
EAI Endorsed Transactions
on AI and Robotics Research Article

P2PLLMEdge: Peer-to-Peer Framework for Localized
Large Language Models using CPU only
Resource-Constrained Edge
Partha Pratim Ray∗ and Mohan Pratap Pradhan

Department of Computer Applications, Sikkim University, Sikkim, India, 737102

Abstract

In this research, we present P2PLLMEdge, a pioneering peer-to-peer framework designed to enable localized
Large Language Models (LLMs) to operate efficiently in resource-constrained edge environments, exemplified
by devices such as the Raspberry Pi 4B and CPU-only laptops. The framework addresses critical challenges,
including limited computational capacity, network overhead, and scalability, by leveraging lightweight
RESTful communication protocols, model-specific quantization, and decentralized task distribution. Key
results demonstrate that P2PLLMEdge achieves substantial performance improvements. On average, Peer
2 (CPU-only laptop) achieves a 44.7% reduction in total duration (tpeer2, total = 15.87 × 109 ns) compared
to Peer 1 (Raspberry Pi 4B, tpeer1, total = 28.18 × 109 ns). The framework processes tokens at a rate of
21.77 tokens/second on advanced LLMs like Granite3.1-moe:1b, significantly outperforming the baseline.
Peer 1, employing quantized LLMs such as smolm2:360m-instruct-q8_0, reduces prompt evaluation
duration by 23.2% (tpeer1, prompt_eval = 0.76 × 109 ns) compared to larger models like qwen2.5:0.5b-

instruct (tpeer1, prompt_eval = 0.99 × 109 ns). Peer 2 demonstrates superior summarization capabilities,
with evaluation durations (tpeer2, eval) reduced by 72.8% (tpeer2, eval = 5.15 × 109 ns) for explanation-type
prompts relative to Peer 1 (tpeer1, eval = 18.93 × 109 ns). The framework also achieves significant network
efficiency, reducing inter-peer communication durations by up to 44.9% (tpeer2, network = 25.83 × 109 ns
vs. tpeer1, network = 46.92 × 109 ns). Peer-to-peer synergy ensures seamless task execution, where Peer 1
generates text and offloads computationally intensive summarization tasks to Peer 2, achieving a balance
between performance and resource utilization. The novelty of P2PLLMEdge lies in its ability to seamlessly
integrate lightweight LLMs with decentralized edge devices, achieving advanced natural language processing
functionalities entirely on edge devices traditionally deemed unsuitable for such tasks. This framework
provides an adaptable, and cost-effective approach for deploying quantized LLM-driven applications.
Future directions include scaling the framework to multi-peer environments, optimizing task scheduling
algorithms, and exploring integration with heterogeneous LLM-enabled systems. The codes are available on
https://github.com/ParthaPRay/peer_to_peer_local_llm_interaction.

Received on 11 May 2025; accepted on 25 June 2025; published on 08 July 2025

Keywords: Peer-to-peer, Edge computing, Quantized LLMs, Resource-constrained edge, Decentralized generative AI,
Web frameworks

Copyright © 2025 Partha Pratim Ray et al., licensed to EAI. This is an open access article distributed under the terms
of the (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits copying, redistributing, remixing,
transformation, and bilding upon the material in any medium so long as the original work is properly cited.

doi:10.4108/airo.9292

∗Corresponding author. Email: ppray@cus.ac.in

1. Introduction

Deploying LLMs in edge computing environments
presents significant hurdles, primarily due to the lim-
ited computational and memory capabilities of typical
edge devices [1, 2]. Devices such as the Raspberry

1
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<ppray@cus.ac.in>

Partha Pratim Ray and Mohan Pratap Pradhan

Pi 4B or low-power laptops are inherently resource-
constrained, lacking the necessary GPU support, mem-
ory bandwidth, and processing power to run state-of-
the-art LLMs effectively. This limitation poses a chal-
lenge for advanced natural language processing (NLP)
tasks, such as contextual text generation, summariza-
tion, and question answering, which require high com-
putational precision and extensive memory access [3–
5]. Additionally, the decentralized nature of edge envi-
ronments introduces complexities in synchronization,
network reliability, and distributed task management
[6]. Network latency, for instance, can severely impact
performance, especially when multiple devices are
involved in collaborative tasks [7]. Moreover, existing
centralized cloud-based solutions, while computation-
ally robust, suffer from several drawbacks, including
high dependency on internet connectivity, increased
operational costs, and potential privacy concerns due
to data transmission over external networks [8]. These
challenges emphasize the need for a novel approach
to enable efficient and scalable NLP operations in
resource-constrained edge settings.

The rapid proliferation of IoT devices, smart city
applications, and decentralized AI systems has created
a demand for real-time, on-device AI solutions [9].
Traditional cloud-based architectures often fail to
meet the stringent requirements of low-latency, high-
privacy applications, especially in scenarios where
uninterrupted internet connectivity is not guaranteed.
For instance, edge deployments in remote or rural
areas, industrial automation, and emergency response
systems demand localized AI capabilities that can
function autonomously without reliance on centralized
infrastructure [10, 11]. A peer-to-peer (P2P) framework
leveraging localized LLMs offers a transformative
solution to these issues. By distributing NLP workloads
among edge devices, such frameworks can address
computational bottlenecks, reduce latency, and enhance
privacy by keeping data localized. The ability to operate
independently of centralized systems democratizes
access to AI, making it accessible and affordable for
a wider range of applications [12]. The motivation for
this research is rooted in addressing these critical gaps,
driving the development of a scalable and resource-
efficient solution that unlocks the potential of LLMs for
edge computing environments [13].

