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Abstract 
This study introduces a robust life jacket identification system that incorporates YOLOv8, FaceNet, and AgeNet for real-time 
safety surveillance in settings such as beaches, swimming pools, and maritime activities. The YOLOv8 model is applied for 
detecting life jackets, while FaceNet and AgeNet do face recognition and age classification, dividing persons into age groupings 
like "Teenager" or "Adult."  The technology proficiently recognizes life jackets, detects faces, and evaluates risk by analyzing 
demographic factors, such as age, to generate safety alerts. The model attained a remarkable precision of 0.9934, a recall of 
0.9818, and mAP50 of 0.9948, therefore validating its efficacy in recognizing life jackets and identifying individuals at risk. In 
high-risk aquatic situations, real-time life jacket detection, age classification, and facial recognition make the system resilient 
and reliable, improving public safety and risk management. 
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1. Introduction

Life jacket detection is essential to ensure safety is 
maintained throughout beach activities, swimming pools, and 
maritime operations. To avoid drowning catastrophes and 
provide maximum protection for safety monitoring, the real-
time use of life jackets remains essential. The achievement of 
this goal depends heavily on object detection operations 
through deep learning techniques. Real-time object detection 
has become progressively important for various safety 
applications because it analyzes dynamic visual streams to 
detect and locate objects. This method most notably serves 
surveillance and autonomous system functions. YOLO (You 
Only Look Once) demonstrates high efficiency in real-time 
object detection operations due to its dual capability of fast  

*Corresponding author. Email: samba.yusuf@gmail.com 

execution and precise object detection [1] in real-time 
applications. YOLOv8 provides superior performance in real- 
time object detection operations, as it stands among the other 
YOLO versions. The detection capabilities of YOLOv8 for 
identifying objects that include life jackets become better 
through its architectural advancements, which incorporate 
advanced backbone networks with the Wise-IoU loss 
function. YOLOv8 provides improved detection speed 
alongside more precise localization due to its architectural 
improvements, making it an excellent match for real-time 
applications [2]. The system using YOLOv8 to spot life 
jackets delivers accurate detection of life jackets and their 
absence that enables prompt alerts to safeguard persons at 
risk. The detection system exists to stop accidents among 
people who could face drowning situations. It integrates 
FaceNet and AgeNet, which are age and face classification 
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models for offering complete monitoring features. Deep 
Convolutional Network FaceNet functions for face detection 
and recognition along with its face detection functionalities. 
The system has the ability to identify and find faces placed in 
images since it is a critical feature utilized for personal 
identification and security monitoring purposes. 
AgeNet determines the age group of detected persons by 
categorizing them into specified age groups. Through this set 
of characteristics, the system identifies life jackets and their 
automatic age categorization, which enhances the safety 
analysis process [3]. The detection of usage of life jackets and 
age grouping in live operations is essential to beachside safety 
management with pools and maritime rescue teams. The 
integration of YOLOv8, FaceNet, and AgeNet is a full safety 
surveillance system. The combined system detects life jacket 
usage and retrieves their age demographics from multi-source 
recognition data. Individual risk level comprehension 
depends on full context data, as some age groups need help 
or supervision in aquatic settings [4]. Such systems can send 
notices on time based on life jacket details and human age 
brackets to better practice safety measures. This type of 
system finds applications when considering public security 
systems since the computer's real-time enforcement of 
security procedures can advance people-administered 
enforcement of security measures. The system operates over 
live images and video streams to enable it to run within 
beaches, pools, and other bodies of water that call for real-
time observation to escape mishaps [5]. The three 
components, YOLOv8 to recognize life jackets, FaceNet to 
recognize the face, and AgeNet to recognize age, constitute 
an end-to-end real-time security surveillance system. The 
system contributes to enhanced security management by 
virtue of its dual purpose, which involves real-time jacket 
recognition combined with demographic profiling of people. 
The combined system has better functionality in multi-
functional analysis by virtue of its rapid responses and high 
precision, and offers secure public monitoring in dynamic 
environments. 

2. Literature Review

Researchers examine object detection through deep learning 
(DL) and machine learning (ML) models for detecting life
jackets together with other safety-related objects in multiple
studies. Real-time object detection applications usually rely
on YOLO (You Only Look Once) because of its leading
ability to rapidly process image and video data. YOLO
operates at real-time speeds because it performs object
prediction and classification within a single forward pass,
which is suitable for safety monitoring systems according to
reference [6]. Real-time object detection systems have
achieved multiple enhancements throughout their
development up to the latest iteration of YOLOv8 that
surpasses past versions. YOLOv8 implements anchor-free
designs along with the combination of advanced feature
fusion techniques based on Feature Pyramid Networks (FPN)
and Path Aggregation Networks (PAN) within its

