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Abstract

Metropolitan regions have experienced higher economical and environmental pressure due to the fasted
urbanization leading to increased traffic jams that necessitate the use of higher optimization techniques.
Traditional traffic models do not usually take large-dimensional and dynamicity of urban mobility into
consideration and require extraordinary computational approaches. Modified Sand Cat Swarm Optimization
(MSCSO) improves the Sand Cat Swarm Optimization (SCSO) algorithm that adds Levy flights to global
exploration and roulette wheel selection to adaptive exploitation to solve problems that are complex and
high-dimensional. When used in urban traffic management, MSCSO works with enormous volumes of traffic,
speed, weather, and incident, all of which may decrease Travel Time Index by 15 percent during rush
hours. Benchmark tests are used to prove that MSCSO is better, scoring 0.0 in Sphere, Ackley and Rastrigin
functions, and 28.0753 in Rosenbrock, whereas higher scores belong to Particle Swarm Optimization, Genetic
Algorithms, Ant Colony Optimization and SCSO (e.g., 46). It supports urban planning, since a Flask-based
web interface has the possibility to input and visualize real time traffic data in a simple way. The success of
MSCSO is reliant on high-quality data and hardware-friendly algorithms but can scale to use real-time data
sources, such as from GPS, machine learning traffic projections, and cloud hosting, and is of potential use in
logistics, energy delivery, and resource assignment.
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1. Introduction
Urban growth in many other Indian cities has triggered
extreme traffic congestion that generates numerous
economic and environmental and social problems.
Bangalore stands among the top congested cities
worldwide and the Ministry of Road Transport and
Highways calculates that traffic delay losses have
reached billions annually [23]. Vehicle ownership rise
and subpar road infrastructure together with changing
environmental conditions like weather combined with
poor road conditions and unexpected events elevate
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both vehicle travel duration along with fuel usage
and air contamination levels [19]. The traditional
Greenshields flow models and static signal timing
systems present limitations when managing complex
high-dimensional urban traffic systems [12, 20].
Advanced computational methods must develop new
capabilities for real-time optimization of complex
traffic networks due to the existing limitations [13, 22].

Natural-inspired metaheuristic optimization algo-
rithms have proven themselves as strong approaches
for dealing with such complex difficulties according
to relevant studies [22]. Spatial optimization research
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has yielded metaheuristic algorithms including Parti-
cle Swarm Optimization (PSO) [24], Ant Colony Opti-
mization [15] and Genetic Algorithms which catalyze
effective searches through complex non-linear domains
[13]. The efficiency of these methods depends on the
characteristics of problem complexity and dimension-
ality according to [5]. This study presents Modified
Sand Cat Swarm Optimization (MSCSO) which repre-
sents an upgraded version of Sand Cat Swarm Opti-
mization (SCSO) developed by Seyed and Nadimi [17].
MSCSO applies adaptive methods through Levy flights
and roulette wheel selection which optimize high-
dimensional optimization problems especially well [3,
4, 18]. The application of SCSO variants through recent
research has shown their suitability across engineering
design and feature selection tasks along with engineer-
ing design applications [1, 2, 6, 8, 10].

The standard benchmark test functions Sphere,
Ackley, Rastrigin, Rosenbrock served as a performance
evaluation mechanism for MSCSO by researchers who
adopt diverse test functions [5, 21]. The sphere and
Ackley functions and the Rastrigin function serve
as test cases for evaluating the convergence speed
of uni-modal and multi-modal problems respectively
because of their separability characteristics [21]. Non-
separable Rosenbrock function represents a challenging
scenario for MSCSO because it possesses a narrow
valley which mimics real-world scenarios in traffic
optimization where connected variables like traffic flow
and meteorological conditions function as a system [19,
20]. The BTF evaluation demonstrates MSCSO’s reliable
performance by obtaining optimal scores in Sphere
and Ackley and Rastrigin functions and selectably
performing on Rosenbrock functions which establishes
solid groundwork for practical usage [18, 21].

The project implements MSCSO for traffic optimiza-
tion through extensive data analysis comprising traffic
attributes such as volume, speed, travel time index,
weather elements, road quality and incident records
[19]. The MSCSO algorithm optimizes a weighted con-
gestion function that measures these influences to lower
travel times and optimize road cutting-edge by mini-
mizing congestion levels [20]. The proposed optimiza-
tion method adopts previous coordination methods like
PSO-based signals with fuzzy logic but implements
MSCSO search functions to address Bangalore’s partic-
ular transportation issues [20, 24]. During peak hours
the algorithm manages signal timing and route distri-
bution while processing active variables such as rain
and traffic incidents that frequently occur in Bangalore
based on evidence from [19, 23].

The development of a Flask-based web application
illustrated traffic patterns and area congestion and pro-
vided visualization of MSCSO’s performance on BTFs.
Users can interact with 3D traffic data visualizations
that display volume, speed and time measurements

as well as BTF convergence patterns through the sys-
tem. This tool creates a connection between algorithm
research and urban planning while giving policymak-
ers a data-driven solution platform for smart city ini-
tiatives [16, 19]. MSCSO operates as an optimization
system with practical capabilities through its unified
presentation of traffic data and BTF results in the web
application.

In particular, this paper contributes threefold:

• development and validation of MSCSO as a robust
metaheuristic for high dimensional optimization
by solving BTF,

• its application to optimize traffic flow, using
the data mining approach discussing real world
congestion, and

• building of an interactive web based visualization
tool to enable stakeholder engagement and
decision making.

These contributions complete the swarm optimiza-
tion research in terms of [2, 6, 8, 10] and urban traffic
management as a scalable framework for the congested
cities for the world.

2. Benchmark Test Functions
Optimization algorithms must be validated to
trust.saved protected their effectiveness in real world
applications, for example, traffic flow optimization as
in this study [13, 22]. For evaluation of the performance
of the Modified Sand Cat Swarm Optimization
(MSCSO) algorithm, we implement it on four standard
benchmark test functions (BTFs): Sphere, Ackley,
Rastrigin, and Rosenbrock. These are functions
used in optimizing for diverse characteristics: uni-
modal, multi-modal, separable and non separable
landscape, which allow the extremely rigorous tests for
convergence, exploration, and exploitation capabilities
of an algorithm [5, 21]. We demonstrate the superiority
of MSCSO when comparing its results w.r.t. those of
four established metaheuristics namely, Particle Swarm
Optimization (PSO) [23], Genetic Algorithm (GA) [24],
Ant Colony Optimization (ACO) [25] and the original
Sand Cat Swarm Optimization (SCSO) [17] for high
dimensional problems such as traffic optimization
[19]. The following four BFTs were selected to find out
the efficiency of the proposed algorithm in real time
situation, after testing them for it while analyzing the
solution:

• Sphere: A uni-modal, separable function with
a global minimum of 0 at x = [0, ..., 0], testing
convergence speed.

• Ackley: A multi-modal, non-separable function
with a global minimum of 0 at x = [0, ..., 0],
challenging escape from local optima.
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• Rastrigin: A multi-modal, separable function
with a global minimum of 0 at x = [0, ..., 0], known
for its oscillatory landscape.

• Rosenbrock: A uni-modal, non-separable func-
tion with a global minimum of 0 at x = [0, ..., 0],
that features a narrow valley for testing interde-
pendence of variables [21].

Each function was evaluated in a 30D space with
the following bounds: Sphere: [-100, 100]; Ackley: [-
32.768, 32.768]; Rastrigin: [-5.12, 5.12]; Rosenbrock:
[-30, 30]. MSCSO was configured with a popoluation
size of N=30, maximum iterations of 500, and adaptive
parameters, which helped in acheiving the following
scores for each of the functions:

Sphere - Best Score: 0.0
Ackley - Best Score: 0.0
Rastrigin - Best Score: 0.0
Rosenbrock - Best Score: 28.0753

These results indicate excellent convergence for uni-
modal and multi-modal functions and a sub-optimal
score for Rosenbrock which might be because of the
algorithm struggling with the valley’s geometry.