This study contributes significantly to the advance-
ment of edge-based AI by demonstrating the feasibil-
ity of deploying sophisticated NLP workloads on con-
strained devices like the Raspberry Pi 4B [14] and CPU-
only laptops. The proposed P2PLLMEdge framework
addresses not only the technical limitations of edge
devices but also the broader challenges of scalability,
interoperability, and adaptability. By leveraging quan-
tized LLMs and dynamic task allocation, this frame-
work showcases a cost-effective and robust alternative

to cloud-based solutions. The significance of this work
extends beyond technical innovation?it paves the way
for new applications in fields where AI deployment
was previously limited by resource constraints. For
example, smart city systems can benefit from real-
time language processing for localized analytics, while
rural healthcare setups can utilize NLP-driven diag-
nostic tools without the need for cloud infrastructure.
Moreover, the study introduces a practical pathway
for achieving decentralized AI, a paradigm shift that
aligns with growing concerns around data sovereignty,
privacy, and energy efficiency. The framework?s ability
to optimize computational resources while maintaining
high performance is a step forward in making AI both
sustainable and inclusive.

This paper makes the following key contributions:

• Development of P2PLLMEdge, a novel peer-to-
peer architecture that enables seamless interac-
tion between localized LLMs operating on hetero-
geneous edge devices.

• Optimization for Resource-Constrained Devices:
Deployment of lightweight, quantized LLMs
such as: (i) Peer1 LLMs: qwen2.5:0.5b-instruct
and smolm2:360m-instruct-q8_0 on Raspberry
Pi 4B and (ii) Peer2 LLMs: Granite3.1-moe:1b,
Llama3.2:1b, Qwen2.5:1.5b, and Smolm2:1.7b on
CPU-only laptops.

• Introduction of a flexible task distribution
mechanism, allowing Peer1 to handle lightweight
generative tasks and offloading computationally
intensive summarization tasks to Peer2.

• Utilization of the Ollama API for managing LLM
interactions, Flask and FastAPI for lightweight
web frameworks, Pydantic for data validation,
and the Python Requests library for seamless
communication between peers.

• A robust RESTful API-based communication
protocol ensures efficient peer-to-peer interaction,
supporting dynamic workloads and reliable task
execution.

The novelty of this research is encapsulated in the
following aspects:

• A novel architecture enabling efficient collabo-
ration between lightweight devices (e.g., Rasp-
berry Pi 4B) and more capable CPU-only laptops,
allowing distributed task execution with minimal
latency.

• Deployment of quantization and configuration of
LLMs to match the computational capabilities of
each peer, ensuring optimal performance across
heterogeneous hardware.

2
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

• Demonstrating that robust NLP capabilities can
be achieved on affordable, low-power devices,
making AI deployment feasible for resource-
limited settings.

• Pioneering a framework that envisages the seam-
less scalability across multiple peers, addressing
the growing need for decentralized AI systems.

The remainder of this paper is structured as follows:
Section 2 presents related works and comparison with
our work. Section 3 describes the tools, methodologies,
and configurations employed in this study, including
the deployment of LLMs and the web frameworks
used for communication. It introduces the P2PLLMEdge
framework, detailing its architecture and operational
mechanisms outlining the algorithmic implementation
of the peer-to-peer interaction and system configura-
tion. Section 4 presents the results of the experimen-
tal evaluation, including performance analysis, inter-
metric correlations, and insights into outlier behavior.
Section 5 concludes the article with a summary of
findings and directions for future work.

2. Related Works
The integration of LLMs with edge computing has been
extensively explored in recent research, showcasing
diverse approaches to overcome challenges in resource-
constrained environments. While these studies provide
valuable insights, significant gaps remain in practical
implementations and optimization strategies for decen-
tralized edge systems.

Friha et al. [15] conducted a thorough survey on
LLM-based edge intelligence, focusing on architectural
designs, optimization techniques, and security chal-
lenges. Their analysis highlighted the potential of LLMs
to transform edge computing, yet the study remained
theoretical, lacking experimental validation. Building
on these ideas, our work demonstrates a practical peer-
to-peer framework with quantifiable results, bridging
the gap between theory and implementation.

The concept of decentralization is further explored
by Gao et al. [16], who propose a Bitcoin-inspired
framework for decentralized LLMs. While intriguing,
their work acknowledges the impracticality of real-
world deployment due to technical and economic
constraints. In contrast, our framework offers a
functional and efficient solution that leverages peer-
to-peer communication to distribute tasks effectively
across edge devices.

Another innovative approach comes from Karanjai
and Shi [17], who integrate blockchain technology with
edge-based LLM inferences. By utilizing smart con-
tracts and the Cosmos SDK, their framework ensures
secure, distributed computations. However, the reliance
on blockchain introduces significant computational

overhead. Our framework simplifies task distribution
using lightweight RESTful APIs, minimizing latency
and complexity without compromising security.

He et al. [18] address the challenges of LLM infer-
ence offloading in cloud-edge environments through
active inference. Their method improves adaptability
to changing task loads but remains heavily reliant on
centralized cloud servers. By decentralizing the work-
load, our system enhances privacy, reduces latency, and
enables autonomous operation in environments with
limited connectivity.

The potential of LLMs for code generation is high-
lighted by Chen et al. [?], who introduce Codex, a
GPT model fine-tuned on code from GitHub. Their
work demonstrates impressive functional correctness in
program synthesis and underscores the effectiveness of
repeated sampling for solving complex tasks. The study
also discusses the broader implications of deploying
code generation technologies, aligning with the objec-
tives of this research to address operational challenges
in decentralized environments. Furthermore, Wong et
al. [?] provide an extensive review of transformer-
based LLMs in AI-assisted programming. Their analysis
spans diverse applications, including code generation,
defect detection, and task automation, emphasizing
the role of software naturalness in enhancing model
performance. This comprehensive perspective on LLM
capabilities informs the development of robust decen-
tralized frameworks like ours, which leverage these
advancements for edge-based deployments. The POKT
network, as described by Olshansky et al. [19], provides
a decentralized framework for LLM inference through a
permissionless and transparent marketplace. Although
the system offers scalability and open-source accessi-
bility, its reliance on cryptographic mechanisms and
network protocols adds complexity. Our framework
achieves similar decentralization goals while maintain-
ing simplicity and ease of deployment. In the realm of
cybersecurity, Hasan et al. [20] explore the use of LLMs
for distributed threat intelligence on edge devices.
Their work demonstrates the potential of peer-to-peer
knowledge sharing to enhance security. While domain-
specific, this approach aligns with our framework’s
emphasis on leveraging edge-based intelligence, though
our system generalizes its application to broader use
cases.

