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Abstract 

The growing prevalence of advanced persistent threats (APTs), zero-day exploits, and the rapid proliferation of IoT devices 
have exposed limitations in traditional cybersecurity approaches. In response, this study presents a comparative analysis of 
deep learning models—specifically Long Short-Term Memory (LSTM) and Transformer-based architectures—for 
cybersecurity threat classification from textual data. Leveraging a standardized dataset and consistent preprocessing pipeline, 
both models are evaluated across key performance metrics, including accuracy, precision, recall, and F1-score. The results 
demonstrate that Transformer models significantly outperform LSTM-based approaches, exhibiting superior capacity to 
capture long-range dependencies, handle complex threat narratives, and generalize to previously unseen data. These findings 
offer valuable insights into the practical application of modern deep learning techniques in cybersecurity and provide a 
foundation for designing more robust and adaptive threat detection systems. 
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1. Introduction

In the digital age, the imperative for robust cybersecurity 
measures has reached an unprecedented zenith. The rapid 
proliferation of internet connectivity, the ascendancy of cloud 
computing, and the pervasive integration of Internet of 
Things (IoT) devices have engendered a vast digital 
ecosystem. While these advancements confer myriad benefits 
such as enhanced operational efficiency and democratized 
access to information, they concurrently expose 
organizations to a spectrum of cyber threats.  
The World Economic Forum's Global Risks Report [1] 
highlights the escalation of cybercrime as a significant global 
risk, underscoring the urgent need for effective defenses  

against increasingly sophisticated cyber threats. As 
highlighted by Symantec [2], adversaries have transitioned  
from rudimentary malware to intricate, targeted attacks, 
leveraging APTs, zero-day exploits, and IoT vulnerabilities 
to breach defenses. 
The ramifications of such cyber threats are profound, leading 
to severe data breaches, substantial financial losses, and 
disruptions of critical infrastructure. Indeed, projections 
indicate that cybercrime will inflict a staggering economic 
toll of approximately $10.5 trillion annually by 2025 [3]. This 
alarming trajectory emphasizes the necessity for adaptive 
cybersecurity frameworks capable of evolving in tandem with 
emerging threats [4][5]. 
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Recent studies have illuminated the potential of machine 
learning (ML) as a transformative tool in cybersecurity, 
offering innovative methodologies for threat detection and 
classification. ML techniques, particularly those leveraging 
deep learning architectures such as Long Short-Term 
Memory (LSTM) networks and transformer models, have 
been explored for their efficacy in discerning patterns within 
voluminous textual data related to cyber threats [6][8]. 
However, a discernible gap persists in comparative analyses 
of these models' performance in threat classification tasks. 
Specifically, there is a lack of head-to-head comparisons 
between LSTM and transformer architectures under similar 
conditions, as well as limited exploration of how contextual 
features may enhance model performance. Additionally, 
existing research often utilizes diverse datasets and metrics, 
complicating efforts to benchmark model effectiveness 
across various cyber threat scenarios. 

This study aims to bridge this gap by rigorously evaluating 
the effectiveness of transformer-based models in classifying 
cybersecurity threats from textual data, juxtaposed with 
traditional LSTM frameworks. Specifically, we will assess 
the strengths and limitations of various ML techniques, 
culminating in the proposal of a novel classification model 
predicated on transformer architecture. The findings from this 
research will contribute to a deeper understanding of the role 
of ML in cybersecurity and inform the development of more 
resilient defenses against cyber threats. Our key contributions 
include: (1) a head-to-head evaluation on identical 
preprocessed threat data, (2) consistent benchmarking against 
a state-of-the-art model (SEAM), and (3) detailed analysis of 
generalization and loss behavior. 

The subsequent sections of this paper are organized as 
follows: the Literature Review surveys existing research on 
ML applications in cybersecurity; the Methodology 
delineates the research methods employed, including data 
collection and evaluation metrics; the Results Analysis and 
Discussion section presents an analysis of the performance of 
the proposed models; and the Conclusion synthesizes key 
findings, addresses limitations, and proffers 
recommendations for future research. 

