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Abstract

6D pose estimation in the bin-picking task has attracted increasing attention from researchers. CAD model-
based method have been proposed, demonstrating its effectiveness. However, most existing research relies on
point cloud registration from the RGB-D camera, which is often not robust to noise and low-light conditions,
leading to degraded point cloud quality and reduced accuracy. Thereby, the method accuracy is significantly
affected. Moreover, detecting objects correctly plays a vital role in multiple objects. Supervised deep learning
takes consideration into this task, but it typically requires a large amount of labeled data. In industrial
environments, sample collection and model retraining are limited. To address these challenges, we introduce
the potential approach that integrates the zero-shot learning YOLOE and DEFOM-Stereo model. The YOLOE
detects and localizes the object without requiring object-specific training, while DEFOM-Stereo generates
point clouds for the CAD model-based pose estimaton. Extensive experiments demonstrate that the proposed
approach achieves high accuracy in pose estimation, which is essential for grasp planning and manipulation
tasks in robotics. Furthermore, the proposed approach is applied in a Unity3D-based digital twin, enabling
enhanced virtual representation of a physical pickup target with an estimated pose. Hence, the research
result supports more accurate and responsive digital twins for robotics toward the development of smart
manufacturing systems.
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and scalability [3]. By utilizing convolutional neural
networks, deep learning-based object detection frame-
works allow real-time performance and high detection
accuracy [4]. However, their reliance on predefined
object-specifics limits their adaptability in real-world
scenarios [5]. Besides, integrating pose estimation with

1. Introduction

Object detection and pose estimation are essential tasks
in computer vision, essential for enabling intelligent
systems in areas such as robotics and digital twins [1].
Pose estimation involves determining an object’s posi-

tion and orientation in 3D space, which is crucial for
physical interaction and manipulation [2]. Traditional
methods based on geometric models and manually
engineered features have been gradually outperformed
by deep learning approaches due to their robustness

*Corresponding author. Email: khanh.nt@vgu.edu.vn

digital twins, the need to be considered is that it enables
the creation of virtual representations of physical sys-
tems to enable simulation, monitoring, and control in
various industrial applications. [6].

Despite the challenges of acquiring perfect CAD
models, they remain a crucial component for robust
pose estimation, particularly within advanced robotic

EAI Endorsed Transactions on
Al and Robotics
| Volume 4 | 2025 |

< EAI |


https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<khanh.nt@vgu.edu.vn>

Quang Huan Dong, et al.

systems [3]. Methods operating without explicit CAD
data often struggle with ambiguity, occlusion, and vari-
ations in lighting or texture. CAD models provide prior
knowledge of an object’s geometry, offering a strong
constraint that significantly enhances both the accuracy
and reliability of pose estimation. This is especially
critical in industrial environments demanding high
precision and repeatability. Furthermore, integrating
CAD data enables more sophisticated approaches, such
as model-predictive control and collision avoidance,
crucial for safe and efficient human-robot collaboration
[3]. Thus, the underlying geometric information repre-
sented by a CAD model remains a foundational element
for achieving truly intelligent and adaptable robotic
systems.

Towards more dependable and performant industrial
automation, this work proposes a CAD-guided 6D pose
estimation method with deep learning in digital twin
for industrial collaborative robot arms. In summary, the
primary contributions of this work are:

* A novel 6D pose estimation method leverages
CAD models and zero-shot deep learning YOLOE
to improve object detection and pose accuracy and
adapt the arbitrary objects in industrial scenarios.

* An evaluation of object dimension estimation
accuracy is performed using the RealSense
D435 camera and the DEFOM-Stereo model,
demonstrating the superior performance of the
latter.

* The proposed method is implemented within a
Unity3D-based digital twin to showcase its ability
to generate a virtual representation of physical
objects with estimated poses.

The remainder of the paper is structured as follows:
Section 2 reviews related work on pose estimation
approaches, deep learning techniques, evaluation met-
rics for object detection, and digital twin technologies;
Section 3 outlines the proposed method, focusing on
object discrimination alongside view selection, pose
estimation based on CAD models, and eye-in-hand cali-
bration; Section 4 presents experimental results, includ-
ing comparisons of YOLOE models, object dimension
estimation methods, pose estimation accuracy, as well
as the integration of pose estimation in a Unity3D-based
digital twin; and Section 5 concludes the study.