architecture. YOLOv8 provides enhanced accuracy for 
detecting small objects and complex environment objects 
because of its new advanced architecture [7]. The detection 
of human faces and their age estimation using multiple 
models provides important contextual information that comes 
in handy when monitoring life jackets. The FaceNet model 
successfully implements a triplet loss function for Euclidean 
mapping of facial data, which works on multiple recognition 
applications [8]. AgeNet forms an essential safety monitoring 
system alongside these models to detect life jackets and 
perform age classification of people based on facial features 
for risk assessment purposes [4]. Researchers examine object 
detection through deep learning (DL) and machine learning 
(ML) models for detecting life jackets together with other
safety-related objects in multiple studies. Real-time object
detection relies heavily on YOLO (You Only Look Once) as
one of its most efficient and widespread algorithms for
processing images and videos. YOLO operates at real-time
speeds because it performs object prediction and
classification within a single forward pass, which is suitable
for safety monitoring systems according to reference [9].
Real-time object detection systems have achieved multiple
enhancements throughout their development up to the latest
iteration of YOLOv8 that surpasses past versions. YOLOv8
implements anchor-free designs along with the combination
of advanced feature fusion techniques based on Feature
Pyramid Networks (FPN) and Path Aggregation Networks
(PAN) within its architecture. YOLOv8 provides enhanced
accuracy for detecting small objects and complex
environment objects because of its new advanced architecture
[10]. The detection of human faces and their age estimation
using multiple models provides important contextual
information that comes in handy when monitoring life
jackets. The FaceNet model successfully implements a triplet
loss function for Euclidean mapping of facial data, which
works on multiple recognition applications [3]. AgeNet forms 
an essential safety monitoring system alongside these models
to detect life jackets and perform age classification of people
based on facial features for risk assessment purposes [11].
YOLOv8 is better and also faster in operation by utilizing
three optimization techniques that take advantage of the
Cosine Learning Rate Scheduler together with batch
normalization and data augmentation to lower background
errors [12]. Incorporating seen optimizations gives YOLOv8
the capacity to give precise outcomes in carrying out difficult
detection activities, which is advantageous for safety-critical
applications. The combination of YOLOv8 with FaceNet and
AgeNet models provides an end-to-end solution to identify
life jackets in real-time safety applications. BYOLOv8 with
FaceNet and AgeNet provides businesses with a solid
solution for the detection of people in peril through their
robust face detection and age recognition abilities in dynamic
safety monitoring systems. These models have been found
effective for similar tasks, making them promising to deploy
in real-time safety systems monitoring life jackets in aquatic
conditions [13].

3. Methodology
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The Life jacket detection system utilizes an integrated 
approach to detect life jackets and analyze human attributes, 
such as face and age, in real-time, combining data collection, 
preprocessing, model training, and system deployment. 
Initially, 451 images were captured using a smartphone and 
divided into training (80%, 361 images) and validation (20%, 
90 images) sets. After data augmentation, which included 
horizontal and vertical flips, rotations, hue, saturation, 
brightness, and noise adjustments, the dataset was expanded 
to 1,083 training images and 90 validation images. 
Preprocessing steps, including automatic orientation 
correction and resizing to 640x640 pixels, ensured 
consistency across the data. The YOLOv8 model, chosen for 
its speed and efficiency in real-time object detection, was 
used to detect life jackets and persons. This model was fine-
tuned on the augmented dataset, trained for 100 epochs, with 
parameters like batch size and learning rate optimized using 
the Adam optimizer. For face and age detection, two pre-
trained models—FaceNet and AgeNet—were integrated. 
FaceNet, utilizing a deep CNN, detects faces by outputting 
bounding boxes around each face, while AgeNet predicts the 
age group of the person based on facial featuresAgeNet 
assigns the detected face to one of several predefined age 
buckets, such as "(0-2)", "(4-6)", "(8-12)", "(15-20)", "(25-
32)", "(38-43)", "(48-53)", and "(60-100)", and classifies 
individuals as "Teenagers" or "Adults" based on age 
thresholds. Teenagers are classified as individuals in the age 
range of  0-20, while Adults are classified as individuals aged 
25 and above. This classification is visually represented with 
bounding boxes around the faces, where "Teenagers" are 
highlighted in yellow and "Adults" in green. Simultaneously, 
YOLOv8 tracks persons and detects life jackets, assigning 
unique IDs to each person and marking those not wearing life 
jackets as "Risk IDs." This is crucial for safety applications, 
allowing the system to flag individuals who are at risk. The 
system processes each frame from images, videos, or live 
webcam feeds, where it simultaneously detects faces, 
estimates ages, and checks for life jackets in real-time. The 
system's ability to process both offline uploads (images and 
videos) and live webcam streams enhances its utility for 
environments such as beaches, pools, or other water-related 
areas. The system is capable of providing real-time feedback, 
displaying bounding boxes with labels indicating age and life 
jacket status. The system's integration of FaceNet and AgeNet 
for age classification and YOLOv8 for object detection 
creates a robust, efficient tool for monitoring and ensuring 
safety in dynamic, real-world scenarios, while 
hyperparameter optimization ensures high performance and 
accuracy.  