2. Literature Review

2.1. Evolution of Cybersecurity Threats 

The landscape of cybersecurity threats has undergone a 
significant transformation over the past few decades, 
evolving from relatively simple forms of malware to highly 
sophisticated and persistent attacks. The early days of 
computing were marked by the emergence of viruses and 
worms, often created more for notoriety than financial gain. 
As the internet became more prevalent and valuable data 
moved online, cybercrime evolved into a sophisticated and 
lucrative industry. By the early 2000s, threats had grown 
more complex, with the rise of more destructive malware [9]. 
The late 2000s saw a shift towards financially motivated 
attacks, including phishing schemes and ransomware. For 

instance, in 2007, a shift in malicious activity towards Web-
based attacks, targeting individual computers through trusted 
websites was noticed. This shift is likely due to increased 
security measures on networks and the potential for greater 
success in targeting end-users [10]. The report also notes an 
increase in phishing attacks, particularly targeting ISPs and 
financial institutions, and a rise in banking trojan infections. 
In recent years, the threat landscape has further evolved to 
include advanced persistent threats (APTs) and state-
sponsored attacks [2]. APTs are characterized by their stealth, 
persistence, and the involvement of well-organized groups, 
often state-sponsored, aiming to infiltrate networks and 
remain undetected for extended periods to extract valuable 
information or cause significant harm [11].  
Alongside the proliferation of APTs, the sophistication of 
attack techniques has continued to grow, with cybercriminals 
increasingly leveraging zero-day exploits and AI-powered 
attacks. Zero-day exploits take advantage of previously 
unknown vulnerabilities and for which no patches exist. 
These exploits enable attackers to breach systems without 
detection, making them extremely challenging to defend 
against using traditional security measures [12].  The 
emerging trend of AI-powered attacks has also raised 
significant concerns, as malicious actors leverage artificial 
intelligence and machine learning to automate and scale their 
attacks [13]. IoT devices, often characterized by limited 
computational resources and weak security protocols, are 
particularly vulnerable to attacks, making them attractive 
targets for cybercriminals [14]. Similarly, the migration to 
cloud computing environments has introduced challenges 
related to data security, access control, and the potential for 
large-scale breaches [15]. 

2.2. Limitations of traditional cybersecurity 
approaches in addressing evolving threats 

Traditional approaches to cybersecurity have proven 
increasingly inadequate in addressing the evolving threat 
landscape. As traditional intrusion detection systems (IDSs) 
often rely on outdated methods like pattern-based detection, 
they struggle to identify new or modified attacks [16]. 
Besides, rule-based approaches require constant knowledge 
updates, while heuristic-based methods are computationally 
expensive. These conventional methods often struggle to 
keep pace with the rapidly changing attack vectors, as they 
are primarily designed to detect known threats based on 
predefined patterns [17]. Firewalls and IDS have been 
foundational components of network security, designed to 
monitor and control incoming and outgoing network traffic 
based on predetermined security rules. Firewalls act as 
barriers between trusted and untrusted networks, while IDS 
monitor network traffic for signs of suspicious activity. 
Attackers have developed techniques to bypass or disable 
these defenses, rendering them less effective against 
sophisticated attacks like APTs or zero-day exploits [18]. One 
of the primary shortcomings of traditional cybersecurity 
approaches is their reactive nature. Many traditional systems 
rely on identifying and responding to threats after they have 
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already infiltrated a network, rather than proactively 
identifying and mitigating potential threats before they can 
cause harm. This limitation is particularly problematic in the 
context of novel and rapidly evolving threats, where time is 
of the essence and delays in detection can result in significant 
damage. As cyber threats become more sophisticated, 
dynamic, and difficult to detect, new strategies and 
technologies are required to anticipate and mitigate emerging 
challenges. 

2.3. Emergence of machine learning (ML) as 
a transformative technology in cybersecurity 

The integration of Machine Learning (ML) into 
cybersecurity represents a paradigm shift, offering new ways 
to enhance threat detection and response. The adoption of ML 
in cybersecurity has been gradual, beginning with basic 
applications such as spam filtering [19] and progressing to 
more sophisticated uses in recent years. Notable milestones 
include the development of IBM Watson for Cyber Security 
[20], which leverages ML and natural language processing to 
analyze vast amounts of security data, and the use of deep 
learning models for more accurate malware detection. 

ML offers several distinct advantages over traditional 
cybersecurity methods. One of the key benefits is 
adaptability—ML models can continuously learn and evolve 
by analyzing new data, enabling them to stay ahead of 
emerging threats. This adaptability is particularly important 
given the constantly changing nature of cyber threats. ML 
techniques, such as anomaly detection, predictive analytics, 
and behavior-based threat detection, enable cybersecurity 
systems to identify and respond to previously unknown 
threats, reducing the time between detection and mitigation 
[21]. ML models can scale to analyze large datasets, making 
them suitable for use in environments with high volumes of 
network traffic or security logs. The study also suggests that 
predictive capabilities of ML allow for the identification of 
potential threats before they materialize, providing a more 
proactive approach to cybersecurity. 

