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Abstract 

Interleukin-4 (IL-4) plays a critical role in immune regulation and inflammation suppression, and therefore precise prediction 
is important in immunotherapy and vaccine design. In this work, we present an innovative stacking ensemble-based 
predictive model for IL-4-inducing peptide discovery. The method combines the group of feature extraction techniques, i.e., 
Amino Acid Composition (AAC), Amphiphilic Pseudo Amino Acid Composition (APAAC), and their combinations, and 
their pruning using SHAP (SHapley Additive exPlanations) with only the most relevant features being retained. To solve 
the class imbalance problem inherent in the peptide data, the ADASYN (Adaptive Synthetic Sampling) algorithm was 
applied for synthetic oversampling. We applied eight machine learning classifiers: Logistic Regression, Random Forest, 
Support Vector Classifier, Decision Tree, K-Nearest Neighbors, XGBoost, LightGBM, and a stacking ensemble model, 
enabling the strong prediction on both imbalanced and balanced datasets. Our evaluation demonstrates the stacking model's 
better performance on the imbalanced and balanced dataset. Surprisingly, with combined characteristics, the stacking model 
over the independent test set yielded accuracy of 89.97% and Matthew's Correlation Coefficient (MCC) as 0.79. Accurate 
comparisons of performance over AAC and APAAC feature spaces indicate that the stacking model performs better than 
other classifiers in all instances, albeit more so under balanced scenarios, referring to data rebalancing requirements. This 
research not only highlights the precision of stacking ensembles in peptide classification tasks but also urges the integration 
of interpretable feature selection and data balancing in future immunoinformatic pipelines. 
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1. Introduction

The immune system is a complex network of cells,
molecules, and signaling pathways that function coordinately 
to defend the body against infection and to preserve 
homeostasis. Of the enormous repertoire of components in 
this system, cytokines are instrumental in conducting immune 
responses, such as inflammation, repair of tissue, and immune 
modulation [1]. Interleukin-4 (IL-4) is a critical cytokine that 
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has been recognized for playing multifunctional roles in both 
immunomodulatory and anti-inflammatory cascades. 
Revealing the underlying mechanisms of IL-4 action is 
crucial to devising effective therapeutics for immune 
disorders [2]. It is one of its primary functions to induce the 
differentiation of naïve T helper (Th) cells to Th2 cells, which 
has a critical function in helping with humoral immunity and 
antibody response [3]. IL-4 stimulates B cell growth and the 
production of immunoglobulins such as IgE and IgG1—both 
important in the defence against extracellular pathogens. IL-
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4 also enhances the expression of major histocompatibility 
complex (MHC) class II molecules on antigen-presenting 
cells, thus maximizing immune response efficiency. All these 
effects position IL-4 centrally in immune system regulation 
[4]. While it has protective roles, IL-4 also plays a role in the 
pathogenesis of allergic illnesses such as asthma, eczema, and 
allergic rhinitis [5]. This is since IL-4 may augment IgE 
production and cause Th2-polarized immune responses [6]. 
This contradictory characteristic of IL-4 being both a 
regulator and a possible etiology of disease renders it a 
slippery therapeutic target.  

IL-4 impacts autoimmune diseases by modulating B cell 
function and inducing Th2 responses, and research has linked 
it with cancer development by its potential to block cell death 
and induce tumor cell survival [7]. Computational 
immunology advances have made way for new exploration of 
cytokine interactions and regulatory mechanisms [8]. IL-4 
has been emphasized for its potential as a therapeutic target 
for disease modulation. Accurate prediction of IL-4-inducing 
peptides would form the basis for new treatments that 
selectively enhance or suppress IL-4 activity according to 
clinical needs. However, acquiring high predictive accuracy 
remains a problem due to the complexity of peptide-protein 
interactions and variety in immune reactions. We address 
these issues within this paper by focusing on the improvement 
of IL-4-inducing peptide predictive accuracy. 

Despite numerous machine learning efforts for IL-4-
inducing peptide prediction, most existing models suffer from 
limited generalizability, class imbalance sensitivity, and a 
lack of interpretability. Many previous works fail to 
incorporate ensemble learning or deep feature engineering 
that combines sequence-based and physicochemical 
properties. Moreover, comparative evaluations with various 
data balancing and encoding strategies remain underexplored. 