3.1 Data preprocessing 

Deep learning commences with data preprocessing as its first 
step of data preparation. The process of making raw data 
ready for analysis requires multiple steps, followed by 

cleaning and refining. Data quality is the top priority in 
developing reliable and accurate models because data quality 
determines model effectiveness. Preprocessing data leads to 
more precise and relevant outcomes by assembling data 
according to the needs of analysis or machine learning 
operations. Figure 3.3 shows step-by-step guidance for data 
preparation. 

3.1.1 Data Cleaning 

A model requires data cleaning to eliminate unwanted or 
inconsistent information in order to improve both accuracy 
and efficiency during training. The goal of this procedure is 
to eliminate data elimination needed to prevent patterns from 
being obscured and predictions from being incorrect. The 
data becomes more tuned for model training when redundant 
and distracting information is eliminated, thus allowing 
successful generalization to new data points. The model 
learns from better representative examples due to data 
cleaning, thus it achieves better performance alongside 
improved final outcomes. 

3.1.2 Data Resizing 

To ensure consistent input dimensions, it is essential to resize 
each image to a predetermined size, such as 640x640 pixels, 
which is suitable for both models. 

3.1.3 Data Annotation 

The training of machine learning object detection models 
requires data annotation to function effectively. Roboflow 
served as our tool for annotating images by drawing 
boundaries on life jackets worn by persons. The images 
received the "Wear_lifejacket" tag to signify that life jackets 
were present. The precise annotations covered life jacket 
areas exclusively to let YOLOv8 learn what constitutes a life 
jacket and absent life jacket cases. The precise annotation 
technique applies fundamental importance to developing an 
effective model for the precise detection of life jackets in both 
photos and video streams. 

3.1.4 Data Augmentation 

Data augmentation serves as an essential tool in training 
frameworks by adding manufactured versions of data that 
alter variations and maintain image meaning. The model 
gains better generalization skills because these different 
transformations, such as reflections and rotations alongside 
color modifications, offer many real-world scenarios. Data 
augmentation fights overfitting and improves model stability 
while making it better at finding life jackets in different image 
settings. Visual information augmentation through the 
training consisted of horizontal and vertical flipping, as well 
as 90° clockwise and counter-clockwise rotations, and 
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random rotations from -15° to +15°. The model received 
horizontal and vertical shearing modifications with shear 
ranges from -10° to +10° to boost its capacity to recognize 
items from various viewing perspectives. Color 
enhancements, which varied hue from -17° to +17°, 
saturation from ±33% and brightness between -15% to +15% 
were applied to training images to develop environmental 
tolerance of the model. The dataset became more diverse 
through (-11% to +11%) exposure adjustments, and the 
application of pixel noise added up to 0.33% of pixels. The 
introduced augmentations protect the model from being 
sensitive to image features like lighting conditions and small 
variations or specific viewing angles, which leads to better 
deployment accuracy in real environments. 

3.1.5 Data Distribution 

The data separation process was done methodically to achieve 
proper training, validation, and testing conditions through 
independent subsets of data. After performing data 
augmentation, the initial 451 images from the original dataset 
became 1173 images compatible for training purposes and 90 
images for validating the model. There were 1,083 images 
that represented 92% of the total images in the training 
dataset, whereas the remaining 8% or 90 images belonged to 
the validation dataset. A data split procedure helps the model 
receive extensive training using the majority of the data, 
while reserving unseen data for performance evaluation. All 
data was saved as part of the COCO format, which serves as 

the standardized format in object detection applications for 
both training and testing purposes. 
The precise data processing procedures, comprising detailed 
annotation, adequate augmentation methods, and proper 
dataset partition, create an appropriate framework that 
enables the YOLOv8 model to process a diverse data 
collection that facilitates quick and precise life jacket 
detection under real-world scenarios. Multiple stable 
augmentation processes like rotation, together with flipping, 
translation, and color modification, increase model 
generalisation and improve its environmental performance as 
well as detection consistency when many applications are 
involved.  

3.2 Model Architecture Overview 

Deep learning frameworks that enable real-time object 
recognition are becoming increasingly popular, and 
YOLO is one of those frameworks. Object localization and 
classification tasks are combined into a single network by 
YOLO, which allows for simultaneous detection without 
the need for the traditional use of region proposal networks 
or sliding windows at the same time. Because of the 
unified framework, YOLO is able to process objects at a 
rapid speed, which makes it suited for applications such as 
robotics, autonomous driving, and surveillance. [1] 

Figure 1. System Diagram Life Jacket Detection 
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3.2.1 YOLO Architecture Overview 

Boundaries and class probabilities from image pixels are 
directly predicted through the Convolutional Neural 
Network (CNN) architecture that underlies YOLO. Each 
YOLO module functions in its own way for feature 
extraction (Backbone) and feature aggregation (Neck) as 
well as for executing predictions (Head). The YOLO 
framework treats object detection as a single-pass 
regression task because it needs to produce predictions for 
both bounding box locations and object probabilities, as 
well as confidence scores. [14] 