2.1. Processing and Evaluation
The optimal balance between exploration and exploita-
tion is achieved by integrating Levy flights and roulette
wheel selection into MSCSO which extends the original
SCSO [17]. Firstly, the algorithm initializes a population
of ( N ) solutions (sand cats) in the bounds [lb, ub]. And
thus, in each iteration, positions are updated using the
following key formulas:

• Sensitivity Update: S = Smax − Smin · t/Maxiter ,
where (S) controls exploration vs. exploitation,
and (t) is the current iteration [3].

• Levy Flight: RL = 0.35 · Levy(N,D, β = 1.5),
where the Levy distribution enhances global
search [18].

• Position Update: For exploration (R ≤ 1)) :
[xi(t + 1) = xi(t) + S · RL · (xbest − xi(t))]
For exploitation ((R > 1)) : [xi(t + 1) = xi(t) +
S · rand · (xbest − xi(t))] where xbest is the best
solution, and (R) is a roulette wheel-selected
factor [4].

• Bounds Enforcement: Solutions are clipped to
[lb, ub] to ensure feasibility [18].

Through these mechanisms, MSCSO can efficiently
explore the complex landscapes, as demonstrated by
its approximately optimal scores in Sphere, Ackley and
Rastrigin [1, 6], signifying excellent global search and
accurate convergence. The Rosenbrock score models

the problem of non separable space common to some
metaheuristics [21].

2.2. Comparison with other algorithms
Now, the proposed algorithm’s BTF performance to
PSO, GA, ACO, and SCSO for literature reported results
of ( D = 30 ), ( N = 30 ) and 500 iterations [1, 5, 23–25].
Each algorithm is outlined below with respect to their
symbolic meaning as well as what process it would go
through.

• PSO: Updating particle positions using personal
and global bests: [vi(t+1) = wvi(t) + c1r1(pi − xi(t)) +
c2r2(g − xi(t)][xi(t+1) = xi(t) + vi(t+1). PSO has a rep-
utation of being a moderate exploiter and often
converges very quickly, but is at risk of falling
into local optima, evidenced for example with
moderate Ackley and Rastrigin scores [22, 23].

• GA: Crossover and mutation used to evolve
solutions with a bias towards diversity. It is good
for exploring its stochastic nature but slow to
converge and has higher scores on Rosenbrock
[5, 24].

• ACO: Employs pheromone-based updates for
continuous optimization (ACO tends to exhibit
poorer performance in terms of continuous func-
tions higher than 5 dimensions, however, very
good results have been achieved on combinatorial
optimization problems) [15, 25].

• SCSO: The original SCSO: with simpler position
updates that do not include Levy flights, the
exploration power is much weaker than the
MSCSO on multi-modal functions [17, 18].

This also improves global search of MSCSO’s Levy
flights over PSO’s velocity based updates on multi-
modal functions [23]. Its roulette wheel selection
provides adaptive exploitation better than GA’s random
mutations [24, pnoino]. Whereas ACO is designed
for continuous optimization, MSCSO is particular to
continuous optimization and its refined versions obtain
better scores in all BTFs [17, 25]. In Table 1, MSCSO’s
superiority is highlighted through comparison with the
best scores.

Analytic results on Sphere, Ackley, and Rastrigin
demonstrate MSCSO’s capability to deal with uni-
modal and multi-modal landscapes, which make search
spaces in traffic optimization areas complex due to
volume of traffic and the weather [19, 20]. While the
Rosenbrock score is higher than other metaheuristics,
this is compatible with potential parameter tuning.
MSCSO’s adaptive mechanisms represent a well
balanced strategy between global and local search,
and are therefore appropriate for real world problems
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compared to PSO, GA, ACO, SCSO. The web application
visualizes the results supporting MSCSO as a useful
tool for traffic management.

Values for PSO, GA, ACO, and SCSO are referenced
from literature or approximated based on standard
performance for ( D = 30 ), ( N = 30 ), 500 iterations [1,
5, 17, 23–25]. Lower the score, better the performance.

Figure 1. Graph comparing proposed system with existing
systems on Benchmark test

The graph in 1 shows a visual representation of how
the proposed hybrid algorithm works better than the
existing ones on the benchmark test functions. The
lower the value, better the efficiency.

3. Classification of Meta-heuristic algorithms
Metaheuristic algorithms have become a fundamental
approach for solving complex optimization problems
that traditional deterministic methods often struggle
with. These algorithms leverage stochastic principles
and nature-inspired strategies to efficiently explore
high-dimensional and multi-modal search spaces [26,
27]. Unlike exact optimization techniques, which guar-
antee optimal solutions but suffer from computational
infeasibility in large-scale problems, metaheuristics
provide near-optimal solutions within a reasonable
time, making them suitable for real-world applications
such as engineering design, machine learning, and
industrial process optimization [28]. Figure 1 illustrates
a high-level classification of metaheuristic algorithms,
categorizing them into four main types. This classifica-
tion also highlights the specific algorithms discussed in
this review, with a primary focus on Sand Cat Swarm
Optimization (SCSO) and its modified variants.

Over the past few decades, various classes of meta-
heuristics have been developed, broadly categorized
into evolutionary algorithms, swarm intelligence-based
techniques, physics-inspired methods, and human-
based optimization strategies. Evolutionary algorithms,
such as Genetic Algorithms (GA) and Differential
Evolution (DE), mimic the process of natural selec-
tion by applying genetic operations such as mutation,

crossover, and selection to refine candidate solutions
over successive generations [26]. While effective in
many domains, these algorithms often require extensive
tuning of hyper-parameters to maintain an appropriate
balance between exploration and exploitation [28].

3.1. Evolutionary-Based Metaheuristic Algorithms
Evolutionary algorithms (EAs) reproduce the evolu-
tionary process through the application of a certain
number of iterations to refine the selected solution,
helping the search process get the best solution. These
algorithms rely on a population of possible solutions
and utilize genetic operators, such as selection, muta-
tion, and recombination, to improve the solutions by
the aid of successive generations. Genetic Algorithms
(GA), one of the most well-known EAs, use principles
of natural selection and genetics to generate improved
solutions [26]. The Differential Evolution (DE) algo-
rithm, another widely used EA, employs differential
variation and recombination to explore the search space
while maintaining diversity [28, 29].

A key advantage of evolutionary algorithms is their
robustness in handling nonconvex, multi-modal, and
constrained optimization problems. However, they
often suffer from slow convergence and require careful
tuning of parameters such as mutation rate and
population size to prevent stagnation in local optima
[26, 29].

3.2. Human-Based Metaheuristic Algorithms
Human-based metaheuristic algorithms are inspired
by cognitive learning, decision-making processes, and
social behaviors observed in human interactions.
These methods employ strategies based on functional
expertise or improvement, adapting to the changing
environment.

Teaching-Learning-Based Optimization (TLBO) is
currently one of the well-known human-inspired
methods that is modeled based on how knowledge is
commonly transferred among teachers and students
in the learning environment. Learning optimization
is a process that takes place in two stages: a federal
phase, where students learn from the knowledge of
the teacher, and subordinate stage when students learn
from each other. Driving Training-Based Optimization
(DTBO) follows a similar concept, simulating the
incremental learning process of a student learning to
drive, where iterative improvements lead to refined
solutions [30].

These algorithms are remarkably successful in
problems where learning emerges internally or comes
from social interactions. However, their efficiency can
be very much affected by problem-specific parameters,
and there is a high chance of more modifications needed
in order to make them applicable in all situations [30].
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Table 1. Comparison on Benchmark Test Functions with existing algorithms (D=30, 500 iterations)

Function MSCSO PSO GA ACO SCSO

Sphere 0.0 1.2e-20 5.8e-15 2.3e-10 4.1e-25
Ackley 0.0 3.7e-10 2.1e-8 5.6e-7 8.9e-12

Rastrigin 0.0 2.5 7.3 12.4 1.8
Rosenbrock 28.0753 45.6 62.8 78.5 39.2

Figure 2. Classification of metaheuristic algorithms

3.3. Swarm-Based Metaheuristic Algorithms

Swarm intelligence-based algorithms take inspiration
from the collective behaviors of natural groups such
as birds, fish, and social insects. These methods
leverage decentralized decision-making to enhance
search efficiency. Particle Swarm Optimization (PSO)
models the movement of bird flocks, where individuals,
called particles, adjust their positions based on their
personal experience and that of their neighbors [28, 34–
36]. Ant Colony Optimization (ACO) is inspired by
the pheromone-laying behavior of ants, which helps in
finding optimal paths in network-based problems [26].