2.4. Current Applications of ML in 
Cybersecurity 

Machine Learning has found diverse applications within 
the field of cybersecurity, with some of the most prominent 
areas being anomaly detection, malware classification, 
network intrusion detection, and threat intelligence. Anomaly 
detection involves identifying deviations from normal 
behavior in network traffic or user activity, which may 
indicate the presence of a security threat. ML models are 
particularly effective at this task, as they can analyze large 
volumes of data and detect subtle patterns that might escape 
traditional detection methods [22]. Malware classification 
and detection is another key area where ML has made 
significant contributions. By training models on large 
datasets of known malware samples, researchers have 
developed systems that can accurately identify new and 

unknown malware based on their behavior or characteristics, 
rather than relying solely on signatures [23]. Network 
intrusion detection and prevention systems (NIDS/NIPS) also 
benefit from ML, with models capable of analyzing network 
traffic in real time to identify and block potential intrusions. 
This study [24] presents a novel approach to intrusion 
detection by hierarchically combining misuse detection and 
anomaly detection models. The proposed method utilizes a 
C4.5 decision tree to initially decompose the normal training 
data into smaller subsets. Subsequently, a one-class support 
vector machine is employed to create an anomaly detection 
model for each of these subsets. This integration allows the 
anomaly detection model to indirectly leverage known attack 
information, leading to enhanced performance in identifying 
unknown attacks. Threat intelligence and predictive analytics 
represent the frontier of ML in cybersecurity. By extracting 
features from packet data and applying various machine 
learning models, the system can effectively predict suspicious 
packets [25]. The models tested in this work include neural 
networks, support vector machines, logistic regression, and 
linear regression. Experimental results demonstrate the 
effectiveness of the approach in detecting trojan malware and 
other malicious activities. This capability allows 
organizations to identify and mitigate threats before they can 
cause significant damage. 

2.5. Emerging Challenges and Limitations of 
ML in Cybersecurity 

Despite its potential, the application of Machine Learning 
in cybersecurity is not without challenges. One of the primary 
issues is the quality and availability of data. Effective ML 
models require large volumes of high-quality data to train on, 
but obtaining such data can be difficult due to privacy 
concerns, the sensitive nature of cybersecurity incidents, and 
the potential for biased or incomplete datasets. Despite its 
potential, the application of Machine Learning in 
cybersecurity is not without challenges. One of the primary 
issues is the quality and availability of data. Effective ML 
models require large volumes of high-quality data to train on, 
but obtaining such data can be difficult due to privacy 
concerns, the sensitive nature of cybersecurity incidents, and 
the potential for biased or incomplete datasets. This study 
[26] presents a comprehensive survey of existing network-
based intrusion detection data sets. It analyzes the properties
of these data sets, including data format, volume, recording
environment, and evaluation criteria. The paper provides a
detailed overview of 34 data sets, highlighting their unique
characteristics and suitability for different research purposes.
Adversarial machine learning poses another significant
challenge. Attackers can manipulate inputs to ML models in
ways that cause the models to make incorrect predictions,
potentially leading to security breaches. This area of research
is critical, as the effectiveness of ML-based cybersecurity
solutions depends on their resilience to such attacks. [27]
offers a comprehensive overview of the research landscape in
adversarial machine learning, particularly within the context
of cybersecurity. This study highlights the susceptibility of
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machine learning models to adversarial attacks and the 
potential consequences of such attacks in cybersecurity, 
including compromised system security, false positives, and 
false negatives. The interpretability and explainability of ML 
models also remain areas of concern. Many ML models, 
particularly deep learning models, operate as "black boxes," 
making it difficult for security professionals to understand 
how they arrive at their decisions. This lack of transparency 
can hinder trust and adoption, especially in high-stakes 
environments where understanding the reasoning behind 
security decisions is essential. The work [28] presents a 
comprehensive overview of methods for explaining black 
box, highlighting the importance of defining a common 
formalism for explaining black boxes, measuring their 
comprehensibility, and addressing latent features. Moreover, 
the integration of ML in cybersecurity raises ethical 
considerations and privacy concerns. The collection and 
analysis of large amounts of data, especially personal data, 
must be done in compliance with privacy regulations and 
ethical standards. Additionally, there is the risk that ML 
models could inadvertently reinforce existing biases in data, 
leading to unfair or discriminatory outcomes. The study [29] 
finds that while algorithms can be used to address ethical 
concerns, they also introduce new challenges due to their 
complexity and opacity. It emphasizes the need for a 
comprehensive approach to the ethics of algorithms that 
considers various factors, including epistemic deficiencies, 
ethical residues, and the interconnectedness of ethical 
concerns. 