Grid Division and Prediction 

The YOLO model divides the input image into an 𝑆𝑆 × 𝑆𝑆 
grid. Each grid cell is responsible for detecting objects 
whose center falls within that cell. For each grid cell, the 
model predicts multiple attributes: bounding boxes, 
confidence scores, and class probabilities. The image is 
processed as a whole, and the model makes predictions for 
all objects in one go. [15]  For an input image of size 
𝑊𝑊 × 𝐻𝐻 × 3 (where 3 corresponds to the RGB channels), 
YOLO divides it into an 𝑆𝑆 × 𝑆𝑆 grid. Each grid cell predicts 
a fixed number of bounding boxes and class probabilities. 
The model outputs a tensor of dimensions 𝑆𝑆 × 𝑆𝑆 ×
(𝐵𝐵 × 5 + 𝐶𝐶), where: 

𝐵𝐵 is the number of bounding boxes each grid cell predicts 
(typically 2), 

5 includes the 4 bounding box coordinates and 1 
confidence score per box, 

𝐶𝐶 is the number of object classes. 

Thus, the total number of predicted values for each grid cell 
is 𝐵𝐵 × 5 + 𝐶𝐶. The confidence score (𝑐𝑐𝑖𝑖) predicted by each 
grid cell indicates how confident the model is that the box 
contains an object and how accurate the predicted 
bounding box is. The confidence score is computed as: 

𝑐𝑐𝑖𝑖 = 𝑃𝑃(object) × IoUpred
gt  

Where: 

𝑃𝑃(object) is the probability that a given bounding box 
contains an object, and 

IoUpred
gt  is the Intersection over Union (IoU) between the

predicted bounding box and the ground truth bounding box. 

3.2.2 YOLOv8 Model Architecture 

The architecture of YOLOv8 is an evolution of its 
predecessors, designed to enhance speed, accuracy, and 
robustness. The architecture can be divided into three main 
components: 

Backbone 

YOLOv8 extracts features from input images through its 
Backbone operation. The Cross-Stage Partial (CSP) 
architecture in YOLOv8 divides its feature map into dual 
segments. YOLOv8 splits its components into two parts, 
where the first branch applies convolution, while the 
second branch merges the output features of the first 
branch. The chosen approach elevates the learning 
capabilities and lowers computational requirements, thus 
enabling YOLOv8 to outperform its predecessors in speed 
and efficiency.[16]  

YOLOv8 implements a C2f backbone that combines the 
ELAN elements from YOLOv7 with components from 
YOLOv5 C3 modules to enhance its structure. The 
combination of these architectures enables better gradient 
flow information collection to enhance the learning 
framework. [17] The backbone convolves and activates the 
input image to produce a collection of feature maps 
F_"backbone", which contain image-specific 
representations learned through backbone operations. 

𝐹𝐹backbone = Conv�𝐼𝐼input� 

Where 𝐼𝐼input is the input image, and Conv denotes the 
convolutional operations performed on the input. 

Neck 

Multiple backbone layers operate in the neck layer by 
collecting features to enhance object identification. 
Multiscale feature fusion within YOLOv8 is enhanced by 
the implementation of Feature Pyramid Networks and Path 
Aggregation Networks at its neck structure. FPN in the 
Post-Neck and Pre-Neck architecture enables multiscale 
feature map generation while improving superset feature 
combination through spatial-rich low-level features and 
semantic-rich high-level features. The neck component 
utilizes multiple scale-level features in its operations to 
create F_"neck" feature maps using both scaling up and 
down methods [18]. 

𝐹𝐹neck = FPN(𝐹𝐹backbone) + PAN(𝐹𝐹backbone) 

This results in enhanced feature maps that are capable of 
detecting objects at various sizes. 

Head 

The Head component in YOLOv8 conducts final 
predictions that include bounding box outputs with 
confidence values, together with class prediction results. 
YOLOv8 divides its predictive operations into two 
independent branches within a decoupled head architecture 
that splits classification from regression tasks. Through this 
separate operation of tasks, the model achieves faster and 
more accurate predictions. YOLOv8 operates without 
anchor boxes, which were used in previous versions of the 
model. The network operates without anchors by 
predicting the center point before it generates bounding 
box coordinates directly from this position. The model 
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becomes easier to work with because of this technique, 
which produces better results for small object detection. 
[19]  

YOLOv8 concludes its analysis by generating boxes with 
associated class predictions along with confidence 
measures for all detected picture objects. The calculation to 
obtain the output tensor proceeds as follows: 

Output𝑖𝑖 = [𝑥𝑥, 𝑦𝑦, 𝑤𝑤, ℎ, 𝑐𝑐, 𝑃𝑃1, 𝑃𝑃2, … , 𝑃𝑃𝐶𝐶] 

Where: 

𝑥𝑥, 𝑦𝑦, 𝑤𝑤, ℎ are the coordinates of the bounding box, 

𝑐𝑐 is the confidence score for the bounding box, 

𝑃𝑃1, 𝑃𝑃2, … , 𝑃𝑃𝐶𝐶  These are the class probabilities for each 
detected object. 