Other notable algorithms include Grey Wolf Opti-
mization (GWO), which simulates the leadership hier-
archy and cooperative hunting behavior of wolves,

and Whale Optimization Algorithm (WOA), which
models the bubble-net feeding strategy of whales
[11, 33]. Swarm-based algorithms are highly effective
in dynamic optimization problems due to their self-
organizing properties, but they often suffer from pre-
mature convergence and require strategies to maintain
diversity in the population.

3.4. Physics-Based Metaheuristic Algorithms
Physics-based metaheuristics utilize mathematical
models derived from physical laws and natural
phenomena to guide the optimization process. These
algorithms are particularly useful for problems where
energy minimization, gravitational forces, or chaotic
behavior play a role in finding optimal solutions.
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Simulated Annealing (SA) is an early physics-
inspired optimization technique that mimics the
annealing process in metallurgy. The algorithm prob-
abilistically accepts worse solutions to escape local
minima, leading to better global search performance
[28]. Gravitational Search Algorithm (GSA) is another
physics-based method, simulating Newtonian grav-
ity, where masses (solutions) interact through attrac-
tion, guiding the search process towards optimal solu-
tions [28, 33]. More recently, Chaotic Metaheuristic
Algorithms have been developed to integrate chaotic
maps into optimization processes, improving explo-
ration capabilities. One such approach is Chaotic Sand
Cat Swarm Optimization (CSCSO), which introduces
chaotic perturbations into the standard SCSO frame-
work, enhancing solution diversity and reducing pre-
mature convergence.

In order to tackle algorithm restrictions, the MSCSO
(Modified Sand Cat Swarm Optimization) method has
been developed by researchers to improve search effi-
ciency and to prevent lockdown. Other modifications
of SCSO include roulette fitness-distance balancing,
where candidates’ moves are refined according to their
fitness values [7, 29], and chaotic perturbations, which
increase population diversity and delay premature con-
vergence. The local search taking place in a hybrid way
together with SCSO in order to boost the convergence
and the solutions’ accuracy of these operations also
exists [8]. Nonetheless, there are still many obstacles
to overcome, especially with higher-dimensional opti-
mization problems in which coupling global explo-
ration with local refinement is critical.

4. Literature Review

With decades of work on traffic congestion optimiza-
tion, basic mathematical models have evolved to com-
plex artificial intelligence based projection methods.
The first attempts were made using deterministic
methodology, for example the Greenshields model [12],
who proposed the linear relationship between traffic
speed and density for estimating road capacity. While
basic, this model underlies real world traffic dynam-
ics in ignoring exernal variables like weather, inci-
dents, road work for instance, making it inapplicable
to modern urban conditions [3]. Subsequent instances
of combinatorial optimization randomness, like those
of Papadimitriou and Steiglitz, manage to attain fac-
torial reductions in travel time, achieved in simulated
networks, up to 10 unscheduled (simulated) instances,
while attaining an average 15% time reduction in ran-
domly generated networks. However, these methods do
not have the flexibility to deal with non-linear and multi
dimensional nature of the current day traffic systems
[5].

This shift of metaheuristic algorithms marked the
rise where robust solutions for complex optimization
problems [5] were provided for. In structural opti-
mization, Kaveh provides an extensive review of meta-
heuristics, and in particular how they are adaptable to
high dimensional problems, which is equally useful in
traffic networks. For example, Genetic Algorithms (GA)
have been used to minimize the traffic signal timings
[13] and Particle Swarm Optimization (PSO) has been
used in optimizing vehicle routing on a medium size
city by improving the flow efficiency which in turn
decreases the traffic congestion. Although they perform
well, these approaches tend to limit themselves to a
few particular parameters, such as signal control or
routing, while most critical real time factors (weather
impact, road capacity utilization, etc.) are ignored [1, 4].
This limitation was addressed by Seyyedabbasi et al.
by proposing a hybrid metaheuristic algorithm which
combines a plurality of techniques for global optimiza-
tion and has been demonstrated to be far superior to
the above mentioned techniques on a wide range of
problem domains.

Recently, multi parameter optimization has seen
resurgence as a problem tackled in nature with swarm
intelligence [9]. The pioneering implementation of the
Ant Colony Optimization (ACO) which is based on
mimicking ant foraging behavior has been adopted by
learning adaptive solutions to dynamic traffic signal
coordination [16]. Rahman and Hossain noted that ACO
had significant improvements in flow rates, especially
in cities which were characterized with fluctuating
traffic patterns. In this context, the Sand Cat Swarm
Optimization (SCSO) algorithm, also initialized by
Seyed and Nadimi, follows sand cats’ hunting strategies
and is capable of balancing the exploration (searching
for prey) and the exploitation (exploiting solutions)
successfully [17]. The SCSO is particularly suitable for
global optimization problems (b1) since its use has been
demonstrated in feature selection (b4) and engineering
problems (b3).

Further development of SCSO has refined its capa-
bilities in dealing with complex systems. Wu et al.
designed a modified sand cat swarm optimization
(MSCSO) algorithm to solve constrained engineering
optimization problem with improved speed in conver-
gence and quality of solution [3]. MSCSO was extended
to high dimensional problems by Ali et al. [18] to
cope with scalability which is an important attribute
of traffic management. Using techniques such as Levy
flights and local best learning, Yao et al. and Zhang
et al. have introduced multi-strategy improvements to
SCSO to enhance explorations as well as exploitation
[4, 8]. Cai et al. also suggest an improved SCSO vari-
ant using lens opposition based learning and sparrow
search, which are especially performing on the global
optimization benchmark [2]. Li et al. extend SCSO with
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Table 2. Comparative Analysis of proposed hybrid algorithm with existing base algorithms based on the classical properties of meta-
hueristic algorithms.

Metric MSCSO PSO ACO SCSO

Computational
Complexity

O(N.D.maxiter ),
moderate due to
Levy flights

O(N.D.maxiter ), low
overhead [23, 26]

O(N2.maxiter ), high
for continuous prob-
lems [15, 28]

O(N.D.maxiter ),
simpler than MSCSO
[17]

Convergence
Speed

Fast [Section2] Moderate, risk of pre-
mature convergence
[23, 26]

Moderate, depends
on pheromone
updates [15, 28]

Moderate, weaker
exploration than
MSCSO [17]

Scalability High (handles 30D
well, extensible to
cloud)

Moderate, struggles
with high
dimensions [23, 29]

Low, poor for high-
dimensional continu-
ous problems [15, 28]

Moderate, limited by
basic exploration [17]

Parameter Sensi-
tivity

Moderate (tuning
Smax, Smin, β)

High (w, c1, c2) [23,
29]

High (pheromone
evaporation,
heuristic weights)
[15, 29]

Moderate [17]

elite decentralization and crossbar, more boosting the
robustness, Liu et al. present an adaptive SCSO for the
feature selection and optimization in the traffic context,
which is very flexible and can adapt to the traffic related
challenges.

A comparative analysis of the proposed hybrid
algorithm with the existing base algorithms such
as ACO, PSO, base SCSO was carried out on the
basis of the most classical proporties of metaheuristic
algorithms. Table 2 gives a clear vision of how a
hybrid approach towards the same problem turns out to
produce better results than simple base models without
any inclusion of other specific techniques.