Based on recent literature and advances in technology, we 
employ advanced machine learning techniques to improve 
peptide prediction models. Specifically, the study employs a 
stacking ensemble approach that integrates various amino 
acid feature encoding methods with the aim of achieving 
greater performance than to other predictive models [9]. The 
model has been exhaustively tested against recognized 
datasets and has demonstrated consistent improvement in 
accuracy. Such consistency is a measure of its viability as a 
valuable research tool as well as for possible clinical 
application. The implications of this work have the potential 
to contribute to the development of targeted therapies for 
diseases in which interleukin-4 (IL-4) is a central 
protagonist—e.g., allergic disease, autoimmune disorders, 
and some cancers. 

In this study, our contributions include, we employed a 
comprehensive and diverse feature extraction strategy using 
iLearnPlus. This multi-perspective representation captures 
both sequence composition and physicochemical properties, 
enabling the model to learn intricate peptide patterns crucial 
for IL-4 induction. To address the significant class imbalance 
in the dataset, we applied advanced data balancing techniques 
like ADASYN, which dynamically generates synthetic 
samples based on learning difficulty. This approach improves 
the model's ability to accurately detect and classify minority 

class (IL-4-inducing) peptides, ensuring balanced learning 
and reducing bias. We propose a robust stacking ensemble 
learning framework that integrates diverse base classifiers—
Random Forest, Support Vector Machine, XGBoost, and 
LightGBM—with Logistic Regression as a meta-learner. 
This hierarchical architecture leverages the unique strengths 
of each model to enhance predictive accuracy and 
generalization for IL-4-inducing peptide identification. 

2. Related Work

IL-4 is one of the most prominent immune regulatory
cytokines, and IL-4-inducing peptide prediction is a 
significant consideration in vaccine development. Various 
computational tools have been employed since the early days 
to construct IL-4 peptide prediction models. Some of the 
common tools used are motif-based search algorithms, 
quantitative matrix (QM) algorithms, and more recently, 
advanced machine learning models. The QM approach has 
proved important in delineating a distinct image of the 
function of individual amino acids in peptide recognition by 
different MHC loci. Conventional approaches to T-cell 
epitope prediction, often based on MHC class I binding 
assumptions, may be sub-optimal at times [10].  IL-4-
inducing peptides identification using traditional lab 
techniques has been cumbersome, time-consuming, and 
labor-intensive in the past. Computational approaches offer a 
robust alternative by dramatically reducing the burden of 
experiments with improved prediction efficiency [11].  

Machine learning (ML) is becoming a fundamental tool for 
biomedical science. By analyzing large and complex data 
sets, ML is capable of uncovering faint patterns that other 
strategies often do not identify. It has been widely applied 
across many disciplines, from disease diagnosis through drug 
discovery to personalized medicine. Its strength lies in the 
capacity to integrate heterogeneous data types—genomic, 
proteomic, and clinical data sets, for instance—providing 
greater understanding of biological processes [12]. 
Researchers have employed ML algorithms to enhance IL-4 
peptide prediction accuracy.  

Most of the existing models are overfitting-prone and are 
not interpretable, especially when trained on small or noisy 
biological datasets. Moreover, the lack of high-quality, well-
labelled data even further limits the generalizability of such 
models [13]. To better handle these issues, this paper 
proposes a stacking ensemble model—a powerful meta-
learning approach that integrates multiple classifiers with the 
aim of achieving optimal predictive accuracy and robustness 
in IL-4 peptide prediction. Machine learning provides 
unprecedented potential in biological study, especially using 
supervised algorithms such as support vector machines, 
random forests, and neural networks. All these approaches 
have unique contributions to biomedical data analysis. 
Nevertheless, model validation, interpretability, and quality 
of data are crucial for the success of ML applications. 
Through the suggestion of a strong stacking ensemble 
approach, this article adds an even more accurate and reliable 
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computer method for IL-4 peptide prediction—thus further 
pushing the boundary of rational vaccine design. 