3.2.3. YOLOv8 Loss Function 

The loss function in YOLOv8 is designed to minimize 
errors in object localization and classification. It is 
composed of four main components: Localization Loss, 
Confidence Loss, Classification Loss, and Objectless 
Loss. [20]  

Localization Loss 

Localization loss measures how accurately the model 
predicts the bounding box coordinates. This is calculated 
using the mean squared error (MSE) between the predicted 
bounding box coordinates (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑤𝑤𝑖𝑖, ℎ𝑖𝑖) and the ground 
truth coordinates (𝑥𝑥�𝑖𝑖, 𝑦𝑦�𝑖𝑖, 𝑤𝑤�𝑖𝑖, ℎ�𝑖𝑖): 

Localization Loss = � �1𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

�(𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

+ (𝑤𝑤𝑖𝑖 − 𝑤𝑤�𝑖𝑖)2 + �ℎ𝑖𝑖 − ℎ�𝑖𝑖�
2�

Where: 

1𝑖𝑖𝑖𝑖 It is an indicator function that equals 1 if the grid cell 
contains an object, and 0 otherwise. 

Confidence Loss 

Confidence loss measures the error in predicting the 
confidence score 𝑐𝑐𝑖𝑖 for each bounding box. The confidence 
score represents how confident the model is that the 
bounding box contains an object and how accurate the 
predicted bounding box is. This is calculated as: 

Confidence Loss = �1𝑖𝑖𝑖𝑖
𝑖𝑖

(𝑐𝑐𝑖𝑖 − 𝑐̂𝑐𝑖𝑖)2 

Where: 

𝑐𝑐𝑖𝑖 is the predicted confidence score, 

𝑐̂𝑐𝑖𝑖 is the ground truth confidence score. 

Classification Loss 

Classification loss measures how accurately the model 
predicts the class of the detected object. This is calculated 
using the categorical cross-entropy between the predicted 
class probabilities. 𝑃𝑃𝑖𝑖(𝑘𝑘) and the ground truth class 
probabilities 𝑃𝑃�𝑖𝑖(𝑘𝑘): 

Classification Loss = �1𝑖𝑖𝑖𝑖
𝑖𝑖

� �𝑃𝑃𝑖𝑖(𝑘𝑘) − 𝑃𝑃�𝑖𝑖(𝑘𝑘)�
2

𝑘𝑘

Where: 

𝑃𝑃𝑖𝑖(𝑘𝑘) is the predicted probability of class 𝑘𝑘 for grid cell 𝑖𝑖, 

𝑃𝑃�𝑖𝑖(𝑘𝑘) is the ground truth probability of class 𝑘𝑘. 

Total Loss Function 

The total loss function in YOLOv8 is the sum of the above 
individual losses, weighted by their respective factors: 

Total Loss = 𝜆𝜆coord ⋅ Localization Loss + 𝜆𝜆obj
⋅ Confidence Loss + 𝜆𝜆noobj
⋅ Confidence Loss (no object) + 𝜆𝜆class
⋅ Classification Loss 

Where: 

𝜆𝜆coord, 𝜆𝜆obj, 𝜆𝜆noobj, and 𝜆𝜆class are hyperparameters that 
control the relative importance of each loss component. 

3.2.4 Optimizations in YOLOv8 

YOLOv8 introduces several optimizations to improve 
detection accuracy and reduce computational load: 

Wise-IoU Loss: This loss function dynamically adjusts for 
aspect ratio variations and scale differences, improving 
bounding box accuracy. 

Anchor-Free Design: By eliminating anchor boxes, 
YOLOv8 reduces complexity and improves performance, 
especially for detecting small objects. 

Advanced Data Augmentation: Techniques such as 
random cropping, color jittering, and synthetic motion blur 
help the model generalize better to real-world conditions. 

YOLOv8 marks a major advancement within the YOLO 
series because it delivers advanced accuracy, fast speeds, 
and efficient performance. This object detection solution 
stands out because of its free-anchor design, together with 
its distinct head architecture and strong feature integration, 
which yield superior results in real-time scenario detection 
operations. The implementation of several advanced 
mechanisms within YOLOv8 established it as an elite 
object detection system that serves various applications, 
including autonomous vehicles and robotic surveillance 
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systems. Real-time object detection and classification at 
high accuracy levels make this model an optimal selection 
for embedded usage as well as large-scale implementation. 

3.2.5 AgeNet Model Overview 

The deep learning model AgeNet serves facial image age 
prediction through its specific architecture. The system 
utilizes convolutional neural networks (CNN) to derive 
multiple levels of features from face pictures while 
determining the estimated age of the person. [21] Training 
takes place through regression loss functions that normally 
use mean squared error (MSE) to calculate the age 
prediction distance from the actual values. AgeNet derives 
its loss function through mathematical representation as: 

L = Σ (y_pred - y_true)² 

Where y_pred is the predicted age and y_true is the actual 
age. In our project, AgeNet is utilized to estimate the age 
group of individuals detected in images. By processing the 
facial regions identified by the FaceNet model, AgeNet 
classifies individuals into predefined age groups, aiding in 
demographic analysis and enhancing the context of life 
jacket detection. 