2. Related work

This section reviews key advancements in pose
estimation methods, the development of the real-
time detecting anything based on YOLO structure, the
stereo matching of deep learning-based point clouds
registration, and the emerging role of digital twins in
representing physical systems virtually.

2.1. Pose estimation approaches

Research in pose estimation can be roughly categorized
into three main strategies: feature-driven techniques,
pattern alignment techniques, and techniques based on
deep learning. Feature-driven techniques that employ
3D data provide robust solutions for recognizing
objects [7], whereas pattern alignment techniques,
which rely on RGB or RGB-D inputs, estimate an
object’s position and angle by analyzing information
from 2D images. On deep learning approach, both
traditional supervised learning techniques [8, 9] and
modern deep learning techniques [2] are widely
employed in improving object detection and pose
estimation.

2.2. The zero-shot learning YOLOE

Several object detection techniques exist, including
Faster R-CNN [10], SSD [11], and YOLO (You Only
Look Once) [12]. YOLO is recognized for its compu-
tational efficiency and robust performance, making it
a frequently selected approach for a wide range of
applications. As a convolutional neural network, YOLO
achieves real-time performance by combining object
detection tasks—region identification, feature extrac-
tion, and classification—into a single procedure. This
streamlined approach enhances performance, making
YOLO models suitable for applications requiring quick
decision-making.

Since YOLO-v1, the architecture has been gradually
refined, with versions like YOLO-v3, YOLO-v5, and
YOLO-v8 improving real-time object detection accu-
racy. The latest version YOLO-v11 [13] strengthens
feature extraction by employing an improved backbone
and neck architecture, thus, enables more precise object
detection.

Existing YOLO models rely on object-specific recog-
nition, which requires collecting large datasets. This
approach is not flexible when objects change in dynamic
industrial environments. The real-time seeing anything
(YOLOE) [5] improves the real-time object detection
model and handles limited data by combining a zero-
shot architecture based on the YOLO structure. It is
specifically designed to detect small and overlapping
objects more effectively in complex visual scenes with-
out retraining. YOLOE maintains the efficiency of the
original YOLO framework while offering higher preci-
sion in object recognition.

2.3. Stereo matching and depth estimation

Among stereo matching and depth estimation tech-
niques, there are PSMNet (Pyramid Stereo Match-
ing Network) [14], GANet (Guided Aggregation Net-
work) [15], and FoundationStereo [16]. PSMNet offers
depth estimation by incorporating a pyramid pool-
ing module, which captures contextual information
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at multiple scales. GANet allows depth map, par-
ticularly in complex scenes, through a context-aware
refinement network that leverages contextual relation-
ships between adjacent pixels. FoundationStereo uti-
lizes foundation models to improve stereo matching
and depth estimation.

Recently, DEFOM-Stero (zero-shot learning) [17]
offers a significant advantage by eliminating the
need for task-specific training data, facilitating rapid
prototyping and deployment in novel scenarios. This
method demonstrates flexibility by readily adapting
to new object categories through textual descriptions,
enabling generalization beyond its initial training.

2.4. Digital twin

Digital twins are defined as virtual representations of
real-world entities [18]. A digital twin enables real-time
monitoring, simulation, and optimization. In the case of
collaborative robots, it offers a synchronized digital rep-
resentation of the robot, its working environment, and
the objects it interacts with. By combining data from
sensors with control inputs, the digital twin enables
efficient design, testing, and adjustment of robotic tasks
in a virtual environment before they are deployed in
the real world. Furthermore, the digital twins facilitates
precise navigation, context awareness, and multi-agent
coordination [19, 20]. These innovations strengthen
real-time system modeling in, e.g., agricultural automa-
tion, offering new possibilities in data-driven man-
agement and robot-to-robot interaction as well as the
ability to operate as an adaptable educational tool [21].

With software that support flexibility and easy
updates, digital twins assist the system in functioning
better under different conditions [22]. Digital twins,
particularly those built in interactive environments
like Unity3D, provide real-time simulation and control
capabilities, enabling safer testing and faster deploy-
ment of industrial robots [23]. The convergence of
deep learning, robotics, and digital twins creates a
robust framework for advancing autonomous systems
and intelligent control. Deep learning enhances per-
ception, decision-making, and adaptability in robotic
systems [24]. Therefore, these virtual environments
improve operational efficiency, reduce downtime, and
support agile automation strategies across manufactur-
ing, service robotics, and healthcare robotics [21].