The review of existing literature highlights several 
limitations in the application of machine learning (ML) to 
cybersecurity. Traditional methods have struggled to keep up 
with the rapidly evolving threat landscape, particularly in 
addressing advanced persistent threats (APTs) and zero-day 
exploits, which are beyond the scope of conventional, 
pattern-based detection systems. While ML models offer 
more adaptive solutions, challenges such as the quality and 
availability of data remain significant, as large volumes of 
high-quality data are often difficult to obtain due to privacy 
concerns, biases, and the sensitive nature of cybersecurity 
incidents. Furthermore, adversarial attacks pose a critical 
risk, with malicious actors exploiting vulnerabilities in ML 
models to cause incorrect predictions, potentially leading to 
security breaches. Additionally, the interpretability of these 
models is another key issue, as deep learning techniques often 
function as "black boxes," limiting transparency and trust in 
their decision-making processes. Ethical and privacy 
concerns also arise, particularly in relation to the use of 
personal data and the potential for biased or unfair outcomes. 
In light of these limitations, the objective of this study is to 
develop a machine learning model specifically designed for 
classifying cybersecurity threats from textual data, 
addressing issues related to adversarial attacks and model 
transparency. The study will also compare the performance 
of the proposed model with traditional LSTM models to 
assess its effectiveness in real-world cybersecurity 
applications. 

3. Methodology

This study employs a deep learning approach to detect and 
classify cyber threats using textual data. The methodology 
encompasses data preparation, feature engineering, model 
construction, and evaluation. The process is detailed as 
follows: 

3.1. Dataset 

The dataset utilized in this study is obtained from Kaggle, 
titled Text-Based Cyber Threat Detection [30]. This dataset 
encompasses network traffic data, a diverse range of cyber 
threat-related textual content, and entity relationships, 
making it a valuable resource for training machine learning 
models in cybersecurity applications. The data includes 
various labels indicating different categories of threats, which 
are essential for the supervised learning tasks undertaken in 
this study. This dataset is a comprehensive collection 
designed for cyber threat detection, diagnosis, and mitigation. 
It is structured to provide a holistic view of cyber threats, 
including their identification, analysis, and potential 
solutions. This rich and multifaceted dataset has numerous 
potential applications in the field of cybersecurity. It can be 
used to train machine learning models for cyber threat 
detection and classification, conduct threat intelligence and 
analysis, develop incident response and mitigation strategies, 
implement real-time network security monitoring, and serve 
as a valuable resource for cybersecurity education and 
research. 

3.2. Data Loading and Preprocessing 

To prepare the raw textual data for training deep learning 
models, a structured preprocessing pipeline was applied, 
ensuring both consistency and preservation of semantic 
information critical for cyber threat classification. 

• Text Cleaning: The text was initially
standardized by removing URLs, punctuation,
and special characters, and converting all text to
lowercase. Unlike traditional NLP pipelines,
stopwords were retained to preserve contextual
cues often essential in threat descriptions.

• Data Loading: The cleaned dataset was imported
using Python’s Pandas library, which provides
efficient handling of large-scale data and enables
initial inspection and quality checks.

• Tokenization: Text sequences were tokenized
using Keras’s Tokenizer class. The vocabulary
was limited to the 10,000 most frequent words to
maintain computational efficiency, with an Out-
of-Vocabulary (OOV) token assigned to rare or
unseen terms. This step converted each document
into a sequence of integers, aligning the input
with model requirements.

• Sequence Padding: Deep learning models like
LSTM, BiLSTM, and Transformers require
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uniform input lengths. Therefore, all tokenized 
sequences were padded or truncated to a fixed 
length of 128 tokens using Keras’s 
pad_sequences function. This ensured 
compatibility with batch processing during 
training. 

• Label Encoding: The eight distinct cyber threat
categories were transformed using one-hot
encoding, resulting in binary vectors where each
dimension corresponds to a specific threat class.
This encoding format aligns with the
requirements of multi-class classification tasks.

These preprocessing steps were carefully selected to 
balance model efficiency and classification performance, 
enabling the downstream models to process structured inputs 
while maintaining the contextual integrity of the original 
cybersecurity data. 

3.3. Feature Engineering 

Feature engineering is a critical step in the machine learning 
pipeline, especially in the context of cybersecurity, where the 
quality and relevance of the features significantly impact the 
model's performance. In this study, feature engineering 
involves two stages designed to transform raw textual data 
into a structured format that can be effectively processed by 
LSTM and BiLSTM models. 