3. Methodology

The approach employed in the present research is a 
meticulous process of organized and adhered-to procedures 
shows in figure 1. First, the dataset includes 985 IL-4-
inducing peptides and 744 non-inducing peptides. In the case 
of addressing the class imbalance, feature extraction is 
conducted, and both ADASYN (Adaptive Synthetic 
Sampling) is employed. The use of advanced resampling 
techniques is crucial in helping the dataset attain an equal split 
of the two classes, thereby reducing the potential bias from 
the original imbalance. The resampling process is followed 
by an efficient 5-fold cross validation method. The use of this 

cross-validation technique is crucial in model evaluation and 
in ensuring the model to perform adequately on various 
subsets of the data. The data are divided into five folds, and 
the model is rigorously tested iteratively, using four folds for 
training and a validation one. Feature selection is performed 
to find out the relevant features using SHAP. In the third step, 
the constructed model undergoes a critical evaluation and is 
found to be effective in making good-quality predictions for 
IL-4 inducing peptides. Predictability of the approach 
adopted is examined using various performance measures to 
make it reliable and practical for IL-4-inducing peptides 
identification. Research methodology employed here uses 
rich reproducing techniques, cross-validation processes, and 
selection processes to enable improvement in robustness and 
accuracy as far as model efficiency is concerned to predict 
inducing peptides IL-4.

Figure 1. Our Proposed Methodology for prediction of IL 4 and Non-IL 4.

3.1. Dataset 

The dataset was downloaded from the Immune Epitope 
Database (IEDB), a clinical research database of antibody and 
T cell epitopes. The dataset was produced by IEDB, which 
were experimentally confirmed for their ability to induce IL-
4. Peptides that were not IL-4-inducing peptides were
referred to as IL-4-non-inducing peptides. The final dataset
included 744 IL-4-non-inducing peptide variants and 985 IL-
4-inducing peptide variants.

3.2. Data Balancing 

Class imbalance is a common challenge in machine learning 
that can lead to biased models which overestimate the 
majority class in most cases, with impaired minority class 
prediction accuracy. There is considerable class imbalance in 
the dataset used in this study: 985 peptides are IL-4-inducing, 
and 744 peptides are not IL-4-inducing. This class imbalance 
can reduce model performance, particularly in the correct 
identification of minority class instances. To fight against this 
issue, the Adaptive Synthetic Sampling (ADASYN) 
algorithm was used [14]. ADASYN is a strong oversampling 
method that seeks to reduce bias by generating synthetic 
samples for minority classes. ADASYN differs from the 
previous methods in that it dynamically adjusts the number of 
the generated synthesized samples based on the learning 
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difficulty of each minority instance. Synthetic example 
generation in ADASYN is governed using a weight 
parameter, λ, which controls the number of synthesized 
examples to be created for each minority instance. This 
weight is determined based on the minority class's density 
distribution in relation to how close it is to majority class 
neighbors. The closer a minority sample is to majority 
samples, the higher the λ value it is assigned, and 
consequently, more synthetic points are created around it. 
This guarantees that the new samples maintain the 
distributional characteristics of the original data but improve 
on class balance. Synthetic samples are prepared using the 
formula equation (1): 

𝑠𝑠𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝜆𝜆(𝑥𝑥1 − 𝑥𝑥𝑖𝑖)          (1) 

3.3. Feature Extraction 

Feature extraction is a central step in applying machine 
learning techniques to peptide sequence analysis [15] [16]. 
Feature extraction used in this study: Amino Acid 
Composition (AAC), Amphiphilic Pseudo Amino Acid 
Composition (APAAC), Composition of k-spaced Amino 
Acid Pairs (CKSAAP), Composition-Transition-Distribution 
(CTDC), Conjoint Triad of Codons (CTRAID), Dipeptide 
Composition (DPC) and Pseudo Amino Acid Composition 
(PAAC). These methods are categorized into three general 
classes: amino acid composition-based, composition-
transition-distribution models, and sequence-order-based 
descriptors. To streamline and enhance the computational 
efficiency in feature encoding for the identification of IL-4-
inducing peptides from sequences, the iLearnPlus platform 
was used [17]. The platform consolidates four functionalities 
of utmost significance into a streamlined, user-friendly 
interface, enhancing the feature encoding process. 

1) Amino Acid Composition (AAC): The AAC method
establishes the relative frequency of each amino acid in a
protein or peptide sequence [17]. AAC provides a
complete structural composition profile of the sequence
and identifies significant patterns that are indicative of IL-
4-inducing capacity. AAC is instrumental in enhancing
model performance by identifying distinctive amino acid
patterns that are vital to IL-4 induction.

