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Abstract 
INTRODUCTION: To improve survival rates for breast cancer, a leading cause of female mortality globally, early detection 
is essential. This study presents a deep learning framework for classifying mammogram images as normal or abnormal. 
OBJECTIVES: This research aims to enhance the performance of a deep learning model for breast cancer classification by 
augmenting a real mammogram dataset with synthetic images. The study evaluates the impact of progressively increasing 
the number of synthetic mammograms on the model's accuracy, precision, recall, and F1-score. 
METHODS: The approach utilizes the EfficientNetV2L model for classification. Data augmentation was performed by 
generating synthetic mammograms using Denoising Diffusion Probabilistic Models (DDPM). A baseline dataset of 410 real 
mammograms from the INbreast public dataset was augmented with an increasing number of synthetic images across four 
experimental scenarios. 
RESULTS: The model demonstrated substantial performance gains directly linked to the use of synthetic data. The best 
performance was achieved when 500 synthetic images were used, resulting in all evaluation metrics exceeding a score of 
0.90. The results confirm that incorporating more synthetic images is a key factor in achieving both higher classification 
accuracy and more stable training convergence. 
CONCLUSION: These findings highlight the significant potential of synthetic image augmentation to address data scarcity, 
class imbalance, and model generalisation in medical image analysis. This method provides a scalable and privacy-
preserving solution for breast cancer screening systems. 

Keywords: breast cancer detection, synthetic mammograms, efficientnetv2l, denoising diffusion probabilistic models, deep learning in 
medical imaging. 
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1. Introduction

Breast cancer is one of the most common causes of death in 
women worldwide. In 2022, 2.3 million new cases of female 
breast cancer and 670,000 deaths from female breast cancer 

*Corresponding author. Email: siti.sendari.ft@um.ac.id

occurred worldwide, with annual rates increasing by 1-5% 
[1]. By 2050, the number of new cases is expected to rise by 
38%, while deaths will increase by 68%, with low Human 
Development Index (HDI) countries being disproportionately 
affected [1]. In breast cancer cases, the mortality rate is 
inversely proportional to the speed of diagnosis and early 
treatment. Early detection, accompanied by regular periodic 
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treatment or therapy, can effectively improve the survival rate 
of female breast cancer patients [2].  

One of the commonly used breast cancer detection 
methods is mammography. Mammography is a medical 
imaging tool based on X-rays, used to observe soft tissue in 
the breast to detect the presence of abnormal tissue that may 
indicate cancer [3]. Mammography is relatively safer, more 
comfortable, and more cost-effective while maintaining a 
reasonably good level of accuracy compared to other methods 
such as Ultrasound, Magnetic Resonance Imaging (MRI), 
Magnetic Resonance Spectroscopy, and Positron Emission 
Tomography Conjugated with Computed Tomography (PET-
CT) [4]. Screening using mammography with an adequately 
targeted population can effectively reduce breast cancer 
mortality rates [5]. 

Although mammography is still the gold standard method 
for detecting breast cancer as early as possible, it has a 
significant tendency to produce high rates of false positive 
results in detecting cancerous tissue, especially for women 
with dense breast tissue [6]. This is due to mammography's 
inability to differentiate between benign, malignant, and 
healthy tumours in the soft tissue of the breast. Doctors or 
radiologists sometimes require additional examinations to 
establish a diagnosis, such as other screening methods or a 
biopsy procedure, where a small sample of suspected 
cancerous breast tissue is taken for laboratory examination. 
This procedure results in both physical discomfort and 
increased costs for the patient. 

With advancements in artificial intelligence, several 
studies have been conducted to develop a Computer-Aided 
Diagnosis (CAD) system that uses deep-learning methods to 
analyse mammography images and detect abnormal tissue in 
the female breast [7], [8], [9], [10]. The results of these 
studies indicate that CAD systems utilising deep-learning 
methods can reliably and accurately detect abnormal breast 
tissue from mammography images. Several factors determine 
the accuracy of deep-learning methods, including dataset 
diversity (variance) [11], dataset balance [12], and dataset 
quantity [13] used during the training process to develop the 
model. An ideal dataset should have sufficient diversity to 
represent all expected prediction classes, balance across all 
prediction classes, and an adequate quantity of data [14]. It is 
known that the generalisation and robustness of deep-learning 
models can be significantly improved with large-scale 
datasets [15].  