Chen et al. [21] propose the concept of Edge General
Intelligence (EGI), an evolution of Edge Intelligence
empowered by LLMs. Their survey categorizes cen-
tralized, hybrid, and decentralized systems but lacks
concrete implementations. Our study not only explores
these theoretical paradigms but also delivers a fully
operational decentralized framework. The transforma-
tive potential of Generative AI (GenAI) in edge com-
puting is highlighted by Ale et al. [22], who discuss the
challenges and solutions for deploying GenAI models

3
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

on mobile edge devices. While their work focuses on
reducing latency and energy consumption, it does not
address collaborative task allocation. Our framework
complements these efforts by enabling distributed NLP
workloads across heterogeneous devices.

Bhardwaj et al. [23] emphasize the importance of
integrating and optimizing LLMs in edge environments
to improve privacy and efficiency. Their comprehen-
sive analysis identifies key challenges but does not
provide practical solutions. In contrast, P2PLLMEdge
delivers a functional framework with demonstrable
improvements in resource utilization and throughput.
Lastly, Soltoggio et al. [24] envision a future of col-
lective AI where decentralized agents share knowl-
edge through lifelong learning. While aspirational, their
work remains speculative. Our study operationalizes
these ideas by enabling real-time collaboration between
edge devices, offering a tangible step towards the real-
ization of collective intelligence. The Table 1 presents
the comparison between our work with related works.

Novelty of P2PLLMEdge
P2PLLMEdge establishes a new dimension for

deploying LLM-driven applications in resource-
constrained edge environments by addressing critical
limitations in existing approaches and delivering a
high-performance, privacy-aware, and decentralized
approach. The P2PLLMEdge framework introduces
several groundbreaking innovations that distinguish
it from existing works: (i) unlike prior studies,
our framework successfully deploys quantized
LLMs on resource-constrained edge devices such
as the Raspberry Pi 4B and CPU-only laptops,
proving their viability for advanced NLP tasks in
limited environments, (ii) the use of lightweight
web frameworks like Flask and FastAPI enables
efficient and low-latency peer-to-peer communication,
ensuring seamless task distribution without reliance
on centralized infrastructure, (iii) by operating
independently of internet connectivity, P2PLLMEdge
offers unparalleled availability and enhanced
privacy, making it particularly suitable for sensitive
applications in remote or secure environments, (iv)
the P2PLLMEdge framework supports heterogeneous
devices and dynamic workload allocation, enabling
its deployment across diverse domains, including IoT
networks and real-time analytics, (v) our proposed
study moves beyond theoretical discussions, presenting
a fully operational framework with robust experimental
results.

3. Tools and Methodology
3.1. Tools Used

• Ollama

The Ollama API offers a comprehensive suite of
tools for managing and interacting with machine

learning models. Its robust functionality allows
users to generate text completions and chat
responses, create and manage models, and gen-
erate embeddings for various applications [25].
The API supports advanced features such as struc-
tured outputs, multimodal inputs with base64-
encoded images, and fine-tuning parameters like
temperature and token penalties. Ollama?s flex-
ible endpoints include model creation, quanti-
zation, and management, enabling users to cus-
tomize models to specific needs. It also facil-
itates easy integration by providing tools to
load, unload, copy, and delete models [26]. For
distributed applications, features like streaming
responses and context preservation enhance real-
time interactions, while options for structured
JSON outputs ensure seamless integration into
diverse systems. The API also supports quantiza-
tion levels for efficient model deployment, saving
computational resources while maintaining per-
formance. The ability to list local and running
models, inspect their details, and pull or push
models to/from repositories makes Ollama a ver-
satile tool for machine learning workflows. In this
study, Ollama plays important role to allow user
to interact localized LLMs loaded on edge devices.

• LLMs

The study leverages the unique capabilities of
two distinct edge devices, each configured with
specific LLMs to evaluate their performance
and integration within the P2P network. These
models empower Peer2 to perform advanced
computations and augment responses initiated
by Peer1. The diverse set of LLMs facilitates a
comprehensive evaluation of resource utilization
and response quality across varying hardware and
model capabilities (see Table 2):

– Peer1 Side LLMs: As a resource-constrained
edge device, Peer1 is optimized to run quan-
tized LLMs to accommodate its limited com-
putational resources. The models deployed
on Peer1 include:

∗ Qwen2.5:0.5b-instruct: A lightweight
model with 494 million parameters and
Q4_K_M quantization, optimized for
basic instructional tasks with a mem-
ory footprint of 398 MB, ensuring effi-
ciency in resource-constrained environ-
ments [27].
∗ Smollm2:360m-instruct-q8_0: A mod-

erately sized model with 362 million
parameters, employing Q8_0 quantiza-
tion [28]. With a compact size of 386 MB,

4
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

Table 1. Comparison of Proposed Framework with Related Works

Framework Peer-to-Peer
Architecture

Device
Compatibility

Optimization
Techniques

Performance Gains

Friha et al.
(2024)

Low General edge sys-
tems

Survey of optimiza-
tion techniques

Not performance-
specific

Gao et al. (2023) Negligible Conceptual design Limited optimization
discussed

Theoretical
framework

Karanjai & Shi
(2024)

Low WASM-based
deployments

Blockchain for task
allocation

Portability but limited
NLP-specific results

He et al. (2024) Negligible Mobile devices Active inference
methods

Better adaptability to
dynamic loads

Hasan et al.
(2024)