3.3.1. Sequence Preparation 
The first step in feature engineering is the preparation of 
sequences from the tokenized text. Unlike traditional 
machine learning models that might treat text as a bag of 
words, LSTM and BiLSTM models rely on the sequential 
nature of the data. Therefore, maintaining the order of words 
in a sentence is crucial. The tokenized text is structured into 
sequences where each sequence represents a continuous 
segment of text. These sequences are designed to capture the 
temporal dependencies in the data, which is essential for 
understanding the context of cyber threat indicators. For 
instance, the phrase "unauthorized access attempt" carries 
different implications depending on its context within a 
broader text, and LSTM/BiLSTM models can recognize such 
nuances through properly structured sequences. 

3.3.2. Label Binarization with One-Hot Encoding  
The original labels in the dataset, which represent different 
categories of cyber threats, are categorical and need to be 
transformed into a numerical format that the model can work 
with.  Label binarization in this study is done using one-hot 
encoding, where each category is converted into a binary 
vector. For instance, as there are eight classes of cyber threats, 
namely 'NEED_ATTENTION' 'SOFTWARE' 'attack-pattern' 
'benign' 'identity' 'location' 'malware' 'threat-actor' each label 
is converted into a vector of length eight, with a '1' indicating 
the presence of a particular class and '0' indicating its absence. 
This method ensures that the model's output layer can 
correctly predict the probability of each class. 

3.4. Model Development 

In this study, we employed a multifaceted approach to 
classify cyber threat intelligence, integrating both recurrent 
neural networks and Transformer-based models. Recurrent 
models such as LSTM and BiLSTM were initially utilized 
due to their strength in capturing sequential dependencies 
inherent in cybersecurity data. However, recognizing the 
limitations of these models in handling long-range 
dependencies, we proposed a more advanced architecture 
rooted in the Transformer framework. This Transformer-
based approach leverages self-attention mechanisms to 
extract deep contextual relationships from the text, enhancing 
the detection of nuanced threats. Through iterative training, 
optimization, and regularization, the proposed models were 
fine-tuned for the robust classification of cyber threats across 
a diverse dataset. 

3.4.1. Recurrent Models: LSTM and BiLSTM 
To leverage the temporal dynamics of cybersecurity text data, 
we initially employed two recurrent neural network 
architectures: LSTM and BiLSTM. These architectures have 
been extensively validated for their capability to capture 
sequential dependencies, a property crucial for detecting 
latent patterns in threat-related text. 

LSTM Architecture: The LSTM model was configured 
to process input sequences through a series of layers designed 
to progressively extract features. Starting with a tokenized 
input, the model used an LSTM cell to capture long-range 
dependencies, enabling the model to retain critical 
information over extended sequences. This capability is 
essential in the context of cybersecurity, where threats may 
emerge from subtle and delayed connections between events. 
The cell architecture's gating mechanisms allowed for the 
selective memory retention and updating of the sequence 
information, refining the model’s capacity to discern 
meaningful insights.  

BiLSTM Architecture: To complement the 
unidirectional processing of LSTM, the BiLSTM model was 
integrated. This model introduced bidirectional layers, 
processing sequences in both forward and reverse order. The 
concatenation of these outputs provided the network with a 
more holistic understanding of the sequence, allowing for the 
identification of threat patterns that could manifest both 
before and after specific triggers within the text. This 
bidirectional approach was especially pertinent to the task of 
cybersecurity threat detection, where understanding both the 
preceding and succeeding context is critical. Figure 1 
illustrates the architecture of a Bi-LSTM model, which was 
used to experiment on the Dataset. 
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Figure 1. Architecture of Bi LSTM model 

3.4.2. Transformer Model Architecture 
Building on the limitations of recurrent models, we proposed 
a Transformer-based model rooted in the Transformer 
architecture, tailored for the classification of cyber threat 
reports. This model exploits self-attention mechanisms, 
offering a robust way to handle long-range dependencies and 
mitigate the sequential bottlenecks inherent in recurrent 
architectures. 
Input Layer and Embedding 
The model begins with an input layer designed to handle 
fixed-length sequences of tokenized text, derived from 
preprocessed cybersecurity data. Each token is embedded 
into a dense, continuous vector space via a learned 
embedding matrix. Formally, the embedding can be 
represented as: 