2) Amphiphilic Pseudo Amino Acid Composition
(APAAC): APAAC interacts both sequence information
at local and global levels by examining the amphiphilic
nature of amino acids their hydrophobicity, and
hydrophilicity [18]. It considers the way these chemical
features are distributed across amino acid pairs and yields
a more advanced feature vector. This enables the model to
better identify IL-4 inducing structural motifs.

3) Composition of k-spaced Amino Acid Pairs (CKSAAP):
CKSAAP captures sequence-order information by
analyzing the frequency of amino acid pairs separated by
k residues [19]. This operation imputes spatial proximities
between amino acids, enhancing the model's ability to

identify sequential patterns that determine biological 
processes like IL-4 activation. 

4) Conjoint Triad Descriptor of Codons (CTRAID): This
method analyzes the frequency and organization of codon
triplets based on their physicochemical attributes [20]. By
grouping codons and identifying their frequency in sets of
three, CTRAID provides a comprehensive
characterization of gene sequences. It is particularly
beneficial in separating patterns of gene expression and
biological function.

5) Dipeptide Composition (DPC): DPC examines the
sequence in terms of dipeptide frequency—two
consecutive amino acids [21]. It reflects short-range
interactions in the sequence and gives information about
structural and functional elements accountable for IL-4
induction. It facilitates building more precise predictive
models.

6) Pseudo Amino Acid Composition (PAAC): PAAC differs
from standard AAC in that it uses sequence-order
information and physicochemical characteristics of amino
acids [22]. PAAC-based feature vectors consider both the
frequency and distribution of amino acids, as well as their
biochemical characteristics. PAAC is particularly adept at
describing complex biological processes such as IL-4
production.

After feature extraction, SHAP (SHapley Additive 
exPlanations) [27] identified AAC, APAAC, and their 
combination as the most influential for IL-4-inducing peptide 
prediction [23]. The top retained features included AAC 
frequencies of leucine, lysine, and glycine, and APAAC 
descriptors related to hydrophobicity, polarity, and solvent 
accessibility. These features are optimal because AAC 
captures overall residue composition, while APAAC encodes 
key physicochemical properties, providing complementary 
information that improved prediction performance compared 
to CKSAAP or DPC. 

3.4. Model Development 

We observe from Table I, that all machine learning models 
contribute uniquely to IL-4-inducing peptide prediction. The 
Random Forest model uses an ensemble of decision trees 
based on the Gini Index to classify peptide sequences 
accurately. Logistic Regression is a probabilistic approach to 
IL-4 induction prediction using maximum likelihood 
estimation. Support Vector Machine (SVM) identifies 
optimal hyperplanes to distinguish inducing and non-
inducing peptides. XGBoost and LightGBM, both of which 
are gradient boosting algorithms, learn complex nonlinear 
relationships and possess regularization for improvement in 
generalization. K-Nearest Neighbors (KNN) applies 
localized distance-based measurements for identifying 
similarities among peptides. The Decision Tree model 
provides interpretable rules to explain IL-4 induction. Finally, 
Stacking Classifier stacks a collection of base learners—
KNN, Decision Tree, LightGBM, and SVM—upon a meta-
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learner (Logistic Regression) to achieve better overall 
prediction accuracy through the combined strength of each 
model. 

Table 1. Our Applied Model Description and Workflow of the Models in Term Peptide Prediction 

Model Model Work for Peptide Captures 

Random 
Forest 

This ensemble method utilizes a fusion of many decision trees to produce predictions by means of a majority 
voting procedure. The Gini index shows in equation 2, which quantifies the lack of purity in a dataset, is 
computed in the following manner where we use this metric to evaluate the effectiveness of decision trees in 
distinguishing between peptides that induce IL-4 and those that do not. 