Low Resource-
constrained edge
devices

Adaptive ML, real-
time threat detection

Improved threat
detection accuracy

Olshansky et al.
(2024)

Low API-driven edge
compatibility

Decentralized cost
modeling

Enhanced economic
scalability

Chen et al.
(2024)

Negligible Edge networks Survey of SLMs for
edge devices

Foundational analysis

Ale et al. (2024) Negligible Mobile edge
devices

Intelligent mobile
edge computing

Reduced latency and
energy use

Bhardwaj et al.
(2024)

Negligible General edge envi-
ronments

Optimization of LLM
deployments

Foundational survey

Soltoggio et al.
(2024)

Low Decentralized edge
environments

Incremental learning
algorithms

Potential for diverse
knowledge extension

P2PLLMEdge
(Ours)

Full Raspberry Pi,
laptops, mobile
devices

Model quantization,
active inference,
decentralized
scheduling

Significant reduction
in latency and energy
usage

Table 2. Comparison of Various LLMs

LLM Model Architecture Params Quant Size License
Qwen2.5:0.5b-instruct Qwen2 494M Q4_K_M 398MB Apache 2.0
Smollm2:360m-instruct-q8_0 Llama 362M Q8_0 386MB Apache 2.0
Granite3.1-moe GraniteMOE 3.3B Q4_K_M 2.0GB Apache 2.0
Llama3.2:1b Llama 1.24B Q8_0 1.3GB Llama Comm.
Qwen2.5:1.5b Qwen2 1.54B Q4_K_M 986MB Apache 2.0
Smollm2:1.7b Llama 1.71B Q8_0 1.8GB Apache 2.0

it is designed for delivering low-latency
responses, ideal for real-time applica-
tions.

– Peer2 Side LLMs: Peer2 operates as a CPU-
only edge device, leveraging its higher com-
putational power to run more sophisticated
LLMs. The models utilized on Peer2 include:

∗ Granite3.1-MoE: A sophisticated
mixture-of-experts model with 3.3
billion parameters and Q4_K_M
quantization, requiring 2.0 GB of
memory. This model provides dynamic
and context-sensitive responses for
complex and high-level tasks [29].

∗ Llama3.2:1b: A robust and scalable
model with 1.24 billion parameters and
Q8_0 quantization, with a size of 1.3
GB. It is engineered for a wide range
of general-purpose language processing
tasks, ensuring reliable performance
across diverse scenarios [30].

∗ Qwen2.5:1.5b: A larger variant of the
Qwen series with 1.54 billion parameters
and Q4_K_M quantization, featuring a
memory size of 986 MB. This model
is optimized for nuanced conversational
tasks requiring enhanced contextual
understanding [31].

5
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

∗ Smollm2:1.7b: A powerful model with
1.71 billion parameters, utilizing Q8_0
quantization and a memory footprint of
1.8 GB. It excels in handling detailed
queries and multi-turn dialogue process-
ing, making it suitable for advanced con-
versational AI systems [32].

• Web Frameworks

This study leverages two distinct web frame-
works: Flask and FastAPI.

– Flask is a lightweight web framework written
in Python, categorized as a microframework
due to its minimalistic nature and lack
of mandatory dependencies or tools [33].
Unlike larger frameworks, Flask does not
include built-in features such as database
abstraction layers or form validation, instead
relying on third-party libraries to fulfill these
roles. However, Flask is highly extensible,
allowing developers to integrate additional
functionalities seamlessly via extensions.
These extensions provide capabilities such as
object-relational mapping, form validation,
file upload handling, open authentication
protocols, and other commonly required
tools, effectively expanding Flask?s scope
while preserving its lightweight core design.

– FastAPI is a high-performance web frame-
work designed for building HTTP-based
APIs in Python 3.8 and newer versions. It
leverages Pydantic and type hints for data
validation, serialization, and deserialization,
ensuring efficient and accurate schema man-
agement. A standout feature of FastAPI is its
ability to automatically generate OpenAPI-
compliant documentation, streamlining the
development and documentation process for
APIs [34]. FastAPI has quickly become pop-
ular for its ease of use, modern design, and
ability to support asynchronous program-
ming, making it an ideal choice for building
scalable, robust web services. Table 3 repre-
sents the comparison of Flask and FastAPI
web-server applications.

• Common Tools

The study employs two common tools to bridge
the communication between Peer1 and Peer2:

– Requests Package: This Python library is
central to enabling HTTP communication
between the peers. It simplifies the process
of sending and receiving data, allowing for

seamless message exchange and rapid testing
of the network’s functionality. The library’s
flexibility supports both synchronous and
asynchronous request handling, making it
suitable for both Flask and FastAPI-based
implementations.

– Pydantic Package: Pydantic is utilized to
ensure data validation and integrity dur-
ing exchanges. By leveraging Python’s type
annotations, Pydantic provides a robust
framework for structuring and validating the
data transmitted between Peer1 and Peer2,
reducing errors and enhancing reliability in
the communication process. Its integration
into FastAPI further accelerates develop-
ment by automating the validation of HTTP
payloads.

3.2. Proposed P2PLLMEdge Framework
The P2PLLMEdge framework embodies a sophisti-
cated, decentralized architecture meticulously designed
to facilitate peer-to-peer interaction among localized
LLMs in resource-constrained edge environments (Fig-
ure 1). By leveraging RESTful API communication
protocols, this framework enables peers to seamlessly
exchange JSON-encoded prompts and responses, effec-
tively distributing computational workloads associated
with natural language processing (NLP) tasks. To facil-
itate seamless, lightweight communication between
peers, P2PLLMEdge employs a RESTful HTTP/JSON
interface rather than gRPC or raw socket protocols. This
approach capitalizes on the native HTTP support in
both Flask and FastAPI, minimizing external depen-
dencies and enabling direct integration with Ollama’s
REST endpoints. The use of simple JSON payloads
allows for rapid development, straightforward debug-
ging with standard web tools, and broad compatibil-
ity across heterogeneous, Python-based edge environ-
ments. In contrast, gRPC introduces additional binary
dependencies and schema compilation steps, while
raw socket implementations require manual handling
of message framing, serialization, and error recovery.
By choosing REST/JSON, we achieve a clear, main-
tainable communication layer ideally suited to CPU-
only, resource-constrained edge devices. Each peer is
provisioned with carefully selected LLMs, tailored to
their respective operational roles, thereby achieving
compatibility and computational efficiency despite the
inherent limitations of edge hardware. This architec-
ture strategically mitigates the challenges posed by
resource constraints while preserving the robustness
and reliability of text-processing capabilities, ensuring
the deployment of advanced AI functionalities within
environments traditionally unsuitable for such opera-
tions.