In contrast, data scarcity in the medical domain is still a 
significant problem. Medical data is complicated to obtain 
because it is classified as confidential personal data protected 
by local laws and regulations. In accordance with the World 
Medical Association's Declaration of Helsinki, ethical 
clearance is also necessary before biomedical research 
involving human subjects can be conducted [16]. Therefore, 
there are challenges in researching the application of deep-
learning methods to medical data, especially medical imaging 
data. Medical image datasets tend to have relatively low 
diversity, are often imbalanced, and are limited in quantity, 
which creates immense problems for researchers. 

Several publicly available mammography datasets, 
including INbreast [17], MIAS [18], and CBIS-DDSM [19] 

are commonly used by deep-learning researchers. Each 
dataset has different image characteristics and class 
classifications. Furthermore, using these datasets necessitates 
a number of conventional image augmentation techniques, 
like zooming, flipping, and rotating, to improve variability 
and maximise the accuracy of deep learning systems [20]. 
However, traditional image augmentation techniques only 
modify the representation of images but do not create new 
variations of mammogram objects. 

Generating synthetic data is one promising approach to 
address data scarcity in medical image analysis that has 
gained attention in recent literature. Generative models, 
including Generative Adversarial Networks (GANs) [21], 
Denoising Diffusion Probabilistic Models (DDPMs) [22], 
and Variational Autoencoders (VAEs) [23] have shown 
promising results in generating realistic medical images 
similar to actual patient data. Several studies have explored 
deep learning for generating synthetic medical images, 
reaching a promising stage where computers can entirely 
generate and process medical images.  

Yi et al. (2019) conducted research investigating the use of 
Generative Adversarial Networks (GANs) in medical 
imaging [24]. GANs are a type of neural network model 
consisting of two networks: one focused on image generation 
during training and the other on discrimination [25]. This 
research aims to serve as a dataset generator in medical 
radiology, addressing data scarcity while protecting patient 
privacy in research dataset collection. Nevertheless, when the 
generator only generates a small range of samples and is 
unable to fully represent the range of variability found in the 
training data, the GAN tends to experience mode collapse 
[26].  

Rais et al (2024) studied the exploration of the generation 
of medical imaging using Variational Autoencoders (VAEs) 
[27]. VAEs are a promising method for augmenting medical 
imaging and addressing data scarcity. Also, the use of VAEs 
to augment images could improve machine learning 
performance by minimising overfitting and enhancing data 
variety. On the other hand, this research also highlights the 
fact that images generated by VAEs are not as realistic as 
those generated by GANs.    

Muller-Franzes et al. (2023) also studied another synthetic 
medical image generation method called Medfusion [28]. 
Medfusion is a conditional latent Denoising Diffusion 
Probabilistic Model (DDPM) used as a synthetic dataset 
generator for medical imaging. DDPM consists of two 
processes: forward diffusion (noise addition), which 
gradually adds noise using a Gaussian distribution, and 
reverse diffusion (denoising and generation), which learns to 
reverse the noise process, progressively reconstructing the 
image. It aims to enhance the performance of deep-learning-
based health anomaly detection systems, including glaucoma 
in the eye, cardiomegaly in the lungs, and colorectal cancer.  

This research aims to utilise a DDPM-based generative 
artificial intelligence method to produce synthetic 
mammograms and assess their impact on the accuracy of 
deep-learning systems for mammogram classification. This 
would address the scarcity of real mammograms as a dataset 
source for deep-learning systems without being restricted by 
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patient data confidentiality. Synthetic mammograms enhance 
dataset diversity, improve class balance, and increase the 
dataset size, thereby addressing key challenges in deep-
learning research. 