3.2.6 FaceNet Model Overview 

FaceNet is a facial recognition system developed by 
Google that learns a mapping from face images to a 
compact Euclidean space where distances directly 
correspond to a measure of face similarity. [22] The model 
uses a deep CNN architecture to extract facial features and 
employs a triplet loss function to train the network. The 
triplet loss function is defined as: 

L = Σ max(d(a_p, a_n) - d(a_p, a_a) + α, 0) 

where a_p is the anchor image, a_n is a negative image, 
a_a is a positive image, d(·,·) is a distance metric (e.g., 
Euclidean distance), and α is a margin that ensures a gap 
between positive and negative pairs. In our project, 
FaceNet is employed to detect and recognize faces in 
images. The model identifies facial features and matches 
them against a database to verify identity, enabling 
personalized alerts for individuals detected without life 
jackets. 

3.3 Experimental Settings 

A training and testing session for the model occurred 
through Google Colab equipment with an NVIDIA A100 
GPU unit. The specifications for training the optimized 
YOLOv8s model, together with testing and validation, 
appear in Table 1. The script was written using the Python 
programming language, while deep learning operations 
used the PyTorch framework. The Roboflow API served to 
obtain the dataset, after which the YOLOv8s model 
received its training through the yolo command-line 

interface. The OFAT method served as a tool for 
hyperparameter tuning to determine the best model settings 
during the process. The research approach combines 
training models along with hyperparameter adjustment 
steps and performance testing, followed by outcome 
comparison against previous works and pre-trained 
models. 

Table 1: Software and Hardware Details 

Component Details 

OS Windows OS 

Platform Google Colab 

GPU NVIDIA A100 

Model Yolv8s 

3.4 Fine-tuning 

The optimization of the YOLOv8 model included multiple 
hyperparameter selection procedures and adjustments to 
maximize its detection capabilities for life jackets. The 
YOLOv8s model served as the preferred choice because it 
maintained strength in operations and detection speed 
while remaining a compact form of the YOLOv8 family. 
The AdamW optimizer served as a training framework 
because it incorporates weight decay regularization with 
the Adam optimizer to combat both overfitting problems 
and improve model generalization.[23] During 100 epochs 
of training, there was no decay of learning rate values, 
which started at 0.01 and finished at 0.01. The uniform 
learning rate during training was established in this 
environment to allow dependable parameter updates of the 
model. The selected batch size of 16 supported memory 
efficiency and gradient stability throughout the training 
process. The images received a 640x640 pixels resize 
treatment to strike an equilibrium between preserving 
detail while minimizing computational difficulty. 
Automatic Mixed Precision (AMP) accelerated 
computation operations while reducing model performance 
precision, along with disabling multiscale training for 
maintenance of stability. A training period of 100 epochs 
allowed the model to adjust its weights suitably based on 
the specific characteristics that existed in the dataset. 
Model performance optimization was achieved through 
tuning the hyperparameters to allow the model to effective 
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learning the required dataset features in order to develop a 
robust life jacket detection system. The model learned to 
work with different system parameters while maximizing 
the practical use of available computing resources during 
training. 

Table 2: Software and Hardware Details 

Hyperparameter Value 
Model YOLOv8s 
Optimizer AdamW 
Learning Rate (lr0) 0.01 
Learning Rate Final (lrf) 0.01 
Batch Size 16 
Epochs 100 
Image Size 640x640 
Automatic Mixed Precision 
(AMP) 

Enabled 

Multiscale Training Disabled 
Weight Decay 0.0005 
Warmup Epochs 3 
Momentum 0.937 
Learning Rate Scheduler Cosine Annealing 
Data Augmentation Enabled 

4. Result Analysis

The model demonstrated exceptional performance after 
100 epochs of training, attaining an accuracy of 0.99334 
and a recall of 0.98182, underscoring its strong capability 
to identify life jackets while reducing both false positives 
and false negatives. The mAP50 score of 0.99482 
demonstrates exceptional object detection performance at 
a 50% Intersection over Union (IoU) threshold, whereas 
the mAP50-95 score of 0.85527 signifies a marginally 
lower yet robust detection accuracy across a wider 
spectrum of IoU thresholds, highlighting the model's 
generalization capability. The precision-recall, recall-
confidence, and precision-confidence curves indicate that 
the model consistently exhibits excellent precision and 
recall across different confidence thresholds, with 
precision remaining near 1.0 and recall approaching 1.0 for 
the majority of confidence levels. The results validate the 
model's efficacy in precisely detecting life jackets in real-
time scenarios, particularly in dynamic and safety-sensitive 
contexts such as beaches, swimming pools, and maritime 
operations. The system utilizes YOLOv8's rapid detection 
skills, augmented by its anchor-free architecture and 
sophisticated feature fusion methods (including FPN and 
PAN), facilitating speedy and precise object detection. The 
amalgamation of FaceNet and AgeNet facilitates facial 

recognition and age classification, offering essential 
context for safety monitoring by identifying individuals' 
age groups, thereby improving risk assessment and 
ensuring prompt safety alerts for vulnerable populations, 
such as children or the elderly. The employed process, 
encompassing data cleaning, augmentation, and fine-
tuning of the YOLOv8 model with appropriate 
hyperparameters, guaranteed the model's robustness and 
accuracy. The amalgamation of high detection accuracy, 
real-time performance, and demographic profiling renders 
this system an optimal solution for automated safety 
monitoring and risk management, proficient in functioning 
inside real-world, high-risk scenarios. 

