the stacking model ranked as high as standalone testing
accuracy of 89.97% and MCC of 0.7995 and was robust.
When comparing performances between two situations of
imbalanced and balanced datasets, it was evident that
balancing the data with ADASYN substantially improved
MCC as well as sensitivity, most importantly for minority
class prediction. One of the advantages of the stacking model
is that it can handle linear and nonlinear patterns using varied
classifiers. This does, however, come at a computational
complexity cost along with the risk of overfitting when the
meta-learner is not well adjusted. The practical applications
of our research reach as far as vaccine design, allergy
research, and immunotherapy development, where it is

crucial to accurately identify cytokine-inducing peptides.
This model can assist researchers in pre-selecting candidates
for wet-lab wvalidation, thus streamlining experimental
expenses and lead times. On a policy level, adoption of
explainable and balanced machine learning pipelines in the
study of peptides must be encouraged in biomedical research
protocols. Granting bodies for immunoinformatics studies
can incorporate feature transparency and fairness-aware data
handling within grant proposal guidelines. Although the
results are encouraging, there are limitations. The use of
synthetic data generation might impose biases, and the
model's performance on unseen peptides or noisy data is to be
evaluated. Also, since experimentally verified IL-4-inducing
peptides are limited in number, the dataset size limits the
potential of deep learning models to excel beyond what
classical ensembles can offer in bigger datasets. To provide
the comparative performance graph, a bar diagram displays
in figure 4 where we can see that the Stacking model's
accuracy, MCC, AUC, sensitivity, and specificity over
combined, imbalanced, and balanced datasets.

Scores

Accuracy

AUC Sensitivity Specificity

Evaluation Metric

s imbalanced

s Balanced

s Combined

Figure 4. Comparison of Scores for Imbalanced, Balanced and Combined Feature

5. Conclusion

In this work, we have suggested a stacking ensemble-based
prediction model for the prediction of IL-4-inducing peptides
using extracted peptide features (AAC, APAAC, and their
combination) and SHAP-guided feature selection. Our result
suggests that the combination of interpretable feature
engineering, effective sampling methods, and heterogeneous
ensemble model produces more accurate, MCC, AUC, and
overall better robustness. The stacking model, for example,
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handled both the imbalanced and balanced cases strongly and
outperformed other machine learning algorithms across all
types of features. This model not only illustrates academic
significance but is also of promise to be applied in such real-
world contexts as individualized immunotherapy, vaccine
development, and immune disease diagnosis. By placing in
the foreground, the predictive power of SHAP-selected
features and balance strategies, this study makes a major
contribution to the design of explainable and generalizable
peptide prediction models. In the future, we would like to
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build on this work by including more advanced embedding-
based features, e.g., from protein language models. In
addition, employing ensemble models based on deep learning
on larger, experimentally verified datasets could also
contribute to additional prediction improvements. Addition of
uncertainty estimation and model calibration techniques
could further enhance model trustworthiness in clinical or
pharmaceutical decision-making scenarios. Overall, our work
lays the foundation for more interpretable, accurate, and

generalizable

peptide  prediction  architectures in

computational immunology.
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