In this paper, our main contribution is as follows: 

(i) We propose a DDPM-based method to generate 
synthetic mammograms for two output classes: normal 
and abnormal. This approach is used as data 
augmentation to increase the size and diversity of the 
real dataset (in this case, we use the public INbreast 
dataset). 

(ii) We examine the effect of adding specific quantities of 
synthetic mammograms to the real dataset. We run 
several scenarios to evaluate the impact of these 
synthetic images on the performance of a machine 
learning model for abnormality detection. 

(iii) We explore the potential of the DDPM-based method to 
complement traditional image augmentation techniques. 
Furthermore, we see this approach as a potential solution 
for researchers to improve medical datasets in terms of 
size, diversity, and class balance, without violating 
patient data privacy. 

2. Methods 

2.1. Synthetic Mammograms Generator 

 
 

Figure 1. Generative Learning Trilemma [29] 

This research utilises the DDPM system as a framework for 
generating synthetic mammograms [30], a decision justified 
by its strategic navigation of the generative learning trilemma 
[29] as shown in Figure 1. For a high-stakes application like 
mammography, the exceptional sample quality and diversity 

offered by DDPMs are paramount. The framework excels at 
producing high-fidelity images that capture critical diagnostic 
details. It also avoids the mode collapse common in other 
models like GANs, ensuring the generated dataset represents 
the full spectrum of anatomical and pathological variations. 
While DDPMs take longer to generate images, this is an 
acceptable drawback for our purposes. Since we are creating 
a dataset offline rather than needing real-time results, the 
exceptional quality and diversity offered by DDPMs make 
them the best option over faster methods. 

Figure 2 illustrates the DDPM system block diagram, 
which consists of two primary subsystems: forward diffusion 
and reverse diffusion [22]. Forward diffusion takes an input 
in the form of a real mammogram image (x0). The system 
then gradually adds Gaussian noise over multistep (T), 
producing intermediate noisy images (xt). After enough steps, 
the image becomes pure Gaussian noise. This pure Gaussian 
noise then reverts to an image using a noise predictor. The 
noise predictor is trained using a U-Net deep-learning model 
to predict and remove noise. The model learns the mapping 
between the noisy image (Xt) and the original image (x0). 
Reducing the discrepancy between actual and predicted noise 
is the aim of noise predictor training. After training the noise 
predictor, the system starts the reverse diffusion process. The 
trained model removes noise from pure Gaussian noise step 
by step, reconstructing an image. The final output is a 
generated synthetic mammogram. 

We use the publicly available INbreast mammogram 
dataset to train the DDPM model. The selection of INbreast 
is motivated by its use of digital mammograms, which 
provide higher image resolution as they do not undergo film 
scanning. Furthermore, the standardised nature of the images 
reduces potential variability, thereby minimising factors that 
could interfere with the training process. 

 
 

Figure 2. Block Diagram of DDPM System 

This dataset comprises 410 mammogram images in 
Mediolateral Oblique (MLO) and Craniocaudal (CC) 
projections that are separated into eight BI-RADS (Breast 
Imaging-Reporting and Data System) categories. To simplify 
image generation, the eight BI-RADS categories were 
classified into 'normal' and 'abnormal' labels, and 250 
synthetic mammograms were generated for each label. Since 
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the dataset between normal and abnormal is imbalanced, we 
use the class weights for DDPM training, where the smaller 
number of normal class is assigned higher weights than the 
abnormal class. These 500 synthetic mammogram images, 
combined with 410 real INbreast mammograms, are utilised 
as the training dataset for a deep-learning system to detect and 

classify abnormalities in female breast imaging. Detailed 
dataset specifications are shown in Table 1. Samples of real 
and generated synthetic mammograms for each label are 
shown in Table 2.  
 