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 = � 𝒑𝒑𝒊𝒊𝟐𝟐
𝒏𝒏
𝒊̇𝒊=𝟏𝟏         (2) 

Logistic 
Regression 

We use logistic regression to predict the probability that a peptide induces IL-4 based on its features. MLE-
based training is used to the model so that it can optimize its coefficients optimally for the data. It uses the 
logistic function, Equation (3), to give a probability value between 0 and 1 for the induction of IL-4: 

𝑷𝑷𝑷𝑷(𝟏𝟏|𝒙𝒙) = 𝝈𝝈(𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝒙𝒙𝟏𝟏 + ⋯ )       (3) 

Support 
Vector 

Machine 

A discriminative method is used by SVM to find a hyperplane that effectively separates peptides that cause IL-
4 from those that do not shows in equation 4. The weight vector, denoted as W, represents the weights assigned 
to the input characteristics, represented by x. The bias component, denoted as b, is a constant term. 

 𝒘𝒘𝑻𝑻𝒙𝒙+ 𝒃𝒃 = 𝟎𝟎        (4) 

XGBoost 

XGBoost has ability to manage intricate data structures and handle missing information makes it highly 
effective at forecasting IL-4 induction. The model utilizes gradient boosting to optimize performance by 
combining numerous weak learners into a robust predictive model. In XGBoost, the objective function O(θ) 
consists of two components: the loss function L(θ) and the regularization term Ω(θ) shows in equation 5: 

𝑶𝑶(𝜽𝜽) = 𝑳𝑳(𝜽𝜽) + 𝜴𝜴(𝜽𝜽)       (5) 

Light 
Gradient 
Boosting 
Machine 

LightGBM well suited for larger dataset and its great option for IL-4 induction prediction. LightGBM’s work 
fllow shows in equation 6 objective function O(t) is composed of the loss function L(t), a regularization term 
Ω(t), and an additional parameter C to control tree complexity and mitigate overfitting. 

𝟎𝟎(𝑻𝑻) = 𝑳𝑳(𝑻𝑻) + 𝜴𝜴(𝑻𝑻) + 𝑪𝑪       (6) 

K-Nearest
Neighbors

It is particularly useful for detecting local relationships within the feature space of IL-4-inducing peptides. K-
nearest neighbors (KNN) algorithm assigns a class label to a new instance by examining the k closest data points 
in the feature space and determining the most common class among its neighbors. The distance metric shows in 
equation 7, often measured using the Euclidean distance formula: 

𝒅𝒅(𝒙𝒙,𝒚𝒚) = �∑ (𝒙𝒙𝒊𝒊 − 𝒚̇𝒚𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏           (7) 

Decision 
Tree 

We use a decision tree to guess peptides that cause IL-4 by looking at different parts of the peptides and seeing 
how they affect IL-4 production. This makes an excellent model for understanding and predicting IL-4 induction 
patterns based on peptide properties. 

Stacking 
Classifier 

The Stacking Classifier is an ensemble technique that stacks a number of base learners in a hierarchical fashion 
to learn higher-order features in peptide data. In this work, we employed it to improve IL-4-inducing peptide 
prediction. KNN, Decision Tree, SVM, and LightGBM base classifiers were trained using stratified 5-fold 
cross-validation. For each fold, the out-of-fold probability scores from these classifiers were collected and 
concatenated to create a new meta-feature matrix. The meta-learner, a Logistic Regression model with L2 
regularization (C=1), was trained on this matrix, stacking the probability-based outputs to arrive at the final 
prediction. The base models were tuned with default hyperparameters: KNN (k=3–15, Euclidean distance), 
Decision Tree (max depth 5–50, Gini/entropy criterion), SVM (RBF kernel, γ=0.001–0.1), and LightGBM 
(estimators 100–500, learning rate 0.01–0.2, depth 3–10). The whole workflow of this two-level stacking 
method is presented in Figure 2. 
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3.5. Performance Evaluation 

Performance evaluation of predictive models is a critical step 
towards ensuring robustness and accuracy. In this study, a 
cautious selection of evaluation criteria for IL-4-inducing 
peptide prediction is practiced throughout. The modeling 
process follows a rigorous protocol with both 5-fold cross-
validation. To compare the models in an exhaustive manner, 
several performance metrics are calculated like sensitivity, 
specificity, accuracy, and Matthews Correlation Coefficient 
(MCC) as shown in Equations 8 to 11. Area Under the
Receiver Operating Characteristic Curve (AUC) is also
calculated as a threshold-free measure to verify the overall
discriminative ability of every model. Greater AUC shows
more predictive capability. Specificity shows Equation 10,
determines the rate of true negative cases correctly identified,
gauging how well the model avoids false positives.
Sensitivity, which is interested in how well the model
correctly identifies IL-4-inducing peptides, gauges the
effectiveness of the model at recognizing positive cases.
Accuracy, shows in Equation 8, is the proportion of correctly

predicted outcomes over the number of total predictions and 
gives a general indication of model accuracy. The Matthews 
Correlation Coefficient (MCC) is a balanced metric that  

considers true and false positives and negatives. In contrast 
with accuracy, MCC is particularly useful when dealing with 
imbalanced datasets since it provides a better understanding of 
the performance of the model over the two classes [24 - 26]. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