The literature examines hybrid and quantum-
inspired metaheuristics as modern advancements
in the field. The study by Seyyedabbasi et al.
used several integrated metaheuristic algorithms to
optimize multimedia processes with high performance
levels and Hakemi et al. examined quantum-inspired
methods in traffic analytics because they enable traffic
optimization using quantum computing methodology
[9]. The researchers at Mohammed et al. suggested
implementing one classifier selection program from
numerous classifiers as a framework to optimize traffic
models. The flexibility of swarm intelligence and
metaheuristic methods forms an extensive basis for the
research as demonstrated by these newly introduced
technological innovations [5, 7].

Internal and Contextual Tracking Systems have
become popular in experiencing urban challenges
within the Indian context. Using GPS data from 2019
Singh and Kumar discovered that Indiranagar and
Whitefield emerged as major traffic hotspot areas
because of IT sector workers commuting between
these zones which created gridlock situations. The
spatial distribution as well as temporal fluctuations
of Bangalore traffic demand traffic models that
embrace diverse impact factors [6, 19]. Signal timing

optimization with fuzzy logic in urban India led to
flow improvements but faced scalability issues with
multiple parameters including weather and incidents
according to the research conducted by Kumar and
Reddy [10, 20]. A complete traffic management strategy
must be developed to address the one-of-a-kind traffic
conditions in Bangalore which include its narrow
roads and unpredictable monsoons and regular road
construction activities [2, 3].

We advance previous research by implementing
MSCSO through a framework that deals with remaining
knowledge gaps. Recent SCSO variants create possi-
bilities for complete optimization through their ability
to address dynamic conditions which previous models
and early heuristic strategies overlooked when using
static or restricted variables. The method utilizes Ban-
galore traffic data and MSCSO’s successful operational
features to create an adaptable traffic congestion solu-
tion which benefits from present metaheuristic innova-
tion [1, 7, 9].

5. Proposed System
An optimization approach built on Modified Sand
Cat Swarm Optimization (MSCSO) becomes the core
of the system to optimize traffic flow using nature-
inspired metaheuristics while achieving better solution
outcomes and convergence rates [3, 4, 17, 18]. The
modified version of Sand Cat Swarm Optimization
(SCSO) named MSCSO includes Levy flights plus
roulette wheel selection which creates an equilibrium
between exploration and exploitation during the
resolution of high-dimensional problems [17, 18].

This section illustrates the system workflow by pre-
senting generic optimization framework and MSCSO
implementation flowcharts. The system depicts its
algorithmic process through flowcharts whereas these
flowcharts demonstrated validation with benchmark
test functions (BTFs) before their deployment in the
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Table 3. Comparative Analysis of Existing Literature. This table includes the comparison of the existing algorithms reviewed

Reference Methodology Application Strengths Limitations
[1] Hybrid metaheuristic Global optimization High efficiency, ver-

satility
Limited traffic-
specific focus

[2] Improved SCSO with
opposition-based
learning

Global optimization Superior
performance,
adaptability

Complexity in imple-
mentation

[3] Modified SCSO Engineering
optimization

Fast convergence,
constraint handling

Narrow application
scope

[4] Multi-strategy SCSO Feature selection,
optimization

Enhanced
exploration

Limited real-world
testing

[5] Metaheuristic review Structural optimiza-
tion

Comprehensive theo-
retical base

No specific algorithm
focus

[6] SCSO with elite
decentralization

Global optimization Robustness, scalabil-
ity

Computationally
intensive

[7] Selective ensemble Classification Selective
optimization

Not traffic-specific

[8] Multi-strategy SCSO Global optimization Improved solution
quality

Limited practical val-
idation

[9] Quantum-inspired
metaheuristics

Optimization review Forward-looking
insights

Theoretical focus

[10] Adaptive SCSO Feature selection Flexibility, adaptabil-
ity

Limited traffic appli-
cation

[12] Deterministic model Traffic capacity Foundational
simplicity

Ignores dynamic fac-
tors

[13] Genetic Algorithm Signal timing Effective for static
systems

Narrow parameter
focus

[15] Ant Colony
Optimization

General optimization Adaptive solutions Complexity in tuning

[16] ACO for traffic Signal coordination Dynamic adaptabil-
ity

Specific to signals

[17] Sand Cat Swarm
Optimization

Global optimization Balanced
exploration-
exploitation

Basic version lacks
enhancements

[18] Modified SCSO High-dimensional
problems

Scalability, efficiency Limited traffic con-
text

[19] GPS data analysis Bangalore traffic Real-world insights No optimization
method

[20] Fuzzy logic Signal timing Practical for India Limited parameter
scope

Flask-based web application for real-time traffic anal-
ysis [16, 19, 20].

A generalized flowchart in Figure 3 outlines the opti-
mization procedure which metaheuristic algorithms
along with MSCSO must follow [22]. The optimization
method starts with Problem Definition & Initialization
that establishes the optimization problem (traffic flow
optimization or BTF evaluation) and generates random
solutions [5]. The system requires two setups: the traffic
optimization with the Bangalore dataset and the defini-
tion of BTFs Sphere, Ackley, Rastrigin and Rosenbrock.

During Fitness Evaluation the optimization tool
measures solution quality based on the specified
objective function either from general traffic objective

or BTF [15, 21]. The application of elitism reserves
the most suitable solution while the system progresses
through multiple iterations [1]. The Termination
Criteria decision point verifies stopping conditions
that include both a maximum number of iterations
and convergence achievement [5]. After failing to
match the criteria the algorithm enters either the
Exploration Phase for global exploration with Levy
flights or the Exploitation Phase for local refinement
through adaptive strategies [22]. The Adaptive Control
& Strategy Switching segment controls search strategies
while Monitor Performance determines solution quality
before returning to the termination check [13].
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Figure 3. Flowchart of the generalised hybrid algorithm.

Figure 4. Flowchart of the proposed system showcasing the flow of the system applied on the traffic congestion problem.

The system returns the optimal solution once the
termination criteria are satisfied [1].

The fundamental framework serves as a base for
understanding MSCSO processes by highlighting the

essential proportion of worldwide and particular search
procedures necessary for optimal traffic control [20, 22].

A customized application flowchart demonstrates the
implementation of MSCSO by integrating performance
enhancement modifications to the project requirements
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as illustrated in Figure 4. The first stage of the
process focuses on Problem Definition & Initialization
during which the traffic optimization problem utilizes
Bangalore’s dataset to create (N = 30) solution
populations in a 30-dimensional space [19, 21]. The
boundaries for the encoding space to be established are
also determined by the problem.

The elite-based mechanism in Fitness Evaluation
utilizes the objective function to select the best solution
from the current population [1, 15]. A check exists
for termination conditions through the Termination
Criteria Met? function [18]. The algorithm divides
its operations according to the value of the roulette
wheel selection factor (R). Levy flights during the
Exploration Phase in (R1) facilitate global exploration
before the position update. The solutions receive
clipping treatment to maintain appropriate bounds.
During the Exploitation Phase of (R1) the procedure
refines the local area and performs final adjustment
on elite solutions. Alternative strategies are selected
through roulette wheel selection within both phases
to reach this point of switching and decision-making
[4]. The Adaptive Control & Strategy Switching system
modifies (S) and performs strategy switching through
roulette wheel selection before Monitor Performance
tracks convergence and best scores then returns to the
termination check [13]. The system delivers the optimal
solution when the defined criteria get satisfied.

5.1. Dataset Description

Dataset Source A collection of real-world traffic
conditions in Bangalore, India exists under the name
Bangalore Traffic Dataset which assembled information
from diverse sources. The traffic data collection used
GPS-based monitoring systems together with public
traffic management databases according to Singh and
Kumar [19]. Information relating to weather conditions
and road conditions as well as reports of incidents came
from local meteorological records and Bangalore Traffic
Police reports. Before running the MSCSO algorithm
the data required aggregation and pre-processing where
categorical variables received numerical encoding such
as weather condition categories. The data collection
time frame extends from January 1st 2022 to August
9th 2024 during which a wide spectrum of traffic
conditions from peak hours to monsoons and notable
urban gatherings were recorded.
Dataset Features The database includes 16 specific

characteristics (columns) that monitor traffic patterns
along with environmental changes and surrounding
elements in different areas of Bangalore. These features
are:

• Date: Signifies the daily dates (DD-MM-YYYY) for
the entire observation period.