Table 3: Model Evaluation  

Metric Score 

Precision 0.9934 

Recall 0.9818 

MAP50 0.9948 

mAP50-95 0.8552 

4.1 Performance Analysis 

The model demonstrated exceptional performance after 
100 epochs of training, attaining an accuracy of 0.99334 
and a recall of 0.98182, underscoring its strong capability 
to identify life jackets while reducing both false positives 
and false negatives. The mAP50 score of 0.99482 
demonstrates exceptional object detection performance at 
a 50% Intersection over Union (IoU) threshold, whereas 
the mAP50-95 score of 0.85527 signifies a marginally 
lower yet robust detection accuracy across a wider 
spectrum of IoU thresholds, highlighting the model's 
generalization capability. The precision-recall, recall-
confidence, and precision-confidence curves indicate that 
the model consistently exhibits excellent precision and 
recall across different confidence thresholds, with 
precision remaining near 1.0 and recall approaching 1.0 for 
the majority of confidence levels. The results validate the 
model's efficacy in precisely detecting life jackets in real-
time scenarios, particularly in dynamic and safety-sensitive 
contexts such as beaches, swimming pools, and maritime 
operations. The system utilizes YOLOv8's rapid detection 
skills, augmented by its anchor-free architecture and 
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sophisticated feature fusion methods (including FPN and 
PAN), facilitating speedy and precise object detection. The 
amalgamation of FaceNet and AgeNet facilitates facial 
recognition and age classification, offering essential 
context for safety monitoring by identifying individuals' 
age groups, thereby improving risk assessment and 
ensuring prompt safety alerts for vulnerable populations, 
such as children or the elderly. The employed process, 
encompassing data cleaning, augmentation, and fine-
tuning of the YOLOv8 model with appropriate 
hyperparameters, guaranteed the model's robustness and 
accuracy. The amalgamation of high detection accuracy, 
real-time performance, and demographic profiling renders 
this system an optimal solution for automated safety 
monitoring and risk management, proficient in functioning 
inside real-world, high-risk scenarios. 

Figure 2. Performance Metric 

4.1.1 Result Curve Analysis 

The evaluation of the life jacket detection model is 
illustrated by three principal curves: Precision-Recall, 
Precision-Confidence, and Recall-Confidence. In the 
Precision-Recall Curve (a), the model demonstrates nearly 
flawless precision in recognizing life jackets, with a recall 
value nearing 1 as it recognizes the majority of true positive 
events. This signifies that the model is exceptionally 
proficient in differentiating between the "wear lifejacket" 
and "no lifejacket" categories. The Precision-Confidence 
Curve (b) demonstrates that when confidence rises, 
precision stabilizes at approximately 0.88 for the "wear 
lifejacket" class, showing the model's robust capacity to 
sustain precision at elevated confidence levels. Finally, the 
Recall-Confidence Curve (c) indicates that recall remains 
close to 1 for the "wear lifejacket" category, whereas it 
declines for the "no lifejacket" category as confidence 
diminishes, implying that the model excels in detecting life 
jackets but encounters challenges in lower-confidence 
situations. The curves indicate that the model demonstrates 
great accuracy and recall, accurately detecting life jackets 
in real-time with confidence criteria. 

Figure 3. (a) Precision-Recall Curve, (b) Precision 
Confidence Curve, (c) Recall-Confidence Curve  

4.1.2 Comparative analysis with other models 

In this study, three object detection models—Faster R-
CNN, YOLOv12, and YOLOv8—were evaluated on key 
performance metrics including Average Precision (AP), 
Precision, Recall, and mean Average Precision (mAP). The 
results demonstrate that Faster R-CNN achieves an AP 
(0.5:0.95) of 0.800, with a strong overall performance in 
large object detection but struggles with small objects 
(AP=0.000). YOLOv12 outperforms the other models, 
with an AP (0.5:0.95) of 0.8610, a Precision of 0.9994, and 
a Recall of 0.9909, showcasing superior accuracy and 
efficiency in object detection tasks. YOLOv8, while 
slightly behind YOLOv12, still demonstrates high 
performance with an AP (0.5:0.95) of 0.8553, a Precision 
of 0.9933, and a Recall of 0.9818. Furthermore, YOLOv8 
offers faster training times compared to Faster R-CNN, 
making it more suitable for real-time applications. Overall, 
YOLOv12 shows the highest performance in terms of both 
detection accuracy and recall, followed by YOLOv8, while 
Faster R-CNN excels in detecting larger objects despite 
higher computational costs. These results provide valuable 
insights for selecting the appropriate object detection 
model based on specific use cases, balancing performance, 
speed, and resource requirements. 