× 100%   (8) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100%   (9) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

× 100%   (10) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  (𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇)−(𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹)
√(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

× 100%  (11) 

Here, TP = True Positive, TN = True Negative, FP = False 
Positive, and FN = False Negative. 

Figure 2. Our proposed stacking ensemble model architecture diagram.

4. Result and Discussion

Results of different machine learning models applied to
various feature representations and dataset versions are 
reported and discussed below. Our aim was to investigate 
how stacking ensemble learning, together with ADASYN-
balanced training data and chosen features, improves IL-4-
inducing peptide prediction. Both imbalanced and ADASYN-
balanced datasets are explored, tested on AAC, APAAC, and 
merged feature representations. Performance metrics such as 
accuracy, AUC, MCC, sensitivity, and specificity were 
compared between models and feature sets with particular 
interest in stacking model performance. 

This study was directed towards the prediction of IL-4 
producing peptides from an imbalanced APAAC features. 
Among the models experimented with, the Stacking classifier 
presented top scores, reaching accuracy of 88.74%, MCC of 

0.7754, AUC of 0.8879, with sensitivity and specificity 
scores of 90.30% and 87.27%, respectively. These measures 
show that the Stacking model not only performs extremely 
well overall but is also extremely robust at making correct 
predictions of peptides that activate IL-4, even in the face of 
negative consequences of data imbalance. As a point of 
comparison, the Logistic Regression (LR) model fared the 
worst with an accuracy of 63.00%, MCC of 0.2629, AUC of 
0.6252, sensitivity of 47.65%, and specificity of 77.40%. This 
means that LR struggles to capture the complex dependencies 
in the data as well as the other models. The other notable 
classifiers, including Random Forest (RF) and XGBoost 
(XGBClassifier), also did well with accuracy rates of 85.79% 
and 82.57%, respectively, as well as similar MCC and AUC 
values, which show that they are appropriate for this 
classification task. Stacking model in improving the accuracy 
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of IL-4-producing peptide prediction in imbalanced class 
distribution datasets. 

Table 2. Performance Comparison of Diverse Classifiers Employing APAAC Features on Imbalanced Dataset 

Classifier Accuracy MCC AUC Sensitivity Specificity 
LR 0.6300 0.2629 0.6252 0.4765 0.7740 
RF 0.8579 0.7162 0.8568 0.8227 0.8909 

SVC 0.7064 0.4164 0.7031 0.5983 0.8078 
XGB 0.8257 0.6552 0.8235 0.7535 0.8935 
DT 0.7802 0.5691 0.7767 0.6676 0.8857 

KNN 0.6635 0.3258 0.6617 0.6039 0.7195 
LGBM 0.8083 0.6222 0.8056 0.7202 0.8909 

Stacking 0.8874 0.7754 0.8879 0.9030 0.8727 

Table 3. Performance Comparison of Diverse Classifiers Employing AAC Features on Imbalanced Dataset 

Classifier Accuracy MCC AUC Sensitivity Specificity 
LR 0.6046 0.2099 0.5995 0.4432 0.7558 
RF 0.8472 0.6958 0.8456 0.7978 0.8935 

SVC 0.6327 0.2722 0.6271 0.4515 0.8026 
XGB 0.8097 0.6262 0.8067 0.7147 0.8987 
DT 0.7761 0.5664 0.7719 0.6399 0.9039 

KNN 0.6501 0.2988 0.6481 0.5845 0.7117 
LGBM 0.8177 0.6393 0.8153 0.7424 0.8883 

Stacking 0.8807 0.7628 0.8815 0.9058 0.8571 

Table 4. Performance Comparison of Diverse Classifiers Employing AAC Features on Balanced Dataset 