6
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

Table 3. Technical Comparison Between Flask and FastAPI

Aspect Flask FastAPI
Performance Moderate, single-threaded High, async and optimized
Async Support Limited, extensions required Built-in, native async support
Concurrency WSGI, blocking requests ASGI, non-blocking requests
Data Validation Third-party libraries like Marshmallow Built-in with Pydantic
Type Hints Optional, not enforced Strongly encouraged for better clarity
Error Handling Basic support, manual configurations Detailed, automatic JSON responses
API Speed Moderate due to blocking I/O Fast, optimized for high-speed APIs
Scalability Requires additional tools (e.g., Gunicorn) Designed for scalable systems
Framework Model Microframework Full-featured framework
OpenAPI Support Extensions required Automatic OpenAPI generation

Figure 1. P2PLLMEdge framework.

Peer 1, serving as the designated text generation
node, operates on a Raspberry Pi platform powered by
a quad-core Cortex-A72 SoC. This node employs Flask
and FastAPI frameworks to establish a RESTful inter-
face, with Uvicorn functioning as the ASGI server for
managing asynchronous interactions. Peer 1 integrates
optimized LLMs such as ‘smolm2:360m-instruct-q8_0‘
and ‘qwen2.5:0.5b-instruct‘, which utilize advanced
quantization techniques to minimize memory usage
without compromising performance. The ability of
these LLMs to dynamically adapt to incoming prompts
ensures high levels of responsiveness while maintain-
ing the integrity of generated text. Peer 1 exemplifies
the framework’s commitment to leveraging lightweight
computational nodes to handle complex generative
tasks effectively, emphasizing modularity and adapt-
ability in real-time operations.

In contrast, Peer 2 is dedicated to text summarization
and is hosted on an Intel Core i5-6200U CPU with
8GB RAM, running the Ubuntu 24.04.1 LTS operating
system. This node incorporates a more computation-
ally intensive LLM stack, including ‘llama3.2:1b‘ and
‘granite3.1-moe:1b‘, which are designed for nuanced
contextual analysis and fine-grained text summariza-
tion. The synergy of these models enables Peer 2 to
condense large volumes of generated text into concise
summaries without sacrificing semantic accuracy or
contextual depth. Peer 2’s architecture not only pro-
vides a computationally robust platform for summa-
rization but also highlights the framework’s capacity
to integrate diverse LLM configurations optimized for
specialized tasks. This cooperative architecture ensures
a seamless workflow where text generated by Peer 1 is

efficiently processed and refined by Peer 2, demonstrat-
ing the framework’s operational cohesion and scalabil-
ity.

The P2PLLMEdge framework underscores criti-
cal advancements in decentralized computational
paradigms, resource optimization strategies, and scal-
ability. By distributing NLP workloads across peers,
the framework ensures that even resource-constrained
edge devices can execute complex AI-driven tasks with-
out exceeding their computational capacities. This is
achieved through a combination of lightweight proto-
cols, model quantization, and tailored configurations
that maximize performance while minimizing over-
head. The RESTful API design guarantees seamless
interoperability across heterogeneous systems, enhanc-
ing the framework’s adaptability to diverse applica-
tion scenarios and enabling its integration into existing
distributed systems. The framework’s modular nature
also facilitates the addition of new peers, expanding
its capacity to handle increasingly complex NLP work-
loads.

This proposed framework (see Figure 2) represents
a significant leap forward in deploying decentralized,
resource-efficient AI solutions, addressing the evolving
demands of distributed edge computing environments.
It demonstrates that robust NLP capabilities can be
achieved without centralized computational infrastruc-
tures, thereby paving the way for widespread adop-
tion in scenarios such as IoT networks, smart cities,
and remote monitoring systems. By bridging the gap
between high computational requirements and lim-
ited edge resources, the P2PLLMEdge framework posi-
tions itself as a scalable, resilient, and forward-looking

7
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

solution that aligns with the future of distributed AI
systems. Its contributions to the field underscore the
importance of innovation in enabling edge devices to
transcend their traditional limitations, setting a new
benchmark for decentralized AI deployment.

3.3. Configuring P2P Edge Network for Ollama
The methodology for configuring a P2P network using
the Ollama service is designed to address the archi-
tectural and computational differences between the
two devices while ensuring seamless communication.
Peer1, the Raspberry Pi 4B, functions as a resource-
constrained edge device optimized for preprocessing
and lightweight tasks, reflecting the typical limita-
tions of edge computing environments with constrained
memory and processing power. On the other hand,
Peer2, the Ubuntu laptop, serves as a CPU-only edge
device, leveraging its higher computational resources
for intensive tasks such as advanced LLM processing
despite the absence of GPU acceleration. This pairing
showcases the complementary strengths of a resource-
limited device and a CPU-centric computational node
in a distributed AI workflow. The configuration process
includes binding the Ollama service to 0.0.0.0, a critical
step that ensures the service listens on all network inter-
faces of the host device. This binding process enables
both devices to communicate across diverse network
topologies without manual specification of individual
IP addresses, simplifying the discovery and connectiv-
ity phases.