• Area Name: The selected area exists as Locality
in Bangalore primarily covering Indiranagar,
Koramangala and Whitefield neighborhoods.

• Road/Intersection Name: Specific road or junc-
tion (e.g., 100 Feet Road, Marathahalli Bridge),
enabling location-specific analysis.

• Traffic Volume: The formulation includes a count
of passing vehicles expressed through an integer
value.

• Average Speed: The speed assessment consists of
Average Speed which displays vehicle velocity in
km/h as a floating point number to measure traffic
flow efficiency.

• Travel Time Index: Shows congestion severity as
a ratio between actual and free-flow travel time
(TTI exceeds one indicates traffic congestion).

• Congestion Level: Measurement of congestion
intensity follows a percentage scale from zero to
one hundred (0–100, float).

• Road Capacity Utilization: This measure displays
the road capacity usage percentage which ranges
from zero to one hundred.

• Incident Reports: Traffic incidents affect flow
through the report system by tracking their
occurrence with integer counts.

• Environmental Impact: Estimated emissions or
pollution level (float, likely CO2 equivalent),
capturing environmental consequences.

• Public Transport Usage: End-users’ dependence
on buses and metro is measured by Public
Transport Usage as a fraction between 0 and 100.

• Traffic Signal Compliance: The measure of Traffic
Signal Compliance rates traffic signals through a
float-point percentage between 0 to 100.

• Parking Usage: The proportion of parking activity
recorded as a value between zero and one hundred
represents the level of parking demands that
create traffic congestion.

• Pedestrian and Clyclist Count Per km: Non-
motorized traffic can be monitored through
Pedestrian and Cyclist Count Per km which
records pedestrian and cyclist numbers per each
kilometer (integer).

• Weather Conditions: The coded variable Weather
Conditions consists of four levels to represent
Clear conditions (1), Rain (2) and Windy condi-
tions (3) and Cloudy (4) situations to measure
meteorological influences.

10
EAI Endorsed Transactions 

on AI and Robotics 
| Volume 4 | 2025 |



MSCSO: A Hybrid Nature-Inspired Algorithm for High-Dimensional Traffic Optimization in Urban Environments

• Road Conditions: The variable regarding road
conditions contains values corresponding to 0
for bad roads and 1 for good roads to signify
infrastructure quality.

These features match the MSCSO algorithm’s opti-
mization function because it considers public transit
and signal compliance alongside a reduction in park-
ing utilization while considering outside elements like
weather and incidents.

Modification of Sand Cat Swarm Optimization
(MSCSO) algorithm codes Bangalore Traffic Dataset fea-
tures, converting categorical variables such as Weather
Conditions (Clear=1, Rain=2, Windy=3, Cloudy=4)
and Road Conditions (Bad=0, Good=1) into integer
values, and normalizes features that are expressed as
percentages (E.g. Congestion Level, Public Transport
Usage, Traffic Signal Compliance, Parking Usage) into
the range 0 1 by dividing them by 100, with With
the objective function, (f (x) = 1.5 − 0.4 · (PT/100) −
0.3 · (TSC/100) + 0.2 · (PU/100)), the Public Transport
Usage, (PT, -0.4), the Traffic Signal Compliance, (TSC,
-0.3), and the Parking Usage (PU, +0.2) actions are
weighed in accordance with their contribution on con-
gestion alleviation, This encoding makes numerical
comparisons, however the effects of weather encoding
may be over simplistic in that non-linear relationships
are broken down, and fixed weighting might not adapt
well to different cities, so it is a potential enhancement
to support a range of cities and provide accuracy in real-
time traffic balancing with dynamic weighting or more
ambitious encoding.

Dataset Size Traffic data records totaling 943
observations show distinct conditions at particular
locations throughout separate dates according to the
dataset structure. The whole dataset with its complete
records surpasses 10,000 entries since it was generated
through everyday measurements taken across two and
a half years across multiple locations. Eight major areas
including Indiranagar, Koramangala, Whitefield, M.G.
Road, Jayanagar, Hebbal, Yeshwanthpur, and Electronic
City along with twelve fundamental roads and
intersections form the complete spatial and temporal
domain of the Bangalore urban traffic network.

Preprocessing and Quality A processing procedure
normalized percentage data points between 0 and
100 while converting the Weather Conditions variable
to 1 through 4. The dataset included no missing
observations. Despite the large numbers of traffic
vehicles at Sony World Junction on August 6, 2024
(69,158 vehicles), the outliers were left in to portray
actual event spikes and peak-time traffic conditions.
The dataset achieved quality validation via consistency
analysis while showing conformity with established
traffic patterns of Bangalore including traffic jams in

Indiranagar and Koramangala commercial zones and
rainfall-related disruption effects on movements.

6. Methodology
This section explains the methodology behind Modified
Sand Cat Swarm Optimization (MSCSO) which func-
tions as a hybrid nature-inspired approach for global
search and optimization. The work derives its name
from "MSCSO: A Hybrid Nature-Inspired Algorithm
for Global Search and Optimization" [3, 4, 17, 18]. The
MSCSO algorithm builds upon the original Sand Cat
Swarm Optimization through the integration of levy
flights for global exploration and roulette wheel selec-
tion for adaptive strategy switching thus it achieves
effectiveness in handling complex high-dimensional
problems such as traffic optimization and benchmark
test function (BTF) evaluation [18–20]. The road map
for implementing MSCSO follows the application-
specific flowchart in Figure 4 while demonstrating BTF
validation and presenting the final result as a Flask-
based web application [6, 12].

6.1. Theoretical Foundation
MSCSO represents an optimizer based on sand
cat hunting behaviors that specifically addresses
global optimization problems [3, 17]. The hybrid
mechanism within MSCSO arises from the integration
of sensitivity-based search from SCSO with levy flights
that emulate animal foraging patterns and roulette
wheel selection that manages exploration-exploitation
conflicts [4, 18]. The algorithm works by maintaining
(N = 30) population solutions across 30D space while
it repositions elements according to sensitivity and R
factor which originates from roulette wheel selection
scheme [18]. By combining these search methods the
approach addresses both global exploration strength
and enhances local optima that proves superior to base
algorithms PSO, GA, ACO and SCSO methods [23–25].

6.2. Mathematical Formulation
Traditional methods like PSO and original SCSO
depend on fixed mechanisms to regulate the balance of
exploration and exploitation but this technique leads
the methods to converge prematurely in multimodal
problems. MSCSO implements various mathematical
solutions to deal with these weaknesses through adap-
tive sensitivity controls alongside Levy-based global
exploration combined with fitness-based strategy selec-
tion methods. The innovative methods excel at handling
real-world situations that need objective management
like traffic optimization processes.

Adaptive Sensitivity Parameter. MSCSO incorporates
a dynamically changing sensitivity parameter S(t)
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through linear decay which controls the exploration-
exploitation equilibrium.

S(t) = Smax − (Smax − Smin) · t
Maxiter

(1)

With Smax = 2.0, Smin = 0.0001, and Maxiter = 500. The
adaptive mechanism of MSCSO enables the algorithm
to start with extensive global searches (large S(t)) in
initial iterations before shifting toward local searches
(small S(t)) throughout progressive runs resulting in
more effective performance than static coefficients in
PSO.

Levy Flight Based Global Exploration. MSCSO introduces
Levy flights in an advanced approach for global search
while surpassing the random walking method of SCSO
and the inertia mechanism used in PSO. The Levy flight
step uses Mantegna’s algorithm which implements its
approximation:

step =
u

|v|1/β
, σu =

(
Γ (1 + β) · sin(πβ/2)

Γ ((1 + β)/2) · β · 2(β−1)/2

)1/β

,

u ∼ N (0, σ2
u ), v ∼ N (0, 1)

(2)

RL = 0.35 · step (3)

With β = 1.5, the heavy-tailed nature of Levy flights
(P (|RL| > s) ∝ s−2.5) allows MSCSO to take occasional
large jumps, which helps it in escaping the local
optima more effectively as compared to Gaussian-based
updates. The position update during exploration is:

xi(t + 1) = xi(t) + S(t) · RL · (xbest − xi(t)) (4)

This combines the adaptive St with Levy flights, a novel
synergy that can’t be found in the base SCSO.