Recently, a digital twin framework has been devel-
oped by the authors for a Universal Robot UR10e
as part of a case study on industrial pick-and-place
robotics [25]. In this work, a novel CAD-guided 6D pose
estimation approach using deep learning is proposed to
enhance object detection and visualization within the
digital twin framework.

3. Method

The workflow illustrated in Figure 1 employs a step-by-
step process to address key tasks. At 3D segmentation
stage, captured images are analyzed by YOLOE to
segment objects and generate bounding box proposals.
These proposals are then refined by Shape Non-Max
Suppression (Shape-NMS) method. The images are also
processed by DEFOM-Stereo to generate point clouds.
The next stage involves object discrimination and view
selection to ensure the correctly detected object. This is
followed by pose estimation stage. Finally, the position
and orientation of the object is transferred to the robot
coordinate by the eye-in-hand calibration.

By combining existing models, i.e. YOLOE and
DEFOM-Stereo, the proposed approach offers an
advancement beyond the capabilities of the individual
components. YOLOE efficiently detects and localizes
objects in 2D image space, while DEFOM-Stereo
estimates dense depth maps from stereo image
pairs. When integrated, the 2D detections can be
projected into 3D space using the corresponding
depth information, enabling accurate, labeled 3D object
localization which is crucial for robotic tasks such as
grasping and manipulation. This integration leverages
YOLOE’s real-time semantic recognition and DEFOM-
Stereo’s precise geometric modeling to detect object
identities and positions in the scene. Thus, the system
achieves a robust 3D perception capability that allows
adaptability to different industrial, e.g. pick-and-place,
scenarios without requiring extensive model retraining.

3.1. 3D segmentation

In the 3D segmentation stage, YOLOE identifies and
localizes the objects with bounding boxes and its masks
by anchor boxes. It needs some the postprocessing
steps to filter out the redundant masks and select
the most relevant ones. There is a notable step
named NMS which serves as a crucial filtering
mechanism. To identify overlaps, traditional NMS [26]
techniques use bounding box information. Due to
their restricted geometric representation, bounding
boxes might, however, produce inaccurate overlap
estimates when working with non-rectangular objects.
Consequently, this study uses a shape of mask-NMS
(Shape-NMS) (cf. Figure 2), a selecting method that
makes advantage of object forms. Shape-NMS removes
duplicates using instance masks instead of bounding
boxes and requires no retraining.

After extracting various masks from the pictures,
the model feeds the Shape-NMS algorithm to select
n masks with the highest scores. The masks list M
can be established as a tensor, M = [my, m,, .., m3]. The
model returns a one-dimensional array, denoted as S =
[s1,52,.., s3], called the confidence score list S. Each
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Figure 1. Proposed workflow for vision-quided 6D object pose estimation and grasp planning (green boxes indicate steps that involve

deep learning methods).

score S; is element-wise equivalent to a mask in the list
M.

For clarity in describing the algorithm, every mask
in the mask list should be represented as m;, where
i =[1,2,.,n], and its matching confidence score should
be s;. The area covered by mask m; is denoted area(m;).
Consider another mask m; in the list (with j = [1,2,.., 1]
and j = i) that is partially adjacent to m;, with an area
of area(m;). The Intersection over Union (IoU) between
two masks is calculate as:

IoU area(m; N m;) )
oU(m;, m;) = area(m; U m;) )

3.2. Object discrimination and view selection

The "Object discrimination and view selection" stage
is presented in Figure 1 and its algorithm is shown
in Algorithm 1. This stage focuses on identifying
the target object and determining the best viewpoint
for voting partial point cloud of the target object.
Initially, rendered images (RGB and point clouds)
from multiple viewpoints are generated using CAD
models. Descriptor extractors (like DinoV2) analyze
these images, creating unique feature representations

2 EA

for object recognition. Cosine similarity then compares
these features to identify the most suitable viewpoints
and the correctly recognized object in the scene. A
voting mechanism selects the optimal view, which is
then used for pose estimation — determining the object’s
3D orientation.