The configuration relies on the systemctl utility, a
core component of the Linux systemd suite, to manage
and control the Ollama service effectively. Systemctl
facilitates service lifecycle operations, including the
reloading of configurations and restarting of processes,
ensuring that binding changes take immediate effect. By
binding to 0.0.0.0, the service ensures comprehensive
network accessibility, allowing devices within the same
network to establish communication without additional
routing or addressing configurations. This utility,
in conjunction with the 0.0.0.0 binding, is integral
to achieving synchronized and reliable operation of
services across the P2P network.

Peer1 manages input and offloads computationally
expensive tasks to Peer2. Once the user submits a
prompt to Peer1, the device preprocesses the data
resulting to generation of text and initiates commu-
nication with Peer2, which uses the generated text
from Peer1 as input and performs text summarization.
The summarized texts are transmitted back to Peer1,
maintaining low-latency interactions. This architecture
exemplifies resource-efficient distributed processing in
decentralized edge-AI systems. The steps for configura-
tion are outlined as follows:

3.4. Configuration for Peer1: Raspberry Pi 4B
The objective behind setting up the Raspberry Pi 4B as
a network-accessible edge-node enables the capability
of handling user input and initial processing, while
mitigating the limitations of its resource.

• Step 1: Directory Setup

To prepare the environment for service modifica-
tion, the required directory structure is created
using:

sudo mkdir -p /etc/systemd/system/ollama.service.d

• Step 2: Modify Override File

This step involves creating and editing the
override configuration file. The configuration
binds the Ollama service to all network interfaces,
ensuring accessibility:

/sudo nano /etc/systemd/system/ol-
lama.service.d/override.conf

Content of the file:

[Service]
Environment="OLLAMA_HOST=0.0.0.0"

• Step 3: Reload System Daemon

The systemd configuration is reloaded to incorpo-
rate the changes using:

sudo systemctl daemon-reload

• Step 4: Restart Ollama Service

Restarting the service applies the new settings,
making the node network-ready:

sudo systemctl restart ollama

3.5. Configuration Peer2: Ubuntu Laptop CPU Only
It enables the Ubuntu laptop CPU only to function as a
higher-performance computational peer, complement-
ing Peer1 by handling resource-intensive tasks.

• Step 1: Directory Setup

If necessary, create the directory structure for
systemd overrides:

sudo mkdir -p /etc/systemd/system/ollama.service.d

• Step 2: Modify Override File

Configure the service to bind to all network
interfaces by editing the override file:

sudo gedit /etc/systemd/system/ol-
lama.service.d/override.conf

Content of the file:

[Service]
Environment="OLLAMA_HOST=0.0.0.0"

8
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

Figure 2. Peer-to-Peer configuration.

• Step 3: Reload System Daemon

Reload the systemd configuration to ensure
changes take effect:

sudo systemctl daemon-reload

• Step 4: Restart Ollama Service

Restart the service to apply the updated configu-
ration:

sudo systemctl restart ollama

3.6. P2PLLMEdge Algorithm
The P2PLLMEdge algorithm 1 facilitates efficient
interaction between two LLM systems hosted on
separate peers. It begins by receiving a JSON input
containing a user prompt and an optional model
specification. The algorithm first interacts with Peer1’s
LLM to generate a detailed response based on the given
prompt, defaulting to a predefined model if none is
specified. This generated text is then passed to Peer2’s
LLM, which processes it further to produce a concise
summary. Both stages involve API calls that handle
the request and response efficiently. The algorithm also
logs critical metadata, such as processing times, model
details, and results, into a CSV file for tracking and
analysis. The final summary, along with intermediate
results, is returned as a JSON response, ensuring
seamless integration into downstream applications. By
distributing tasks across two peers and leveraging
model-specific capabilities, the algorithm achieves
scalability, modularity, and accuracy in text generation
and summarization.

The complexity of the text generation and summa-
rization algorithm primarily depends on the interac-
tions with the Peer1 and Peer2 APIs. Assuming the

input prompt length is n (characters or tokens), the time
complexity for generating text on Peer1 is O(n), as large
language models (LLMs) typically process prompts in
a linear fashion. Similarly, the summarization process
on Peer2 operates in O(m), where m is the length of
the text generated by Peer1. Consequently, the overall
complexity of the algorithm is O(n + m), dominated by
the larger of n or m. Other operations, such as initial-
izing the CSV file and logging data, are constant O(1)
since they do not scale with the input size. However,
network latency and API response times may introduce
overhead, but these are generally independent of n
and m, provided the underlying models and systems
scale efficiently. Therefore, the algorithm is efficient
and suitable for practical use, assuming the LLMs and
network infrastructure can handle the input size and
concurrent requests.

4. Results and Discussions
This section presents the visualization aware and
hypothesis testing results and their analysis to under-
stand the capability of the proposed P2PLLMEdge
framework. The analysis of the P2PLLMEdge frame-
work involves evaluating key metrics to under-
stand its performance. The total_duration represents
the overall time spent generating a response, while
the load_duration measures the time in nanoseconds
required to load the model. The prompt_eval_count indi-
cates the number of tokens present in the input prompt,
with the prompt_eval_duration capturing the time taken
in nanoseconds to process this input. Similarly, the
eval_count tracks the number of tokens generated in the
response, and the eval_duration quantifies the time in
nanoseconds spent producing these tokens. To assess
the efficiency of token generation, the response speed

9
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

Algorithm 1 P2PLLMEdge: Text Generation and
Summarization
Require: JSON input with fields: prompt (required),

model (optional)
Ensure: Final summarized text from Peer2’s LLM

1: Peer1 API URL: http://<IP>:11434/api/generate
2: Peer2 API URL: http://<IP>:11434/api/generate
3: Initialize CSV file using init_csv()

4: Receive JSON input via Flask endpoint /generate
5: if JSON body is empty or prompt is missing then
6: Return error response with HTTP 400
7: end if
8: Set peer1_model to input model or default

DEFAULT_PEER1_MODEL

9: Call Peer1 API call_peer1_generate(peer1_model,
user_prompt) via Peer1 API URL

10: if Peer1 call fails then
11: Log error details
12: Return error response to client
13: end if
14: Store generated text from Peer1 in peer1_response

15: Call Peer2 API call_peer2_operations(DEFAULT

_PEER2_MODEL, peer1_response) via Peer2 API
URL

16: if Peer2 call fails then
17: Log error details
18: Return error response to client
19: end if
20: Store summarized text from Peer2 in

peer2_response

21: Merge results into a dictionary for CSV logging
22: Call append_to_csv() to log data
23: Return final summary and intermediate results as

JSON response

is calculated in tokens per second (token/s) using the for-
mula eval_count/eval_duration * 109, offering insights
into the framework’s throughput and responsiveness.