𝐸𝐸(𝑥𝑥𝑖𝑖) = 𝑊𝑊𝑒𝑒 ⋅ 𝑥𝑥𝑖𝑖  
where 𝑥𝑥i is the i-th token in the input sequence, and 𝑊𝑊e is 

the learned embedding matrix. This representation 
encapsulates semantic relationships between tokens, which is 
crucial for distinguishing nuanced threat categories in 
complex text corpora. 
Multi-Head Self-Attention: The multi-head attention 
mechanism is a pivotal component of our model, enabling 
parallel processing of text sequences. By allowing the model 
to attend to multiple positions within the input 
simultaneously, this mechanism uncovers intricate 
relationships between tokens. The attention heads, operating 
concurrently, enhance the model’s ability to contextualize 
individual tokens within the broader scope of the sequence, 
significantly improving the detection of subtle threats. Each 
attention head computes a self-attention score using the query 
(Q), key (K), and value (V) matrices as follows: 

Attention(Q, K, V) = softmax(
𝑄𝑄𝐾𝐾𝑇𝑇

�𝑑𝑑𝑘𝑘
)V 

where dk is the dimension of the key vectors. This allows 
the model to attend to different parts of the sequence in 
parallel, significantly improving the detection of subtle 
relationships in the text.  
Residual Connections and Normalization: Residual 
connections and layer normalization are applied to stabilize 
training and maintain performance across deeper layers. The 
output of each layer is given by: 

𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) 
This setup ensures that the model retains important 

information across layers, while also normalizing the output 
distribution, which aids in efficient convergence. 

Figure 2. Architecture of the proposed transformer 
models. 

Feedforward Layers and Stacking: To further refine the 
learned representations, the output from the attention layers 
is passed through fully connected dense layers. These layers, 
interspersed with dropout for regularization, are instrumental 
in reducing dimensionality and capturing high-level 
abstractions. The entire architecture is repeated multiple 
times, forming a deep stack of attention blocks that refines 
the attention maps, leading to a more precise identification of 
cybersecurity threats. 
Global Pooling and Output: After the attention layers, 
global pooling ensures a fixed-size output for the classifier. 
The pooled output is passed through fully connected layers, 
and finally, a softmax activation function is applied to 
produce probabilities for the threat classes: 

𝑃𝑃(𝑦𝑦 = 𝑐𝑐 ∣ 𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(ℎ) 
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where ℎ represents the pooled output, and the softmax 
converts it into class probabilities. This final classification 
layer outputs the predicted threat class, vital for subsequent 
threat mitigation actions. 

3.4.3. Model Regularization and Optimization 
To enhance model generalization and prevent overfitting, 
multiple regularization and optimization strategies were 
adopted across the evaluated architectures. 

For the LSTM and BiLSTM models, dropout layers were 
incorporated between hidden layers to reduce co-adaptation 
of neurons and improve robustness. Early stopping was 
employed based on validation loss, enabling training to 
terminate once performance plateaued, thereby preventing 
overtraining. The Adam optimizer was chosen for its adaptive 
learning capabilities, allowing efficient convergence across 
sequence-based architectures. 

For the Transformer-based model, regularization was 
similarly applied using dropout within encoder layers. In 
addition to early stopping, a learning rate scheduler was 
utilized to dynamically adjust the learning rate in response to 
validation performance, promoting stable optimization. 
Adam remained the optimizer of choice due to its ability to 
handle sparse gradients and adapt learning rates across 
parameters. These strategies ensured that models were not 
only optimized for training efficiency but also capable of 
maintaining generalization performance on unseen data. 

3.4.4. Hyperparameter Tuning and Training 
Environment 
Hyperparameters were tuned within predefined ranges 
through manual grid search, with early stopping applied to 
prevent overfitting. For the LSTM and BiLSTM models, 
hidden units between 64 and 256 and dropout rates from 0.2 
to 0.5 were tested; the final choice was two layers of 128 units 
with a dropout of 0.3 and a learning rate of 0.001. For the 
Transformer, encoder layers (1–4), attention heads (4–12), 
and embedding dimensions (128–512) were explored, with 
the best configuration being two layers, eight heads, and an 
embedding size of 256. Dropout of 0.3 and a learning rate of 
2e-4 (with a scheduler) provided the most stable training. 

All experiments were conducted in Python (TensorFlow 
and PyTorch) on an NVIDIA RTX 3090 GPU with 24 GB 
VRAM. Training typically required less than one hour for 
LSTM/BiLSTM models and around three hours for the 
Transformer model. 

3.5. Training and Validation 

Our experiments involved splitting the dataset into training 
and validation sets, maintaining an 80:20 ratio. The BERT 
model, along with the recurrent LSTM and BiLSTM models, 
was trained for a predefined number of epochs, with batch 
sizes optimized for computational efficiency. Model 
performance was evaluated based on key classification 
metrics, ensuring robust and reliable threat detection 
performance across varying cybersecurity data inputs. 