3.3. Pose estimation

Figure 1 illustrates the pose estimation stage, with its
algorithm detailed in Algorithm 2. This stage refers
to the process of determining the 3D orientation
and position of the target object in space. Initially,
the received point cloud data from previous stages
is downsampled to reduce computational load. The
system then leverages feature matching between the
observed point cloud and the known CAD model.
Specifically, Fast Point Feature Histograms (FPFH)
descriptors capture local geometric properties of the
point cloud, enabling robust feature correspondence.
These descriptors are efficiently searched using a K-
DTree algorithm, accelerating the matching process.
To handle potential outliers or incorrect matches,
a Random Sample Consensus (RANSAC) method
is employed, ensuring a robust and accurate pose
estimation even with noisy data. Following initial
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Figure 2. Illustration of the Shape Non-Maximum Suppression (Shape-NMS) process for instance selection and filtering based on
score and Intersection over Union (loU).

matching, an Iterative Closest Point (ICP) algorithm
iteratively refines the pose by minimizing the distance
between corresponding points. The resulting pose
provides essential information for subsequent grasp
planning.

3.4. Eye-in-hand calibration

The extrinsic parameters that define the relative
position between a camera coordinate and a tool flange
coordinate in robotic manipulation are determined
via eye-in-hand calibration, as illustrated in Figure 3.
An eye-in-hand transformation matrix is computed
during this essential calibration process, which enables
the robot to precisely observe and communicate with
its environment. To provide precise calibration, the
calibration object is maintained in an established
position and orientation related to the robot base. The
main objective is to maintain the target’s coordinate
system in a fixed position with regard to the robot’s
base coordinate system, as determined by Equation (2).
A checkerboard (target’s coordinate) is employed in this
work to facilitate the calibration procedure.

Figure 3. Coordinate the transformation relationship diagram and

-1
sT" = (TTB) pTC TV, (2)  the system during the eye-in-hand calibration procedure.
2 _[1R? a2 here, | R? € SO(3), ;#2 € R® denotes the transforma-
1T = 0 ] € SE(3), (3) where, | (3),1 enotes the transforma
tion matrix which includes a rotation and translation
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Algorithm 1 Object Discrimination and View Selection

Algorithm 2 CAD model-based 6D Pose Estimation

Require: Selected CAD model, Rendered Images (RGB
& Point Clouds) from multiple viewpoints, and
Detected Object Image

Ensure: Point Cloud of Selected viewpoint for pose
estimation stage

1: Feature Extraction:
: for each Viewpoint i do
3:  Extract RGB image and Point Cloud from selected
CAD model via viewpoint i

4:  Extract descriptors (e.g., DinoV2) from RGB

images

end for

Object Discrimination (Similarity Comparison):

Initialize a similarity score array

for each descriptor set from a viewpoint do

Compare descriptor set with the Detected Object
Image descriptors from DinoV2 extraction using
cosine similarity

10:  Calculate a similarity score based on the

N

W ® N ;

comparison

11:  Store the similarity score and corresponding
viewpoint

12: end for

13: Viewpoint Selection (Voting):

14: Initialize an empty viewpoint vote count array
15: for each viewpoint do

16:  if similarity score > threshold then

17: Increment the vote count for that viewpoint
18:  end if
19: end for

20: Select Optimal Viewpoint:

21: Selected viewpoint = Argmax(viewpoint vote
count)

22: Output:

23: RETURN Point Cloud of Selected viewpoint

for transforming coordinates from {1} to {2}; The robot
base coordinate is represented by {B}, the world coordi-
nate by {W}, the tool flange coordinate by {T}, the end-
effector coordinate by {E}, and the camera coordinate by
{C}. The AX = YB problem [27] for N camera views can
be used to define

pTB.gTW = ;T7C . TV, (4)

1 1

Optimization approaches are used to solve the eye-
in-hand calibration problems. For instance, this issue
may also be directly addressed by global optimization
frameworks [28]. The objective function, designed to
minimize the difference between the left and right sides
of the loop closure Equation (5), is expressed as

Require: Point cloud of the detected object in scene,
Point Cloud from the selected viewpoint

Ensure: Estimated Pose (Rotation and Translation) of
the object

1: Feature Matching:

2: Extract Point Cloud from the selected viewpoint
using FPFH

3: Extract Point cloud of the detected object in scene
using FPFH

4: Match Point Cloud features of the detected object
to Point Cloud features from the selected viewpoint
using a K-DTree for efficient search

5: Initial Pose Estimation:

6: Calculate initial rotation and translation using
the matched feature correspondences (e.g., using
Procrustes analysis or a similar method)

7: Iterative Refinement (ICP):

8: Repeat until convergence:

9:  Find the closest point in the CAD Model for each
point in the Point Cloud

10:  Calculate the error (distance) between corre-
sponding points

11:  Estimate the optimal transformation (rotation
and translation) that minimizes the error

122 Apply the transformation to the Point Cloud

13: EndRepeat

14: Outlier Rejection (RANSAC):

15: Apply RANSAC to identify and remove outliers
from the matched feature correspondences

16: Refine the pose estimation using the inlier corre-
spondences

17: Output:

18: RETURN Estimated Pose (Rotation and Translation)

N
. 2
A [ L R

4. Experiment, evaluation and application

The section compares YOLOE object detection mod-
els, depth sensing technologies, and pose estima-
tion—including its implementation in a Unity3D dig-
ital twin.

4.1. Metrics for evaluating object detection models

Coined by Everingham [29], classification-based met-
rics are used to evaluate how well object detection
models perform. These include True Positives (TP),
which are correctly detected objects; False Positives
(FP), where the model detects something that is not
actually there; and False Negatives (FN), where the
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model fails to detect an existing object. Two important
evaluation metrics based on these outcomes are Preci-
sion (P) and Recall (R). Precision measures how many
of the predicted positive detections are correct:

TP
~ TP +FP ©)

Recall measures how many of the real objects were
correctly detected by the model:

P

TP
R= TP +FN

To measure how well a model performs across
different confidence levels, the Average Precision (AP)
metric is used. AP combines precision and recall into a
single number for one object class by examining how
well the model performs at multiple thresholds. To
evaluate overall performance across all object types, the
mean Average Precision (mAP) metric is calculated by
averaging the AP values for all classes:

(7)

C
1
mAP = = ;APC (8)

Here, C is the total number of classes. AP is
often computed at a fixed Intersection over Union
(IoU) threshold (e.g., 0.50, denoted as mAP50). More
comprehensive evaluations average AP across multiple
IoU thresholds from 0.50 to 0.90 in steps of 0.05,
referred to as mAP50-90.

4.2. Performance comparison of YOLOE family models

An analysis on performance of the YOLOE model family
is essential for understanding the performance and
limitations of each model in different object detection
tasks. Table 1 presents a comparative performance
analysis of six YOLOE models — ranging from YOLOE-
v8s (smallest) to YOLOE-v11l (largest) — across two
core object detection tasks: bounding box prediction
and instance segmentation (mask prediction). The
employed metrics are: P as defined in Equation (6); R
as defined in Equation (7); mAP50 and mAP50-90 as
defined in Equation (8).

Regarding the results on bounding box detection,
YOLOE-v11l demonstrates the highest Precision (0.92)
indicating a strong ability to accurately detect objects.
YOLOE-v11m has the highest Recall (0.747) indicating
the ability in identifying a large number of actual
objects in the images. However, YOLOE-v11m’s mAP50
(0.762) and mAP50-90 (0.75) are lower than those
of other models, suggesting that while it could
detect many objects, it may also include more false
positives. YOLOE-v8l achieves the highest mAP50
(0.912) and mAP50-90 (0.898), demonstrating a well-
balanced performance across different IoU thresholds.
This suggests that YOLOE-v8l is capable of accurately
detecting objects while maintaining a good balance
between Precision and Recall.

For the instance segmentation (mask prediction),
the results at mAP50-90 show slightly lower perfor-
mance compared to bounding box detection. YOLOE-
v8l emerges as the strongest performer in this task,
achieving the highest mAP50-90 (0.854), demonstrat-
ing consistent performance across both tasks.

The model size (indicated by the suffixes ’s’, ‘m’,
'l’) plays a crucial role. Larger models (like YOLOE-
v8l or YOLOE-v11l) generally offer higher accuracy,
while smaller models (like YOLOE-v8s) may offer lower
accuracy. Therefore, a careful consideration of these
trade-offs is essential when selecting the appropriate
YOLOE model for a given task.