Classifier Accuracy MCC AUC Sensitivity Specificity 
LR 0.5685 0.1370 0.5685 0.5638 0.5732 
RF 0.8782 0.7579 0.8780 0.8444 0.9116 

SVC 0.6650 0.3299 0.6649 0.6531 0.6768 
XGB 0.8388 0.6887 0.8384 0.7474 0.9293 
DT 0.7830 0.5779 0.7825 0.6786 0.8864 

KNN 0.7018 0.4042 0.7016 0.6684 0.7348 
LGBM 0.8160 0.6356 0.8157 0.7602 0.8712 

Stacking 0.8959 0.7919 0.8960 0.9005 0.8914 

Table 5. Performance Comparison of Diverse Classifiers Employing APAAC Features on Balanced Dataset 

Classifier Accuracy MCC AUC Sensitivity Specificity 
LR 0.5787 0.1573 0.5786 0.5663 0.5909 
RF 0.8807 0.7625 0.8806 0.8520 0.9091 

SVC 0.7018 0.4037 0.7017 0.6811 0.7222 
XGB 0.8236 0.6534 0.8232 0.7526 0.8939 
DT 0.8046 0.6284 0.8039 0.6786 0.9293 

KNN 0.6954 0.3914 0.6953 0.6633 0.7273 
LGBM 0.8211 0.6469 0.8207 0.7577 0.8838 

Stacking 0.8947 0.7903 0.8948 0.9184 0.8712 
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Table 6. Performance Comparison of Diverse Classifiers Employing AAC+APAAC Features on Balanced Dataset 

Classifier Accuracy MCC AUC Sensitivity Specificity 
LR 0.5647 0.1293 0.5647 0.5718 0.5575 
RF 0.8604 0.7274 0.8609 0.7960 0.9258 

SVC 0.6865 0.3754 0.6869 0.6398 0.7340 
XGB 0.8261 0.6612 0.8267 0.7481 0.9054 
DT 0.7944 0.6078 0.7953 0.6751 0.9156 

KNN 0.7043 0.4102 0.7046 0.6675 0.7417 
LGBM 0.8096 0.6260 0.8102 0.7406 0.8798 

Stacking 0.8997 0.7995 0.8997 0.9018 0.8977 

Figure 3. ROC Curve (A) AAC Feature (B) APAAC Feature

This study was directed towards the prediction of IL-4 
producing peptides from an imbalanced AAC features. 
Performance comparison of several classifiers made, and the 
results are shown in Table 3. Of the models compared, the 
Stacking Classifier was the best, with accuracy of 88.07%, 
MCC of 0.7628, AUC of 0.8815, sensitivity of 90.58%, and 
specificity of 85.71%. These results refer to the model's 
strong ability to combine several base learners and improve 
predictive accuracy overall. In comparison, the Logistic 
Regression (LR) model was worst, achieving only 60.46% 
accuracy, MCC of 0.2099, AUC of 0.5995, 44.32% 
sensitivity, and 75.58% specificity, showing that LR is less 
appropriate for the task at hand.  

This comparison underscores the valuable role of 
advanced ensemble methods like Stacking in handling 
complex biological data and enhancing the precision of IL-4 
peptide prediction. After that, the classifiers were tested on 
the balanced dataset and the outcomes are shown in Table 4. 
The Stacking Classifier performed best among them with 
89.59% accuracy, 0.7919 MCC, 0.8960 AUC, 90.05% 
sensitivity, and 89.14% specificity. In contrast, the Logistic 
Regression model also performed the worst here with an 
accuracy of 56.85%, MCC of 0.1370, AUC of 0.5685, 
sensitivity of 56.38%, and specificity of 57.32%.  This clearly 

indicates that LR is not very useful for this feature. These 
findings also indicate the dominance of ensemble approaches 
like Stacking in handling complex biological datasets and 
improving predictive capability for IL-4 producing peptides.  