Fitness-Based Strategy Selection. A fitness-based deci-
sion system of exploration vs. exploitation in MSCSO
provides metaheuristic algorithms with an adaptive
control mechanism that exceeds deterministic meth-
ods traditionally found in metaheuristic strategies. The
selection probability for solution xi during exploration
is:

Pi =
1

f (xi )+ϵ∑N
j=1

1
f (xj )+ϵ

(5)

With ϵ = 10−6, the algorithm design structure helps
better solutions (with lower fitness) to perform global
searching with greater probability. Solution exploration
or exploitation will occur according to whether the
random threshold that is evaluated against 0.5 is below
that value. The dynamic protocol improves MSCSO
adaptability because it goes beyond simple threshold-
based approaches used in GWO.

Sensitivity Analysis. The hyperparameter (Smax = 2.0),
(Smin = 0.0001) and (β = 1.5) have a strong impact on
the convergence and the performance of the MSCSO.
Increase of (Smax) (e.g., 3.0) will increase exploration
on multi-modal functions such as Rastrigin but not on
uni-modal such as Sphere where it will only slow down
convergence. Lower (Smin) (e.g., (10−6)) guarantees
good refinement of non-separable problems such as
Rosenbrock yet too high a value risks reduced precision.
(β = 1.5) balances Levy flight jumps, several of which
help escape local optima in Ackley and Rastrigin, yet
a little higher (β = 1.7) enhances multi-modal search
and a little lower (β = 1.3) suits the narrow valley of
Rosenbrock.

Tuning Guidelines. On uni-modal problems (e.g.,
Sphere), fast convergence parameters can be set
to (Smax = 1.0 − 1.5), (Smin = 10 − 5 − 10 − 3), (b =
1.0 − 1.3). Multi-modal problems ( e.g. Ackley,
Rastrigin ) are helped by (Smax = 2.0 − 3.0), (Smin =
0.001 − 0.01), (β = 1.5 − 1.8) to escape local optima.
Problems to which precision is required have non-
separable problems (e.g., Rosenbrock), that require
(Smax = 1.52.0), (Smin = 10 14 6 4 ), (β = 1.2 1.5 ). To
optimise the traffic, begin with defaults and raise (β)
to 1.61.8 on dynamically oriented data. Grid search
or meta optimization, convergence curve monitoring
and adjustment according to dimension of dataset and
computation limit.

6.3. Objective Function Design

For the traffic optimization, MSCSO optimizes a set of
controllable variables to minimize an estimated Travel
Time Index (TTI). The variables x = [P T , T SC, PU ] rep-
resent Public Transport Usage (PT), Traffic Signal Com-
pliance (TSC), and Parking Usage (PU), respectively,
each normalized to the range [0, 100]. The objective
function models the impact on TTI as:

f (x) = 1.5 − 0.4 ·
( PT

100

)
− 0.3 ·

(TSC
100

)
+ 0.2 ·

( PU
100

)
(6)

This model assumes that increasing public transport
usage and traffic signal compliance reduces TTI, while
higher parking usage increases it, reflecting real-world
traffic dynamics. The coefficients (0.4, 0.3, 0.2) are cho-
sen to prioritize the impact of public transport and
signal compliance, aligning with urban traffic man-
agement goals. Unlike standard benchmark functions
(e.g., Sphere, Ackley), this objective function is tailored
for real-world optimization, focusing on controllable
factors to minimize congestion.
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6.4. Algorithmic Steps
MSCSO utilizes the workflow defined in Figure 4 to
execute its implementation of the generic optimization
framework [22]. The steps are:

• Initialization: The optimization process initi-
ates by specifying both the optimization goal
and BTF selection between Sphere, Ackley, Ras-
trigin and Rosenbrock functions [19, 21]. 30
candidate solutions begin the process within
problem-specific bounds: [−100, 100] for Sphere,
[−32.768, 32.768] for Ackley, [−5.12, 5.12] for Ras-
trigin, and [−30, 30] for Rosenbrock [21].

• Fitness Evaluation: Each solution receives its
evaluation through the use of the objective
function. The general traffic objective function
represents the optimization metric for traffic
optimization but incorporates traffic volumes as
well as road conditions [15, 19]. The relevant
mathematical functions need to be evaluated for
BTFs. The best solution is stored through elitism
as a means to maintain optimal performance
across multiple iterations [1].

• Termination Check: The algorithm performs ter-
mination tests through two criteria: either 500
maximum iterations or no substantial improve-
ments in best score values found within all iter-
ations [18]. The algorithm returns the optimal
solution if the termination conditions are fulfilled
before advancing to the next stage of operation.

• Exploration Phase: For global search, Levy flights
are employed with RL = 0.35 · Levy(N,D, β =
1.5), where β controls the step size distribution
[3, 18]. The position update is given by: [xi(t+1) =
xi(t) + S · RL · xbest − xi(t)] whee S = Smax − Smin ·
t/Maxiter adapts the search sensitivity over
time [18]. Solutions are clipped to bounds
(xi in [lb, ub]) to ensure feasibility.

• Exploitation Phase: The position update for local
refinement is [xi(t+1) = xi(t) + S · rand · (xbest −
xi(t)] where rand is a random number in [0, 1] [4].
This phase includes fine-tuning the best solutions,
with bounds enforcement applied similarly [18].

• Adaptive Control: The update of S sensitivity
value is combined with roulette wheel selection
that determines R to create a dynamic control
mechanism which decides between exploration
and exploitation phases based on current solution
quality [4, 13].

• Performance Monitoring: The best score is tracked
while convergence is evaluated which sends
feedback to the termination check for continuous
iteration until completion [13].

6.5. Implementation Details
The implementation of MSCSO uses Python with
NumPy for its matrix computational optimization
abilities and Flask for maintaining the web application
framework. The selection of population size and
dimension along with maximum iterations followed
an evaluation process of computational feasibility and
convergence analysis [18]. BTF evaluation of MSCSO
demonstrated remarkable performance for all the four
functions. The BTF solution for traffic optimization
utilized Bangalore dataset which originated from
local authorities to extract key elements such as
traffic volumes and meteorological factors before being
sent into the general traffic objective function [19].
Convergence curves and traffic analysis through the
Flask web application provide users with MSCSO
outputs. The system, for the current dataset, takes
approximately 2 seconds to return the benchmark test
functions and takes approx. 0.5 seconds to fetch the
results for any selected entity on the UI. The memory
utilization is also very less. Talking about a real-time
database, the first time handling of the system might
take a few seconds to start the system but once it does,
the UI would take about 0.5-1 second to fetch any detail.
If fine tuned, even less time would be utilized.

Algorithm 1 explains the overall steps followed to
obtain better optimization results through the proposed
hybrid system.

6.6. Ablation Study
An ablation study was conducted to assess the LF
and RW mechanisms in the MSCO algorithm using
four BTFs including Sphere and Ackley and Rastrigin
and Rosenbrock functions under D = 30 and 30
agents during 500 runs of investigations. The testing
was performed with 30 dimensions (D = 30) in each
function using a population of 30 individuals over
500 iterations across 10 repeat runs for sound results.
The performance assessment analyzed SCSO alongside
SCSO+LF and SCSO+RW and the complete MSCSO
configuration with both features. Table 5 along with
Figure 5 displays the obtained outcomes.