 
 

Table 1. INbreast Dataset Specifications 

INbreast Real Dataset Synthetic Dataset 
Category Subtotal Label Generated Synthetic Images 

BI-RADS 1 67 Normal 250 
BI-RADS 2 220 

Abnormal 250 

BI-RADS 3 23 
BI-RADS 4a 13 
BI-RADS 4b 8 
BI-RADS 4c 22 
BI-RADS 5 49 
BI-RADS 6 8 
Grand Total 410  500 

 

Table 2. Samples of Real and Synthetic Mammograms 

 Normal Abnormal 
Real 
Mammogram 

      
Synthetic 
Mammogram 

      
 

2.2. Deep-Learning Method for Mammogram 
Classification 

Mammogram classification is critical in breast cancer 
detection, requiring highly accurate and efficient deep-
learning models [31]. In image classification applications, 
conventional Convolutional Neural Networks (CNNs) have 
proven to be effective. However, they often suffer from high 
computational costs, making them less feasible for large-
scale applications. Researchers have explored efficient 
architectures that balance performance and computational 
efficiency to address this issue, such as the EfficientNet 
family.  

EfficientNetV2 is a deep-learning architecture model 
designed to improve accuracy and efficiency [32]. It 
outperforms earlier state-of-the-art models in terms of 
parameter efficiency and training speed. It builds upon the 
original EfficientNet architecture by introducing several 
enhancements. EfficientNetV2 utilises a progressive learning 
strategy, where training begins with lower-resolution images 
and gradually increases to higher resolutions. This approach 
helps stabilise training while improving model generalisation. 

Another key innovation in EfficientNetV2 is the 
introduction of fused-MBConv layers. Unlike standard 
depthwise separable convolutions used in EfficientNetV1, 
fused convolutions improve training speed and efficiency by 
combining depthwise and pointwise convolutions into a 
single operation. This modification results in faster 
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convergence and reduced memory requirements, making the 
model more suitable for large-scale vision tasks, such as 
medical imaging. 

EfficientNetV2 comes in four main variants: 
EfficientNetV2-S, M, L, and XL, each designed to balance 
accuracy and computational efficiency for different use cases. 
EfficientNetV2S is lightweight and ideal for mobile and edge 
devices. EfficientNetV2M balances speed and accuracy, 
making it suitable for general-purpose image classification. 
EfficientNetV2L provides higher accuracy and is used for 
large-scale datasets. EfficientNetV2XL is the most powerful 
variant, designed for research and high-performance 
computing. These variants leverage Fused-MBConv layers, 
progressive learning, and optimised scaling to achieve 
superior accuracy while significantly reducing training time 
and computational costs compared to previous models. Table 
3 summarises the comparison among EfficientNetV2 
variants. 

This study will employ EfficientNetV2L as a robust and 
reliable deep-learning model for detecting and classifying 
abnormalities in mammogram images. While the model 
exhibits high complexity in extracting detailed structural 
features from mammogram images, it remains 
computationally efficient, making it well-suited for large-
scale medical imaging applications. The EfficientNetV2L 
network architecture is structured into eight distinct stages, as 
illustrated in Figure 3 below. 

EfficientNetV2L consists of the following key blocks: 

(i) Fused-MBConv (Fused-Mobile Inverted Bottleneck 
Convolution) 
It is used in the early layers of the network, combining 
standard convolution and depthwise separable 
convolution into a single operation. This layer improves 
training efficiency by reducing memory access 
overhead. 

(ii) MBConv (Mobile Inverted Bottleneck Convolution) 
It is used in deeper layers of the network, consisting of a 
depthwise separable convolution followed by a 
pointwise convolution. This layer includes Squeeze-
and-Excitation (SE) blocks to enhance essential features. 

(iii) Convolutional Layers 
A 3×3 convolutional layer at the beginning for initial 
feature extraction and a 1×1 convolution at the end 
before fully connected layers. 

(iv) Squeeze-and-Excitation (SE) Blocks 
It is used inside MBConv blocks to enhance essential 
features by recalibrating channel-wise activations and 
helps distinguish subtle differences in mammogram 
images. 