4.1. Web Server Wise Analysis
This study evaluates the performance of Peer 1
(Raspberry Pi 4B) and Peer 2 (Ubuntu Laptop) across
various metrics using three server setups: FastAPI,
Web Server, and Flask (Figure 3). The analysis reveals
distinct performance characteristics and efficiency
patterns across the configurations. The comparative
evaluation of Peer 1 (Raspberry Pi 4B) and Peer
2 (Ubuntu Laptop) across FastAPI and Flask web
server configurations demonstrates distinct strengths
and performance trade-offs. In terms of total duration,
Peer 2 outperformed Peer 1 by approximately 45.7%
in the FastAPI configuration (25.45 ns × 109 vs. 46.87
ns × 109) and 43.1% in the Flask configuration (23.36
ns × 109 vs. 41.05 ns × 109). Conversely, Peer 1

exhibited superior load duration efficiency, achieving a
remarkable 85.1% reduction in FastAPI (0.18 ns × 109

vs. 1.21 ns × 109) and a 37.6% reduction in Flask (0.53
ns × 109 vs. 0.85 ns × 109). These results indicate Peer
1’s advantage in server initialization tasks, particularly
with FastAPI.

For prompt evaluation metrics, Peer 2 demonstrated
vastly superior capacity, processing approximately 10
times more prompts than Peer 1. Specifically, Peer
2 handled 403.68 prompts in FastAPI compared to
Peer 1’s 40.40 prompts, and 355.43 prompts in Flask
compared to Peer 1’s 40.40 prompts. However, Peer
1 excelled in prompt evaluation duration, with a
94.3% faster execution in FastAPI (0.83 ns × 109

vs. 14.70 ns × 109) and a 91.9% reduction in Flask
(0.92 ns × 109 vs. 11.41 ns × 109). Similarly, Peer 1
achieved faster evaluation durations, with reductions
of 79.2% in FastAPI (9.54 ns × 109 vs. 45.85 ns ×
109) and 71.9% in Flask (11.10 ns × 109 vs. 39.59 ns
× 109). Peer 2 excelled in throughput-related metrics,
processing tokens at a rate 42.8% higher than Peer 1 in
FastAPI (11.08 tokens/second vs. 7.79 tokens/second)
and 66.1% higher in Flask (13.04 tokens/second vs. 7.85
tokens/second). Peer 2 also reduced network duration
by 44.9% in FastAPI (25.83 ns × 109 vs. 46.92 ns × 109)
and 42.3% in Flask (23.72 ns × 109 vs. 41.15 ns × 109).
Flask marginally outperformed FastAPI for both peers
in several metrics, highlighting its compatibility with
the workloads under evaluation.

Peer 2 is the preferred choice for tasks requiring
high throughput and computational intensity, making
it ideal for large-scale operations. Conversely, Peer 1’s
low latency and faster initialization times render it
suitable for lightweight or time-critical applications.
The analysis underscores the trade-offs between
computational power and efficiency, offering valuable
insights into optimizing resource allocation and
server configuration based on specific application
requirements.

4.2. Prompt Type Wise Analysis
The comparative evaluation of Peer 1 and Peer 2 across
various prompt types?Comparative, Creative, Explana-
tion, Logical, and Numerical?provides insights into per-
formance variations based on workload characteristics
(Figure 4).

Peer 2 consistently outperforms Peer 1 in total
duration across all prompt types. For example, in the
Comparative prompt type, Peer 2 completes tasks in
38.00 ns × 109, a 44.7% reduction compared to Peer 1’s
68.71 ns × 109. Similarly, for Logical prompts, Peer 2
achieves a duration of 15.87 ns × 109, which is 43.7%
faster than Peer 1’s 28.18 ns × 109. Numerical prompts
also show Peer 2’s advantage, completing in 13.08 ns ×
109, a 24.3% improvement over Peer 1’s 17.29 ns × 109.

10
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

(a) Total Duration (b) Load Duration

(c) Prompt Eval Count (d) Prompt Eval Duration

(e) Eval Count (f) Eval Duration

(g) Tokens by Second (h) Network Duration

Figure 3. Visualization of various metrics by web server

11
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

In terms of load duration, Peer 1 exhibits a significant
advantage in Explanation prompts, requiring only 1.57
ns × 109, while Peer 2 takes 4.98 ns × 109, a 68.5%
longer duration. For all other prompt types, the load
duration differences are negligible, with both peers
averaging around 0.05 ns × 109.