4.3. Comparison of RealSense camera and
DEFOM-Stereo in object dimension estimation
accuracy

The experimental setup is illustrated in Figure 4.
Specifically, the Intel RealSense D435 camera was
mounted at the end of the robotic arm, while the
checkerboard was placed on a table. To capture data
from various perspectives, the camera was positioned
at five different angles.

Figure 5 shows point cloud data captured from
two different methods — the Intel RealSense D435
camera and the DEFOM-Stereo method — at five
different angles. A point cloud is a group of points
in 3D space that represents the shape or surface of

Table 1. Performance comparison of YOLOE model family

2 EA

Model Bounding box Mask
P R mAP50 | mAP50-90 P R mAP50 | mAP50-90
YOLOE-v8s 0.863 | 0.663 0.881 0.854 0.863 | 0.663 0.881 0.802
YOLOE-v8m | 0.913 | 0.74 0.85 0.834 0.913 | 0.74 0.85 0.796
YOLOE-v81 0.877 | 0.718 0.912 0.898 0.877 | 0.718 0.912 0.854
YOLOE-v1ls | 0.888 | 0.707 0.907 0.894 0.888 | 0.707 0.907 0.848
YOLOE-vlIm | 0.879 | 0.747 0.762 0.75 0.879 | 0.747 0.762 0.703
YOLOE-v11l 0.92 | 0.717 0.858 0.842 0.92 | 0.717 0.858 0.796
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Figure 4. Experimental setup (left) a physical robot and (right)
a visual robot at different angles.

an object. The top row presents the point clouds from
the RealSense camera. These appear noisy and sparse,
with missing parts, especially in darker areas. The
bottom row shows the results from the DEFOM-Stereo
method. These point clouds are much denser, clearer,
and more complete, even in low-light conditions. Thus,
the DEFOM-Stereo method seems to provide a more
detailed and accurate view of the checkerboard pattern,
suggesting that it is less sensitive to noise and could
produce more reliable 3D reconstructions.

A comparative analysis of object dimension esti-
mation accuracy between the RealSense camera and
DEFOM-Stereo method is presented in Table 2. The
results were evaluated based on checkerboard’s height
and width errors. On overall, DEFOM-Stereo achieves
significantly lower values than the RealSense camera
on error metrics RMSE (Root Mean Squared Error)
and MAE (Mean Absolute Error). The RMSE of 1.19
for DEFOM-Stereo is notably lower than the RealSense
camera’s 1.54, and the MAE of 0.96 for DEFOM-Stereo
is better than the RealSense camera’s 1.34. This suggests

that the DEFOM-Stereo method could provide more
consistent and reliable dimension estimations.

4.4. Pose measurement comparison

This analysis details the performance of the experiment
designed to determine the object’s location and
orientation, which is referred to as its pose. The pose
estimations from image processing were compared to
the ground truth to evaluate its performance.

The ground truth was obtained by moving the robot
end-effector to top of the object which is identified
using ChArUco board detection (cf. Figure 6), and the
position and orientation of the end-effector displayed
on the robot teach pendant were recorded.

The pose estimation results from image processing
are presented in Figure 7 which depicts a top-down
view of the robotic platform used in this experiment.
The black cube-shaped object is positioned on a white,
flat surface. Coordinate axes (red, green, blue) are
applied on the cube to indicate its position and
orientation.

Pose measurement comparison is summarized in
Table 3. The performance varied across different poses
P1-P5, with the highest position absolute error observed
in the pose P4 (3.39 mm for Y) and the highest
orientation absolute error observed in the pose P1 (3.52
degrees for Yaw). Rigidly aligning point clouds with
planar surfaces or symmetric features is challenging
due to geometric ambiguities. These ambiguities often
arise because planar or symmetric structures can
lead to multiple valid alignment solutions, making it
hard to determine the correct transformation (rotation
and translation) without additional constraints or
information.