(v) Progressive Learning Strategy 
The model starts training with lower-resolution images 
and gradually increases image size while adjusting 
regularisation. This part prevents overfitting and speeds 
up convergence. 

 
 

Table 3. Comparison Among EfficientNetV2 Variants 

Variant No. Parameters FLOPs* Application 
EfficientNetV2S 22 M 8.8 B Edge devices, mobile apps 
EfficientNetV2M 54 M 24 B General-purpose classification 
EfficientNetV2L 120 M 53 B Large-scale datasets, medical imaging 
EfficientNetV2XL 208 M 94 B Research, high-performance tasks 

*(Floating Point Operations per Second) is a metric that measures the computational complexity of a neural network model. 
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Figure 3. EfficientNetV2L Architecture

EAI Endorsed Transactions on 
AI and Robotics 

| Volume 4 | 2025 | 



 
R. Sutjiadi et al.  

 

  6      

Mammogram 
Dataset

(INbreast)

Deep Learning 
Architecture

(EfficientNetV2L-
Transfer Learning)

Trained 
Model

Mammogram Image

Deep Learning 
Architecture

(EfficientNetV2L)

Training Phase Prediction Phase

Predicted Class
(Normal, 

Abnormal)

Input

ParameterImage 
Pre-

processing Performance 
Measurement

(Accuracy, 
Precision, Recall, 

F1-score)

Synthetic Mammogram 
Dataset

Generative AI
(DDPM)

 
 

Figure 4. Block Diagram of CAD System Utilising Synthetic Mammogram Dataset

In the context of breast cancer detection, EfficientNetV2L 
is the most suitable model for building an accurate and 
computationally efficient deep-learning system. Its optimised 
architecture enables the extraction of fine-grained and 
complex structural details in female breast imaging, 
facilitating the differentiation between normal and abnormal 
classification with high sensitivity and specificity. The 
model’s enhanced computational efficiency makes 
integration into CAD systems feasible, where rapid and 
reliable classification of mammogram images is essential. 
Figure 4 presents the block diagram of the CAD system for 
mammography, which is designed based on the 
EfficientNetV2L architecture, utilising the combination of 
real and synthetic mammogram datasets. 

The INbreast dataset is the primary training dataset for the 
deep-learning system. Before training, the INbreast dataset 
undergoes image pre-processing, which includes resizing the 
images to 256×256 pixels and aligning breast object positions 
to the left side of the images to standardise their orientation. 
This step aims to reduce image variation, thereby optimising 
the system's accuracy. The combined real and synthetic 
datasets are then used to train the EfficientNetV2L model 
through transfer learning, utilising pre-trained ImageNet 
weights. The system is evaluated using multiple dataset 
configurations, incorporating varying proportions of real and 
synthetic data, and assessed based on performance metrics 
such as accuracy, precision, recall, and F1-score. 

3. Results and Discussion 

This study aims to evaluate the effectiveness of the 
EfficientNetV2L deep learning architecture for breast cancer 
detection, specifically in classifying mammogram images 
into two categories: normal and abnormal. The research is 
structured into four experimental scenarios to assess the 
impact of synthetic image augmentation on model 

performance. In the first scenario, the model is trained using 
410 real mammogram images from the INbreast dataset, 
which serves as the baseline. The second scenario 
supplements the real dataset with 100 synthetic images, 
evenly distributed between the two classes (50 synthetic 
images per class). The third scenario expands the dataset 
further by adding 250 synthetic images, comprising 125 per 
class. In the fourth and final scenario, 500 synthetic images 
(250 per class) are added to the original dataset. 

For each scenario, the combined dataset is partitioned into 
training and testing subsets with a ratio of 80:20. This 
consistent split ensures a fair comparison across all scenarios. 
It allows the evaluation of the model’s generalisation ability. 
For the training and testing stage, the parameters of 
EfficientNetV2L are configured as follows: 

• Adam Optimizer: Learning Rate = 0.0001, Beta 1 = 0.9, 
Beta 2 = 0.999, AMSGrad = True. 