We tested the classifiers on the balanced APAAC dataset, 
as shown in Table 5. The Stacking Classifier again gave 
improved results with accuracy of 89.47%, MCC of 0.7903, 
AUC of 0.8948, sensitivity of 91.84%, and specificity of 
87.12%. Logistic Regression remained the poorest 
performing model with accuracy of 57.87%, MCC of 0.1573, 
AUC of 0.5786, sensitivity of 56.63%, and specificity of 
59.09%. The results indicate the performance of advanced 
ensemble techniques, such as Stacking, in improving the 
accuracy and correctness of the detection of IL-4 producing 
peptides in balanced data sets. Among different combined 
feature settings examined in this study, the concurrent use of 
AAC and APAAC features yielded the optimal outcome. For 
context-independent IL-4 inducing peptides prediction with 
the AAC+APAAC balanced dataset shows in Table VI, the 
Stacking Classifier was better with 89.97% accuracy, 0.7995 
MCC. AUC of 0.8997, sensitivity of 0.9018, and specificity
of 0.8977, indicating that it is excellent at aggregating the
predictions of multiple base models. The poorest
performance was by the Logistic Regression (LR) model with 
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56.47% accuracy, an MCC of 0.1293, an AUC of 0.5647, 
sensitivity of 0.5718, and specificity of 0.5575.  

The findings of this study validate that ensemble learning, 
in the form of stacking, provides a material performance 
advantage in IL-4-inducing peptides prediction. Comparison 
revealed that the stacking model performed better than each 
individual base learner on all feature types and dataset 
variants. In case of combined feature set (AAC + APAAC), 
the stacking model ranked as high as standalone testing 
accuracy of 89.97% and MCC of 0.7995 and was robust. 
When comparing performances between two situations of 
imbalanced and balanced datasets, it was evident that 
balancing the data with ADASYN substantially improved 
MCC as well as sensitivity, most importantly for minority 
class prediction. One of the advantages of the stacking model 
is that it can handle linear and nonlinear patterns using varied 
classifiers. This does, however, come at a computational 
complexity cost along with the risk of overfitting when the 
meta-learner is not well adjusted. The practical applications 
of our research reach as far as vaccine design, allergy 
research, and immunotherapy development, where it is 

crucial to accurately identify cytokine-inducing peptides. 
This model can assist researchers in pre-selecting candidates 
for wet-lab validation, thus streamlining experimental 
expenses and lead times. On a policy level, adoption of 
explainable and balanced machine learning pipelines in the 
study of peptides must be encouraged in biomedical research 
protocols. Granting bodies for immunoinformatics studies 
can incorporate feature transparency and fairness-aware data 
handling within grant proposal guidelines. Although the 
results are encouraging, there are limitations. The use of 
synthetic data generation might impose biases, and the 
model's performance on unseen peptides or noisy data is to be 
evaluated. Also, since experimentally verified IL-4-inducing 
peptides are limited in number, the dataset size limits the 
potential of deep learning models to excel beyond what 
classical ensembles can offer in bigger datasets.  To provide 
the comparative performance graph, a bar diagram displays 
in figure 4 where we can see that the Stacking model's 
accuracy, MCC, AUC, sensitivity, and specificity over 
combined, imbalanced, and balanced datasets.

Figure 4. Comparison of Scores for Imbalanced, Balanced and Combined Feature

5. Conclusion

In this work, we have suggested a stacking ensemble-based
prediction model for the prediction of IL-4-inducing peptides 
using extracted peptide features (AAC, APAAC, and their 
combination) and SHAP-guided feature selection. Our result 
suggests that the combination of interpretable feature 
engineering, effective sampling methods, and heterogeneous 
ensemble model produces more accurate, MCC, AUC, and 
overall better robustness. The stacking model, for example, 

handled both the imbalanced and balanced cases strongly and 
outperformed other machine learning algorithms across all 
types of features. This model not only illustrates academic 
significance but is also of promise to be applied in such real-
world contexts as individualized immunotherapy, vaccine 
development, and immune disease diagnosis. By placing in 
the foreground, the predictive power of SHAP-selected 
features and balance strategies, this study makes a major 
contribution to the design of explainable and generalizable 
peptide prediction models. In the future, we would like to 
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build on this work by including more advanced embedding-
based features, e.g., from protein language models. In 
addition, employing ensemble models based on deep learning 
on larger, experimentally verified datasets could also 
contribute to additional prediction improvements. Addition of 
uncertainty estimation and model calibration techniques 
could further enhance model trustworthiness in clinical or 
pharmaceutical decision-making scenarios. Overall, our work 
lays the foundation for more interpretable, accurate, and 
generalizable peptide prediction architectures in 
computational immunology. 
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