3.6. Model Compilation 

The compiled model is configured with a loss function, 
optimizer, and evaluation metrics, which are critical for 
guiding the training process. 

Loss Function: The loss function quantifies the difference 
between the predicted and actual class labels, guiding the 
model in adjusting its weights during training to minimize 
this difference. Categorical cross-entropy is used, which is 
appropriate for multi-class classification. 

Optimizer: The Adam optimizer is selected for its 
efficiency and effectiveness in training deep learning models. 
It adapts the learning rate for each parameter, which 
accelerates convergence and helps the model escape local 
minima. 

Evaluation Metrics: Evaluation metrics such as accuracy, 
precision, recall, and F1-score are used to assess the model's 
performance during training and validation. These metrics 
provide insights into the model’s ability to correctly classify 
cyber threats. 

4. Results and Discussion

The comparative evaluation of Long Short-Term Memory 
(LSTM), Bidirectional Long Short-Term Memory 
(BiLSTM), and Transformer-based models reveals distinct 
patterns of performance across training, validation, and 
testing phases. The analysis focuses on the convergence 
behaviors, generalization capabilities, and overall efficacy of 
these models in cyber threat classification tasks. 

4.1. Model Convergence and Loss Analysis 

The loss curves for all three models—LSTM, BiLSTM, and 
Transformer—demonstrate the distinct learning trajectories 
and convergence patterns over 10 epochs. The LSTM model, 
characterized by its unidirectional processing of sequential 
data, exhibited a steady decrease in training loss from 1.4 to 
0.15, while the test loss declined from 1.25 to 0.69. Despite 
this progress, the LSTM model's test loss plateaued around 
0.69, indicating challenges in minimizing generalization 
error. 

In contrast, the BiLSTM model, which processes data in 
both forward and backward directions, showed slightly 
improved performance, with training loss reducing from 1.4 
to 0.17 and test loss from 1.25 to 0.65. The reduction in test 
loss relative to LSTM highlights BiLSTM’s superior capacity 
to generalize, likely due to its ability to capture bidirectional 
dependencies in the data. 

The Transformer model, leveraging self-attention 
mechanisms, demonstrated the most pronounced 
improvements. Its training loss decreased from 1.4 to 0.12, 
and test loss from 1.3 to 0.55. The superior convergence rate 
and lower final test loss underscore the Transformer’s robust 
ability to model complex patterns without significant 
overfitting. This advantage is attributable to the model's 
attention-based architecture, which allows for better 
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contextual understanding and long-range dependency 
modeling. The loss curves are depicted in Figure 3. 

Figure 3. Loss vs Epoch Curve for train and test. 

4.2. Performance Evaluation 

4.2.1. Training Performances 
The Transformer model outperformed both the LSTM and 
BiLSTM architectures across all metrics. Specifically, the 
training accuracy for the Transformer reached 98.22%, 

compared to 95.36% for LSTM and 95.95% for BiLSTM. 
Validation accuracy followed a similar trend, with the 
Transformer achieving 90.35%, while the BiLSTM and 
LSTM models recorded 86.24% and 85.58%, respectively.  
The analysis of training loss further emphasizes the 
superiority of the Transformer model, which recorded a loss 
of 0.12, in contrast to the LSTM and BiLSTM losses of 0.15 
and 0.17, respectively. Validation loss also reflected this 
trend, with the Transformer achieving a loss of 0.52, while 
the BiLSTM and LSTM displayed higher losses of 0.67 and 
0.70, respectively. In Table 1, the training performances are 
summarized.  

Table 1. Overall training performances of all three 
trained models. 

Metric LSTM BiLSTM Transformer Model 

Training 
Accuracy (%) 

95.36 95.95 98.22 

Validation 
Accuracy (%) 

85.58 86.24 90.35 

Training Loss 0.15 0.17 0.12 

Validation 
Loss 

0.70 0.67 0.52 

4.2.2. Test Performances and Comparison 
In this study, we evaluated the performance of various 

models for our classification task of identifying cyber threats 
from textual data, comparing them against the benchmark 
model, SEAM (Ramoliya et al., 2023). The results, 
summarized in Table 1, highlight the performance metrics of 
each model across accuracy, precision, recall, and F1 scores. 
The SEAM model achieved an accuracy of 85.18%, with a 
precision of 85.34%, a recall of 85.18%, and an F1 score of 
85.20%. Our experimental models demonstrated varied 
performance metrics, with the BiLSTM model performing 
closely to SEAM, achieving an accuracy of 86.03%, precision 
of 86.31%, recall of 85.80%, and an F1 score of 86.10%. The 
LSTM model recorded slightly lower metrics, with an 
accuracy of 84.97%, precision of 83.89%, recall of 84.45%, 
and an F1 score of 84.16%. In contrast, our Transformer 
model outperformed all others, achieving an impressive 
accuracy of 89.19%, precision of 89.89%, recall of 89.06%, 
and an F1 score of 89.51%.  