• Class Weights: Balanced. 
• Model: loss = binary crossentropy, metrics = accuracy, 

batch size = 16, epoch = 50. 

A quantitative evaluation of the EfficientNetV2L model's 
classification performance was conducted under each 
experimental configuration. The assessment utilized four key 
performance indicators: accuracy, precision, recall, and the 
F1-score. The selection of these metrics ensures a 
comprehensive analysis of the model's effectiveness—a 
critical requirement in medical imaging where diagnostic 
sensitivity and specificity are paramount. Specifically, 
accuracy gauges overall correctness, precision measures the 
positive predictive value, recall (or sensitivity) assesses the 
true positive rate, and the F1-score provides a balanced 
evaluation vital in contexts of class imbalance or significant 
misclassification consequences. 

The central objective of this research is to quantify the 
impact of synthetically generated images on the efficacy of 
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deep learning frameworks for breast cancer classification. 
Through a methodical analysis of the four aforementioned 
scenarios, this investigation seeks to yield valuable insights 
into the utility of synthetic data augmentation. The 
anticipated outcomes include a clearer understanding of how 
such techniques can enhance diagnostic precision and provide 
robust support for clinical decision-making processes. 

The results in Table 4 show a clear trend: including 
synthetic images substantially improves the EfficientNetV2L 
model's performance in classifying normal and abnormal 
mammograms. In Scenario 1, where only 410 real images 
from the INbreast dataset were used, the model achieved an 
overall accuracy of 0.84. However, the two classes have a 
noticeable disparity in performance. While the abnormal 
class exhibited strong results—with precision, recall, and F1-
score values of 0.88, 0.94, and 0.91, respectively—the normal 
class showed considerably lower performance, with a 
precision of 0.50, a recall of 0.31, and an F1-score of only 
0.38. This suggests that when trained solely on a limited 
number of real samples, the model tends to be biased toward 
the abnormal class, likely due to the subtle features of normal 
cases being more challenging to learn with limited data. 

In Scenario 2, where 100 synthetic images (50 per class) 
were added to the original dataset, overall performance 
improved notably. The accuracy increased to 0.90, and the 
model showed balanced improvement across both classes. 
The F1-score rose significantly to 0.78 for the normal class, 
while the abnormal class maintained strong performance with 
an F1-score of 0.94. These results indicate that even a 
moderate amount of synthetic data helps mitigate class 
imbalance and enhances the model’s generalisation ability. 

Scenario 3, with 250 synthetic images added, maintained 
the accuracy level of 0.93 but demonstrated further 
refinement in class-specific metrics. The precision, recall, 
and F1-scores remained consistently high and balanced 
across both classes, suggesting that additional synthetic data 
reinforces the model’s learning without introducing 
overfitting or noise. 

In Scenario 4, augmenting the dataset with 500 synthetic 
images (250 per class) resulted in the highest performance 
across all metrics. The model achieved an overall accuracy of 
0.94. Both classes reported identical and robust evaluation 

scores, with precision, recall, and F1-scores of 0.90 or higher. 
This outcome illustrates the strong positive effect of large-
scale synthetic data in improving accuracy and the stability 
and consistency of predictions across both classes. 

Figure 5 illustrates the EfficientNetV2L model's training 
dynamics in accuracy and loss over 50 epochs for the four 
experimental scenarios above. Figure 5(a) shows the model's 
accuracy throughout the training. It is evident that Scenario 
1, which utilises only 410 real images, demonstrates the 
lowest and most unstable accuracy curve. The accuracy in this 
scenario fluctuates significantly, ranging between 0.65 and 
0.84, indicating challenges in convergence and generalisation 
due to the limited training data size. In contrast, Scenario 2, 
which includes 100 synthetic images, substantially improves 
accuracy and stability, maintaining values consistently above 
0.80. Scenario 3 and Scenario 4 further enhance performance, 
with Scenario 4 (including 500 synthetic images) achieving 
the highest and most stable accuracy, consistently remaining 
above 0.90. These results indicate that increasing the quantity 
of synthetic data leads to better generalisation and training 
stability, likely due to the improved diversity and balance in 
the training set. 