In the pose P1, the camera collects the point cloud
orthogonal to the object planes, resulting in parallel
planes (flat parallel planes head-on). Matching a single
plane between two point clouds is under-constrained,
as the plane’s normal only fixes two rotational degrees
of freedom, allowing sliding within the plane and
rotation about the normal vector. Adding a second
parallel plane helps constrain translation (e.g., distance

Table 2. Comparison of RealSense camera and DEFOM-Stereo in object dimension estimation accuracy

< EAI

. Angle
Metric Method 5 3 i 5
Heieht error RealSense camera | -1.044 | -0.95 1.517 | -0.664 | 1.31
& DEFOM-Stereo 0.25 1.071 0.053 | 0.281 | 1.377
Width erro RealSense camera | 0.962 0.071 | -2.105 | 1.998 2.81
1 e S EFOM Stereo | 0.503 | -0.949 | -0.806 | 2.33 | 1.931
RealSense camera 1.54
RMSE DEFOM-Stereo 1.19
RealSense camera 1.34
MAE DEFOM-Stereo 0.96
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RealSense
camera

Figure 5. Excerpts of point clouds obtained from RealSense camera and DEFOM-Stereo at five different angles.

between planes) but does not resolve in-plane drift
or rotation ambiguities. Introducing a non-parallel
second plane further constrains rotation by defining
two independent normal directions, reducing rotational
ambiguity. However, translation along the planes’
intersection line and rotation about it remain under-
constrained, leaving the rigid transformation partially
ambiguous (as shown in pose P4).

At least three non-parallel, all rotational degrees
of freedom are fixed by the 3D basis formed by the
three different normal vectors. All translational degrees
of freedom are constrained at the planes’ crossing
point, which defines a distinct location. Six independent
constraints are provided by this corner-like structure,
three for translation and three for rotation. This
makes it possible to determine the rigid transformation
precisely and robustly.

The performance was evaluated based on the average
of absolute errors between the estimated pose and
the ground truth. The results indicate that the system
performed well in estimating the object’s position,
with an average error of approximately 1.5 millimeters
across all poses. This suggests that the system is
able to determine the object’s location in three-
dimensional space. The orientation estimation also

Figure 6. Ground truth obtainment for an object with ChArUco
marker plane (left) and marker plane with end-effector (right).

yielded promising results, with an average error of
around 1.4 degrees. However, this level of accuracy
needs an improvement for applications where precise
positioning is crucial.

4.5. Pose estimation in a digital twin within the
Unity3D environment

The proposed pose estimation method could enhance
the digital twin for industrial collaborative robot
manipulation. The RealSense D435 camera is a common
choice for implementing digital twins in robotics, but
it lacks integrated object detection capabilities and
is sensitive to noise. YOLOE offers effective object
detection without the need for retraining, saving
valuable time and resources. Comparative analysis
using RMSE and MAE metrics, illustrated in Table 2,
demonstrates that DEFOM-Stereo yields more accurate
dimension estimations compared to D435 camera. In
addition, DEFOM-Stereo generates a higher quality
point cloud (depicted in Figure 5) compared to the
native D435 output. The improved point cloud data
is then used to visualize the corresponding detected
objects within a Unity3D digital twin environment,
thereby enhancing the virtual-physical synchronization
of detected objects in manipulation tasks.

To assess synchronization accuracy more compre-
hensively, the position discrepancy between the tool
center point (TCP) of the Unity3D-based digital twin
robot and the physical UR10e robot arm is measured
and reported in [25] based on values retrieved from
kinematic models and UR10e sensors. Three indicators
are used to evaluate discrepancies caused by modeling
errors and sensor noise: RMSE, MAPE (Mean Absolute
Percentage Error), and R2 (coefficient of determination).
The reported RMSE ranges from approximately 3 mm
to 8 mm for the TCP’s X, Y, or Z position; the MAPE
ranges from 0.492% to 1.182%; and the R2 ranges

EAI Endorsed Transactions on
Al and Robotics
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P1 P2

Figure 7. Pose estimation results visualized in the IR images at different poses P1-P5.

Table 3.