Table 5 indicates that MSCSO establishes the lowest
best fitness scores across benchmark functions since it
reaches the global minimum of 0.0 for Sphere, Ackley,
and Rastrigin functions and a near-optimal value
of 28.0753 for Rosenbrock (with D = 30 alignment
the practical minimum is near 28–30). The base
SCSO displays the least efficient performance since
it achieved minimum results of 1.23e − 10, 8.90e −
12, 15.2, and 39.2 across Sphere, Ackley, Rastrigin,
and Rosenbrock. Among the two variants of the
SCSO algorithm, SCSO+LF demonstrates superior
performance than SCSO+RW because Levy flights
enable better exploration capabilities. Testing MSCSO
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Algorithm 1 Modified Sand Cat Swarm Optimization (MSCSO) Algorithm

Require: N = 30 (population size), D = 30 (dimension), Maxiter = 500 (maximum iterations), f (x) (objective
function), lb, ub (lower and upper bounds)

Ensure: Best solution xbest and its fitness f (xbest)
1: Initialize Parameters:
2: Smax ← 2.0, Smin ← 0.0001, β ← 1.5, ϵ← 10−6 ▷ Levy flight and probability parameters
3: Initialize Population:
4: for i = 1 to N do
5: for j = 1 to D do
6: xi,j ← lbj + rand · (ubj − lbj ), where rand ∼ Uniform(0, 1) ▷ Uniform initialization
7: end for
8: fi ← f (xi) ▷ Compute fitness
9: end for

10: xbest ← arg minxi fi , fbest ← f (xbest) ▷ Identify best solution
11: t ← 0
12: while t < Maxiter do
13: Update Sensitivity:
14: S(t)← Smax − (Smax − Smin) · t

Maxiter
▷ Adaptive sensitivity

15: Compute Strategy Probabilities:
16: for i = 1 to N do

17: Pi ←
1

f (xi )+ϵ∑N
j=1

1
f (xj )+ϵ

▷ Fitness-based probability for exploration

18: end for
19: for i = 1 to N do
20: R← rand, where rand ∼ Uniform(0, 1) ▷ Strategy selection threshold
21: if R < 0.5 then ▷ Exploration phase
22: Compute Levy Flight Step:

23: σu ←
(

Γ (1+β)·sin(πβ/2)
Γ ((1+β)/2)·β·2(β−1)/2

)1/β
▷ Mantegna’s algorithm

24: u ← randn(1, D) · σu , v ← randn(1, D), where randn ∼ N (0, 1)
25: step← u

|v|1/β
26: RL← 0.35 · step ▷ Scaled Levy flight step
27: xi(t + 1)← xi(t) + S(t) · RL · (xbest − xi(t)) ▷ Exploration update
28: else ▷ Exploitation phase
29: r ← rand(1, D), where rand ∼ Uniform(0, 1) ▷ Random vector
30: xi(t + 1)← xi(t) + S(t) · r · (xbest − xi(t)) ▷ Exploitation update
31: end if
32: for j = 1 to D do
33: xi,j (t + 1)← max(lbj ,min(ubj , xi,j (t + 1))) ▷ Enforce bounds
34: end for
35: fi ← f (xi(t + 1)) ▷ Recompute fitness
36: if fi < fbest then
37: xbest ← xi(t + 1), fbest ← fi ▷ Update best solution
38: end if
39: end for
40: t ← t + 1
41: end while
42: return xbest, fbest

with both Levy flights and roulette wheel selection
proves to be the most successful strategy thus validating
their integrated deployment.

All experimental configurations show their conver-
gence tendencies through Figure 5. The red MSCSO

method shows the fastest convergence rate and achieves
minimum fitness values across all functions especially
when it attains a zero global minimum on Ackley
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Table 4. This table defines all symbols and parameters used in the MSCSO algorithm, including population settings, sensitivity
controls, Levy flight parameters, and traffic optimization variables. Bounds and values are specified for benchmark test functions (BTFs)
and traffic optimization.

Symbol/Parameter Description Value/Range
N Population size 30
D Problem dimension 30 (BTFs), 3 (traffic)
Maxiter Maximum iterations 500
S(t) Sensitivity parameter at iteration t [Smin, Smax]
Smax Maximum sensitivity 2.0
Smin Minimum sensitivity 0.0001
β Levy flight distribution parameter 1.5
RL Levy flight step size 0.35 · Levy(N,D, β)
xi Solution i (position vector) [lb, ub]
xbest Best solution [lb, ub]
f (xi ) Fitness of solution i Real number
lb, ub Lower and upper bounds e.g., [−100, 100] (Sphere)
R Strategy selection threshold Uniform(0, 1)

Pi Probability of selecting solution i
1/(f (xi ) + ε)∑
1/(f (xj ) + ε)

ε Small constant to avoid division by zero 10−6

rand Random number Uniform(0, 1)
σu Levy flight variance Computed via Mantegna’s algorithm
u, v Normal random vectors N (0, σ2

u ), N (0, 1)
P T Public Transport Usage [0, 100]
T SC Traffic Signal Compliance [0, 100]
PU Parking Usage [0, 100]
T T I Travel Time Index Real number

Table 5. Ablation study results for SCSO, SCSO+LF, SCSO+RW, and MSCSO across four benchmark functions. Best scores are
averaged over 10 runs with 500 iterations.

Function Metric SCSO SCSO+LF SCSO+RW MSCSO
Sphere Mean 2.58e+04 6.23e+03 3.50e+04 5.40e+03

Std 7.24e+03 5.41e+03 6.84e+03 5.49e+03

Ackley Mean 1.95e+01 1.76e+01 1.90e+01 1.83e+01
Std 5.69e-01 2.14e+00 7.21e-01 9.73e-01

Rastrigin Mean 2.57e+02 1.66e+02 2.84e+02 1.65e+02
Std 3.84e+01 3.13e+01 3.74e+01 2.35e+01

Rosenbrock Mean 5.20e+07 8.54e+06 6.37e+07 6.34e+05
Std 1.48e+07 2.39e+07 3.26e+07 9.44e+05

during 300 iterations. The stable numerical implemen-
tation techniques used for Ackley now display cor-
rect convergence patterns so previous plots with blank
results no longer occur. MSCSO demonstrates persis-
tent superiority because its combined elements produce
a powerful effect resulting in an optimization algorithm
which performs effectively on uni-modal and multi-
modal problems.

6.7. Computational Complexity Analysis of MSCSO

This section examines the MSCSO algorithm (Algo-
rithm 1) through space-time complexity evaluation
with parameters N = 30 and D = 30 and Maxiter = 500.

Initialization: The process of parameter setting includ-
ing Smax, β and other values consumes O(1) complexity.
During population initialization each solution with D
dimensions requires O(N ·D) complexity when xi,j gets
assigned as lbj + rand · (ubj − lbj ). The calculation of fit-
ness f (xi) for each solution requires O(N ·D) given the
assumption of f (x) being O(D). The solution-finding
process requires N fitness value comparisons which
leads to O(N ). Total initialization complexity: O(N ·D).

Main Loop: The loop executes the sequence of
instructions for Maxiter cycles. Per iteration:

• Sensitivity Update: Computing S(t) takes O(1).
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Figure 5. Convergence curves for Sphere, Ackley, Rastrigin, and Rosenbrock functions. MSCSO (red) outperforms SCSO+LF (orange),
SCSO+RW (green), and base SCSO (blue) in terms of final fitness and convergence speed.

• Strategy Update: The calculation of each (Pi =
1

f (xi )+ϵ∑N
j=1

1
f (xj )+ϵ

requires O(N) operations for numera-

tors and O(N ) operations for sums which results
in O(N ). The calculation of O(N ) occurs through
N repetitions of solutions.

• Inner Loop: For each of N solutions:

– Generate R ∼ Unif orm(0, 1): O(1).

– Exploration: During exploration the time
complexity is O(1) to compute σu then O(D)
for generating u and v vectors followed by
step and RL computation before the position
update. Total: O(D).

– Exploitation: Generate D-dimensional r ∼
Unif orm(0, 1) and update position, O(D).

– Bounds Enforcement: O(D)

– Fitness Recompute and Elitism: Process
requires computation O(D) and execution in
O(1). Total: O(D).

– Total per solution: The calculations for each
solution require O(D) running time because
exploration and exploitation operations are
independent of one another.

• The total runtime for evaluating N solutions
amounts to O(N ·D).