Figure 5(b) depicts the model loss over the same training 
period. A similar trend is observed, wherein Scenario 1 
exhibits the highest and most fluctuating loss values, often 
exceeding 0.8. This variability further supports the 
observation that the model struggles to converge when 
trained on a small dataset. As synthetic data is introduced in 
Scenarios 2 to 4, the loss decreases progressively, and the 
training process becomes more stable. Scenario 4, which 
includes the most significant volume of synthetic data, 
consistently achieves the lowest loss values (around 0.30), 
indicating more effective learning and reduced prediction 
errors. 

Taken together, these results confirm that synthetic data 
augmentation has a significant positive impact on training 
stability and model performance. Including a larger and class-
balanced synthetic dataset enhances classification accuracy 
and facilitates smoother and faster convergence by reducing 
training loss. These findings highlight the value of synthetic 
data in medical imaging tasks, particularly when real data 
availability is limited. 

Table 4. The Research Result for Four Different Scenarios 

# INbreast 
Dataset 

Synthetic 
Dataset Class Evaluation Metrics 

Accuracy Precision Recall F1-score 

1 410 0 Normal 0.84 0.50 0.31 0.38 
Abnormal 0.88 0.94 0.91 

2 410 100 Normal 0.90 0.78 0.78 0.78 
Abnormal 0.94 0.94 0.94 

3 410 250 Normal 0.93 0.84 0.95 0.89 
Abnormal 0.98 0.93 0.95 

4 410 500 Normal 0.94 0.92 0.90 0.91 
Abnormal 0.95 0.96 0.95 
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         (a)                                                                                (b) 

 
Figure 5. Model Accuracy and Loss for Four Different Scenarios 

Despite the benefits, the use of synthetic data is not without 
risks. The generative model could introduce subtle, 
systematic artefacts into the images that the classification 
model might learn, potentially leading to overfitting on 
synthetic features rather than true pathological indicators. 
Furthermore, if the initial real dataset is not diverse enough, 
the DDPM may only learn to reproduce a limited set of 
variations, which could create a false sense of security 
regarding model generalisation. 

4. Conclusion 

This research demonstrates the effectiveness of synthetic 
mammogram augmentation in improving deep-learning-
based breast cancer detection using the EfficientNetV2L 
architecture. By incorporating synthetic images generated via 
Denoising Diffusion Probabilistic Models (DDPM), the 
model's performance was evaluated across four training 
scenarios with increasing volumes of synthetic images. The 
results consistently indicate that augmenting real 
mammograms with synthetic data substantially improves 
classification accuracy, stability, and generalisation. 

When trained solely on real data, the EfficientNetV2L 
model exhibited significant class imbalance in performance, 
particularly underperforming in detecting normal cases. 
However, as synthetic data was progressively introduced and 
balanced across classes, the model achieved notable gains 
across all evaluation metrics—including accuracy, precision, 
recall, and F1-score. In the final scenario, which incorporated 
500 synthetic images, the model reached peak performance, 
with all metrics exceeding 0.90 for normal and abnormal 
classifications. In addition to improved evaluation metrics, 
synthetic augmentation made the training process more 
stable, as evidenced by reduced loss and smoother 
convergence.  

The findings underscore the critical role of high-quality, 
class-balanced synthetic data in addressing data scarcity, 

class imbalance, and generalisation challenges in medical 
imaging.. This research reinforces the potential of generative 
AI techniques such as DDPM to create scalable, privacy-
preserving datasets that can significantly enhance deep-
learning models in healthcare.  

Future work may explore integrating multimodal synthetic 
data and extending this framework to multiclass or multi-
view mammography classification tasks, further advancing 
the development of reliable, AI-assisted diagnostic tools in 
clinical environments. Also, future work should focus on 
cross-dataset validation to ensure the model performs 
robustly on mammograms from different sources and 
patient populations. 
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