These results indicate that while the BiLSTM model 
shows competitive performance relative to the SEAM 
benchmark, the Transformer model significantly surpasses all 
tested models, establishing it as a superior approach for this 
task. In Table 2, an overall comparison is depicted. 
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Table 2: Test performance of different models and 
comparison with the benchmark model. 

Model/Metric Accuracy Precision Recall F1 

SEAM [30] 85.18 85.34 85.18 85.2 

LSTM 84.97 83.89 84.45 84.16 

BiLSTM 86.03 86.31 85.8 86.1 

Transformer 
Model (ours) 

89.19 89.89 89.06 89.51 

4.3. Discussion on Generalization and Model 
Robustness 

The superior performance of the Transformer model in cyber 
threat classification stems from its architectural advantages 
and strong generalization capabilities. Unlike recurrent 
models such as LSTM and BiLSTM, which process inputs 
sequentially, Transformers employ a self-attention 
mechanism that enables simultaneous consideration of all 
tokens in a sequence. This parallelism enhances efficiency 
and facilitates the capture of long-range dependencies—
critical for analyzing cybersecurity narratives that often span 
multiple sentences and stages. 
The multi-head attention mechanism further enriches the 
model’s contextual understanding by attending to multiple 
aspects of the input simultaneously, which aids in 
distinguishing subtle threat patterns. Additionally, 
Transformers avoid the vanishing gradient issues common in 
RNNs, contributing to faster convergence, lower loss values, 
and improved generalization, as evidenced by gains in test 
accuracy and F1-score. 
Extensive pre-training on large corpora also bolsters the 
Transformer’s ability to generalize to emerging, previously 
unseen threat indicators. This is particularly valuable in the 
dynamic cybersecurity landscape, where language and tactics 
evolve rapidly. 
However, these advantages come with increased 
computational demands. The high memory and processing 
requirements of Transformer models may limit their 
deployment in resource-constrained environments, such as 
IoT gateways or edge devices. This suggests a need for future 
work on model compression, distillation, or hybrid 
architectures to support lightweight, real-time applications. In 
summary, the Transformer architecture demonstrates robust 
performance and adaptability in cyber threat classification, 
making it well-suited for centralized threat intelligence 
systems and a strong candidate for future research in scalable 
cybersecurity solutions. 

5. Conclusion

This study highlights the transformative potential of machine 
learning (ML) in strengthening cybersecurity frameworks 
against increasingly complex digital threats. By conducting a 
comparative analysis of deep learning architectures—namely 
LSTM, BiLSTM, and Transformer-based models—our 
findings underscore the critical role of advanced sequence 
modeling in detecting and classifying emergent threats such 
as advanced persistent threats (APTs), zero-day exploits, and 
AI-driven attacks. The integration of Transformer 
architectures demonstrated notable improvements in 
predictive accuracy, generalization, and the timely 
identification of nuanced threat patterns, outperforming 
traditional recurrent models. These results affirm the value of 
attention-based mechanisms in capturing long-range 
dependencies and contextual nuances present in 
cybersecurity-related textual data. 

In summary, while ML offers significant advancements 
for cybersecurity, its responsible and effective deployment 
will require continuous innovation, interdisciplinary 
collaboration, and rigorous governance to adapt to the ever-
evolving threat landscape. 

Limitations and Future Work 
Despite promising results, the study highlights important 
limitations. The effectiveness of the models depends heavily 
on access to high-quality, representative datasets and robust 
preprocessing pipelines. Additionally, issues such as 
vulnerability to adversarial inputs and limited interpretability 
remain pressing challenges for practical deployment in real-
world cybersecurity environments.  

Future work should explore the development of resilient 
architectures that can withstand adversarial manipulation, 
along with explainable AI (XAI) techniques to enhance 
transparency and trust. Hybrid approaches that combine the 
interpretability of recurrent models with the performance 
advantages of Transformer-based architectures may provide 
a balanced solution. Furthermore, integrating these models 
into real-time threat detection pipelines, while addressing 
ethical considerations, data privacy, and responsible 
deployment, will be essential for advancing the practical 
application of ML in cybersecurity. 
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