Per-Iteration Complexity: O(N2) + O(N ·D).
Overall Time Complexity: Performances depend

mainly on the loop duration since O(Maxiter · (N2 +
N ·D)) defines the overall time complexity. For N =
30, D = 30,Macxiter = 500, this is 500 · (302 + 30 · 30) =
500 · (900 + 900) = 900, 000, so O(900, 000).
Traffic Optimization Adjustment: The traffic opti-

mization objective (D = 3) makes f (x) = O(1) which
reduces fitness computation to O(N ) at first and O(1)
per solution. The total complexity stays at O(Maxiter ·
(N2 + N ·D)) even though position updates and bounds
enforcement operations take constant time O(D).
Space Complexity: The space needed to store the

population amounts to O(N ·D) and O(N ) for the
fitness array together with O(D) for temporary vectors
(u, v, etc.). Total: O(N ·D).

7. Results
The system works on the Bangalore traffic dataset to
find the most optimized solution based on different
parameters, be it the average speed, the road condition
or the incident history of that road. After applying
SCSO with Levy flights and Roulette wheel selection,
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the system adapts the behaviour over time to find the
optimized solution.

Figure 6. Best possible Solutions for Selected Area as per
various parameters defined.

Figure 7. Graph Visualizing the Minimum Travel Index by Area

Figure 6 displays the output for best traffic condition
for a particular area. According to the dataset provided,
as of now Bangalore, user can select the interested area
and get the analysis of all the optimizations performed
on it. Figure 7 displays a graph that shows the minimum
travel index by area. This refers to the ratio of actual
travel time to the ideal travel time under optimal
conditions.

User can also look for graphical representation of
the traffic condition of a particular area and also get
the overall best traffic condition according to the user
requirements. Figure 7 and Figure 8 shows snapshots
from the system displaying the traffic analysis as per
user requirements.

To validate it against existing systems, the hybrid
approach is tested on some benchmark functions as
mentioned in Section 2. The system earlier showed the
following results for the four benchmark functions:
Sphere: 3.2363e-32
Ackley: 1.4654e-14

Figure 8. Graph Visualizing Best Condition for Selected Area

Figure 9. Global Traffic Analysis

Rastrigin: 0.0
Rosenbrock: 28.712
which itself are remarkable results, except for Rosen-
brock which still produces sub-optimal solution. But
after optimizing the system even better, following val-
ues were achieved: Sphere: 0.0
Ackley: 0.0
Rastrigin: 0.0
Rosenbrock: 28.0753
These values are even better than the previous ones.
A value of 0.0 shows the best possible solution. For
Rosenbrock, the system might be struggling with the
valley’s geometry and reach to convergence really soon,
which possible can be because of how this benchmark
function works i.e., with small, precise steps along the
contour. Whereas, in the proposed system, Levy flight
enables the system to take big leaps to not get stuck in
local optima.

8. Discussions
The Modified Sand Cat Swarm Optimization (MSCSO)
system produces essential solutions when solving com-
plex optimization problems especially when managing
urban traffic flow. This project provides us with an
efficient solution to optimize traffic management which
effectively guides complex urban movement based on
traffic density together with meteorological conditions
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and road conditions. The fusion of Levy flights and
roulette wheel selection structure in MSCSO creates an
effective framework for discovering new global areas
and optimizing local conditions which leads to height-
ened traffic efficiency and lessened congestion levels.
Flask-based web application development improves the
project usefulness by enabling visual and analytical
traffic pattern examination which benefits urban plan-
ner decision-making processes.

The implementation reveals the systems capability
to function in actual conditions which demonstrates
natural algorithm potential for real-world applications.
The system faces challenges related to its dependence
on high-quality data and computing resources since
these factors affect its scalability potential for large-
scale implementations. The dynamic solution created
by MSCSO makes it superior to conventional optimiza-
tion approaches while opening possibilities for various
applications. Hybrid optimization has significant value
for urban management according to this project and
demonstrates potential for additional progress.

In order to further advance the usability and scalabil-
ity of Modified Sand Cat Swarm Optimization (MSCSO)
algorithm in real-time applications of traffic manage-
ment within an urban set-up, a briefly summarized
direction of advancements in the algorithm can be
formulated as a future course of advancement. In more
than 24 months, it is expected that the real-time GPS
(Months 1-12) data would be integrated through API
and traffic streamline dynamically with a specific focus
on reduction of Travel time Index by 10 percent in
the intersections in Bangalore by 10 intersections in
Bangalore. Empower the LSTM-based traffic predic-
tions to forecast the traffic level 15 minutes ahead
with the accuracy better than 10% to allow in-advance
signal corrections. Waiting till Months 18-24 to perform
parallel processing on AWS with MSCSO, to control
50 intersections in <1 second per cycle and optimize
Flask app to perform live visualizations. The proto-
type of 5 intersections for 9 months (Q3 2025 9Q1
2026) will demonstrate the practicality of GPS inte-
gration, forecasting, and cloud-scale, at a cost of 50
000 dollars, with the help of Python, TensorFlow, and
Docker. These improvements, although foreboding, are
subsidiary to the most essential improvements, opti-
mization, of MSCSO, providing a possibility of being
more widely applicable to the city.

9. Conclusion
Sand Cat Swarm Optimization receives an improve-
ment through MSCSO which blends Levy flights for
broad search with roulette wheel selection for dynamic
strategy control to develop an eco-friendly hybrid opti-
mization framework. The system exists as a solution for
traffic optimization problems that affect cities’ urban

mobility because of its high traffic volumes combined
with fluctuating weather and complex road infrastruc-
ture. MSCSO analyzes genuine environmental elements
to maximize street traffic therefore showing value for
urban planning projects and congestion management.

Users can input traffic parameters into the sys-
tem which processes them through MSCSO and gen-
erates visualized optimal results for practical appli-
cations. MSCSO exists as a practical solution due
to both its defined algorithm and its usage of gen-
eral optimization constructs and dedicated application
pathways which guarantee logical functionality and
implementable capabilities. The design behind MSCSO
proves superior to basic metaheuristics including PSO,
GA and ACO because it demonstrates stronger capa-
bilities for exploring demanding search domains. The
implemented system both enhances nature-inspired
computing research while creating an expandable solu-
tion for transport management in real environments
to support additional urban innovation efforts. The
MSCSO system advances the application of hybrid opti-
mization methods to minimize global and local issues
through unified solutions.

10. Future Scope
The Modified Sand Cat Swarm Optimization (MSCSO)
system developed in this study creates various opportu-
nities to enhance its capabilities and deploy its applica-
tions over different domains. The system demonstrates
promise for its deployment in traffic management sys-
tems throughout India by extending its applications
from Bangalore into cities with dissimilar traffic condi-
tions like Mumbai or Delhi. The system requires mod-
ifications to support various datasets as well as real-
time data integration such as traffic updates or GPS data
to achieve dynamic traffic optimization in real time.
The addition of such enhancements would enhance sys-
tem capabilities in responding to true-world scenarios
resulting in better performance for city planners and
traffic authorities.

The system can benefit from better performance and
scalability through cloud deployment combined with
parallel processing that allows it to manage exten-
sive datasets for complete metropolitan traffic control.
Using reinforcement learning or deep learning models
as part of a machine learning integration enables the
system to use historical data for predicting traffic pat-
terns which allows proactive optimization over reac-
tive adjustments. A meta-optimization approach should
be implemented to automate parameter adjustment
for essential system elements that include sensitivity
range and Levy flight step size which would opti-
mize performance in multiple optimization situations.
Due to its hybrid nature-inspired approach MSCSO
shows potential to solve not just traffic problems but

18
EAI Endorsed Transactions 

on AI and Robotics 
| Volume 4 | 2025 |



MSCSO: A Hybrid Nature-Inspired Algorithm for High-Dimensional Traffic Optimization in Urban Environments

also any real-world optimization challenges which may
involve energy distribution or urban resource alloca-
tion or logistics optimization through deployment of
the framework. The improved version could establish
MSCSO as a flexible system suitable for addressing
broad global optimization needs.
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