Table 4: Model Comparison  

Metric / 
Model 

Faster R-
CNN YOLOv12 YOLOv8 

AP (0.5:0.95) 0.800 0.8610 0.8553 
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Metric / 
Model 

Faster R-
CNN YOLOv12 YOLOv8 

Precision – 0.9994 0.9933 

Recall – 0.9909 0.9818 

mAP@50 (B) – 0.9950 0.9948 

mAP@50-95 
(B) 

– 0.8610 0.8553 

Train Loss 
(Final) 

~1.42 
(train) 

Box: 0.586, 
Cls: 0.296, 
DFL: 1.043 

Box: 0.442, 
Cls: 0.223, 
DFL: 0.919 

Val Loss 
(Final) 

~3.01 
(val) 

Box: 0.649, 
Cls: 0.279, 
DFL: 1.016 

Box: 0.634, 
Cls: 0.257, 
DFL: 0.976 

Training Time 
(Epoch 100) 

~3m 15s 
per 
epoch 

~5807s total ~1237s total 

Figure 4. Comparative analysis of Inference time: 
Faster R-CNN Vs Yolo  

4.2 Result Visualization 

Figure 5. Result Inferencing 

This image displays individuals wearing life jackets, each 
identified by a bounding box called "Wear_lifejacket." 
The detection system has precisely detected life jackets in 
diverse situations and from several angles, showcasing the 
model's efficacy in real-time item detection.   

4.2.1 Inferencing with Age and Risk ID 

Our solution incorporates the FaceNet and AgeNet models, 
which collaborate to identify faces and determine an 
individual's age. The technology not only detects if an 
individual is wearing a life jacket but also categorizes their 
age category, such as "Teenager" or "Adult."  The device 
can identify those at risk for not wearing a life jacket and 
issue safety notifications.  

Figure 6. Inferencing with Age classification and 
Risk ID in Night / Low light conditions 
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 The integration of face detection, age classification, and 
life jacket status renders the system exceptionally efficient 
for surveillance and safety assurance, particularly in 
settings like beaches, pools, and boats. The amalgamation 
of these technologies facilitates enhanced risk evaluations 
and tailored safety protocols. 

Figure 7. Inferencing with Age classification and 
Risk ID 

In this figure, our system detects each person's age group, 
identifies whether they are wearing a life jacket, and 
assigns a risk ID accordingly based on their life jacket 
status. 

4.2.2 Risk Identification and Alerts 

The system first detects individuals using the FaceNet 
model, then classifies them as Teenagers or Adults with the 
AgeNet model. The Life Jacket Detection model 
determines if the person is wearing a life jacket, while 
assigning a unique ID to each individual. If a person is not 
wearing a life jacket, the system immediately flags them 
and assigns a Risk ID, triggering an alert for further action. 

5. Conclusion

In summary, the YOLOv8-FaceNet-AgeNet-integrated life 
jacket detection system provides a dependable and highly 
effective way to monitor safety in real time in dynamic 

settings, including beaches, swimming pools, and maritime 
operations. The system offers complete surveillance by 
identifying life jackets, classifying people by age, and 
identifying those who are at risk by utilizing the 
sophisticated capabilities of YOLOv8 for quick and precise 
object detection, FaceNet for facial recognition, and 
AgeNet for age classification. The model's durability in 
detecting life jackets across a variety of situations is 
demonstrated by the outstanding performance measures, 
which include excellent precision, recall, and mAP scores. 
The system is a useful tool for improving safety procedures 
and guaranteeing prompt actions to prevent accidents, 
especially for vulnerable populations like children and the 
elderly, because of its real-time processing and capacity to 
evaluate hazards based on demographic profiling. The 
smooth, automated integration of face detection, age 
classification, and life jacket status demonstrates the 
system's potential for extensive use in risk management 
and public safety. 

6. Future Scope

Future studies will focus on improving the system's 
efficiency and accuracy by incorporating more 
environmental data, like water currents or weather, to 
improve risk assessment. Furthermore, utilizing more 
sophisticated models such as multi-modal detection, which 
makes use of infrared or depth sensors, could enhance 
detection in difficult-to-reach places like busy areas or low 
light levels. Additionally, the system might be extended to 
accommodate broader uses outside of aquatic situations, 
like keeping an eye on public safety during outdoor events 
or activities. Additionally, by connecting the system's real-
time monitoring features to automated alert systems or 
rescue services, response times and public safety could be 
enhanced. 

7. Ethical Considerations and Privacy

All data used in this study were captured with the explicit 
consent of the individuals, and personal identifiers were 
anonymized to protect privacy. The dataset will be made 
publicly available upon manuscript acceptance, with strict 
adherence to privacy guidelines. For inferencing, publicly 
available images sourced from the internet were used, 
ensuring no personal data was violated. The system 
complies with GDPR and other privacy regulations, and 
appropriate safeguards are in place to protect individuals' 
rights. 
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