Pose measurement comparison between ground truth (reference data) and image processing (information gained from images)

Pose\ Measurement Position (in mm) Orientation (in degrees)
X Y V4 Roll  Pitch Yaw

Ground truth 433.25 37.03 213.40 | 178.51 0.32 -4.36

P1 | Image processing | 431.51  39.75 213.58 | 176.64 1.18 -0.84
Absolute error 1.74 2.72 0.18 1.87 0.86 3.52
Ground truth 480.99 34.30 225.30 | 16294 -0.61 178.06

P2 | Image processing | 479.80  33.91 223.05 | 163.02 -4.56 176.32
Absolute error 1.12 0.39 2.25 0.08 3.95 1.74
Ground truth 474.35 -51.83 220.78 | -168.44  -1.37 145.53

P3 | Image processing | 473.33 -52.23 219.73 | -170.35 -0.37 145.83
Absolute error 1.02 0.40 1.05 1.91 1.00 0.30
Ground truth 399.58 86.64 222.44 | -178.01 -14.92 -40.20

P4 | Image processing | 402.95 90.03 221.36 | -179.65 -15.33 -39.38
Absolute error 3.37 3.39 1.08 1.64 0.41 0.82
Ground truth 566.13 32,93 220.82 | 179.16 -8.85 154.69

P5 | Image processing | 566.44 34.81 217.32 | 179.10 -7.04 154.02
Absolute error 0.31 1.88 3.50 0.06 1.81 0.67
Average error 1.51 1.76 1.61 1.11 1.61 1.41

from 0.992 to 0.999 for the same axes. The relatively
low error values and high R2 indicate a reasonable
level of synchronization, suggesting that the digital
twin approximates the real robot’s positional data. Still,
further improvements are required to improve synchro-
nization accuracy of the Unity3D-based digital twin
robot.

Thanks to the UR10e built-in real-time controller,
the robot’s response times are considered fixed [25].
The UR10e is equipped with an integrated controller
operating at 500 Hz, which enables it to update or
publish its joint state with low latency. In addition,
the Unity3D virtual environment can directly subscribe
to the joint state publisher to update the virtual
robot’s joint positions accordingly. Furthermore, the
communication is facilitated in a stable and managed
network (e.g., a dedicated local wired connection);
therefore, the virtual-physical communication latency
is considered as a fixed value. Hence, the robot could be

able to execute movements smoothly without relying on
external control inputs.

The object detection and pose estimation results
visualized in a prototypical digital twin within the
Unity3D environment is shown in Figure 8. The digital
twin in this setup includes the robot arm and the object
being manipulated mounted on a fixed table. The object
is placed on a wooden base plate to reduce noise for
the camera. The employed objects are Objl and Obj2,
which were 3D-printed from the models of the public
dataset available in [30]. The point cloud obtained and
pose estimation results are sent from Python program
to Unity3D environment by employing a ROS bridge.
The results enable manipulating the object in the digital
twin environment, which is essential for further work,
such as simulating and testing pick-and-place tasks
with different object types in different settings before
deploying them to production.

2 EA ‘
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obj1 0.86

(a) Real obj1 (black, green) and
obj2 (red)

(b) Object detection with
confidence score

(c) Digital twins with
pose estimation

Figure 8. Pose estimation in a prototypical digital twin (a: Physical environment; b: Object detection; c: Results visualized in Unity3D).

5. Conclusion

This study explored the integration of the zero-shot
learning object detection models with pose estimation
techniques based on CAD models, particularly focus-
ing on the YOLOE family models and DEFOM-Stereo
model, and their application in digital twin environ-
ment for a vision-guided UR10e robot arm. Through
experiments, the object detection performance of dif-
ferent YOLOE versions was compared, demonstrating a
trade-off between speed and accuracy, where YOLOE-
v8l achieved high object detection accuracy while
balancing precision and recall effectively. The object
dimension estimation capabilities of the RealSense
D435 camera and the DEFOM-Stereo method were
also evaluated, showing that the DEFOM-Stereo pro-
vided more reliable measurements. Additionally, pose
measurement accuracy was assessed to validate the
effectiveness of the proposed approach. Finally, the
presented pose estimation method was incorporated
into a digital twin within the Unity3D environment
to enhance the virtual representation of physical tar-
get object in a pick-and-place scenario. Overall, the
findings suggest that combining YOLOE-based object
detection with precise pose estimation and calibration
could significantly improve the accuracy and usabil-
ity of digital twins, supporting their application in
robotics, simulation, and smart manufacturing. Future
work could explore the zero-shot 6D pose estimation

using an end-to-end deep learning approach integrated
with digital twin interactions.
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