The prompt evaluation count clearly highlights Peer
2’s superior throughput capacity. In the Comparative
prompt type, Peer 2 handles 563.69 evaluations,
a 1326% increase over Peer 1’s 39.50 evaluations.
For Numerical prompts, Peer 2 processes 174.25
evaluations, compared to Peer 1’s 51.50 evaluations,
marking a 238% improvement. Peer 2’s capability to
handle a larger number of evaluations demonstrates
its computational superiority for high-throughput
tasks. Regarding prompt evaluation duration, Peer
1 demonstrates remarkable efficiency. In Creative
prompts, Peer 1 achieves 0.72 ns × 109, compared
to Peer 2’s 18.93 ns × 109, a 96.2% faster execution.
Logical prompts similarly favor Peer 1, with durations
of 0.65 ns × 109 versus Peer 2’s 8.38 ns × 109,
reflecting a 92.2% reduction. The evaluation count
favors Peer 2 across all prompt types. For Comparative
prompts, Peer 2 processes 516.56 evaluations, a 237%
increase compared to Peer 1’s 153.06 evaluations.
Numerical prompts show Peer 2’s strength as well,
processing 128.69 evaluations, a 67% improvement
over Peer 1’s 76.56 evaluations. The evaluation
duration analysis demonstrates Peer 2’s consistent
efficiency over Peer 1 across all prompt types. For
Comparative prompts, Peer 2 achieves 18.09 ns ×
109, representing a 73.4% reduction compared to
Peer 1’s 67.93 ns × 109. In Creative prompts, Peer
2 achieves a duration of 10.37 ns × 109, a 83.8%
improvement over Peer 1’s 64.01 ns × 109. Explanation,
Logical, and Numerical prompts show Peer 2 reducing
durations by 72.8%, 72.9%, and 50.3%, respectively.
These results confirm Peer 2’s superior capability
in handling evaluation tasks efficiently across all
prompt types. Finally, in terms of token rate, Peer 2
consistently achieves higher throughput. For Logical
prompts, Peer 2 processes 12.35 tokens/second, a
56% improvement over Peer 1’s 7.92 tokens/second.
Numerical prompts exhibit a similar trend, with Peer
2 achieving 12.58 tokens/second, compared to Peer 1’s
8.07 tokens/second, marking a 56% increase.

The comparison of network duration across various
prompt types reveals significant differences between
Peer 1 and Peer 2, with Peer 2 consistently demonstrat-
ing lower durations. For Comparative prompts, Peer 1
records a network duration of 68.73 ns × 109, whereas
Peer 2 achieves 38.22 ns × 109, representing a 44.4%
improvement. Similarly, for Creative prompts, Peer 1
requires 64.81 ns × 109, while Peer 2 completes the task
in 29.60 ns × 109, a 54.3% faster execution. Explanation
prompts further highlight Peer 2’s efficiency, with a

duration of 26.66 ns × 109 compared to Peer 1’s 41.14 ns
× 109, marking a 35.2% reduction. For Logical prompts,
Peer 2 reduces the duration to 16.09 ns × 109, a 42.9%
improvement over Peer 1’s 28.20 ns × 109. Finally,
for Numerical prompts, Peer 2 achieves a duration of
13.32 ns × 109, a 23.1% reduction compared to Peer
1’s 17.31 ns × 109. These results demonstrate Peer
2’s superior efficiency in network-related operations,
particularly for creative and logical prompts, making
it more suitable for tasks demanding high-performance
network handling. Peer 1’s longer durations suggest its
use in less time-sensitive applications, emphasizing the
importance of selecting appropriate hardware based on
workload characteristics.

4.3. Peer1 LLM Wise Analysis
This section provides an analysis of Peer 1’s
performance metrics for the LLMs ‘qwen2.5:0.5b-
instruct‘ and ‘smolm2:360m-instruct-q8_0‘ across
various aspects (Figure 5). The total duration for
‘qwen2.5:0.5b-instruct‘ is 47.33 ns × 109, which is
16.6% higher than ‘smolm2:360m-instruct-q8_0‘,
which records a total duration of 40.59 ns × 109.
This indicates that ‘smolm2:360m-instruct-q8_0‘
is more efficient in completing tasks. For load
duration, ‘qwen2.5:0.5b-instruct‘ demonstrates better
performance with 0.28 ns × 109, which is 34.9% faster
compared to ‘smolm2:360m-instruct-q8_0‘ at 0.43
ns × 109. This suggests a more optimized loading
mechanism for ‘qwen2.5:0.5b-instruct‘. In terms of
prompt evaluation count, ‘smolm2:360m-instruct-
q8_0‘ slightly outperforms ‘qwen2.5:0.5b-instruct‘
with 40.80 prompts compared to 40.00 prompts.
The difference is minimal, indicating comparable
throughput capacities for both models. ‘smolm2:360m-
instruct-q8_0‘ outperforms in prompt evaluation
duration with 0.76 ns × 109, which is 23.2% faster
than ‘qwen2.5:0.5b-instruct‘ at 0.99 ns × 109. This
demonstrates a significant efficiency advantage in
evaluating prompts.

The evaluation count metric shows ‘qwen2.5:0.5b-
instruct‘ achieving 364.98 evaluations, which is
24.1% higher than ‘smolm2:360m-instruct-q8_0‘ at
294.18 evaluations. This indicates that ‘qwen2.5:0.5b-
instruct‘ handles a greater number of evaluations
within the given duration. For evaluation duration,
‘smolm2:360m-instruct-q8_0‘ records 39.39 ns × 109,
making it 14.5% faster than ‘qwen2.5:0.5b-instruct‘
at 46.05 ns × 109. This highlights ‘smolm2:360m-
instruct-q8_0‘’s ability to complete evaluations
more efficiently. The token rate for ‘qwen2.5:0.5b-
instruct‘ is 8.03 tokens/second, slightly surpassing
‘smolm2:360m-instruct-q8_0‘ at 7.61 tokens/second
by 5.5%. This demonstrates a marginal advantage for
‘qwen2.5:0.5b-instruct‘ in token processing speed.

12
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

(a) Total Duration (b) Load Duration

(c) Prompt Eval Count (d) Prompt Eval Duration

(e) Eval Count (f) Eval Duration

(g) Tokens by Second (h) Network Duration

Figure 4. Visualization of various metrics by prompt types

13
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

(a) Total Duration (b) Load Duration

(c) Prompt Eval Count (d) Prompt Eval Duration

(e) Eval Count (f) Eval Duration

(g) Tokens by Second (h) Network Duration

Figure 5. Visualization of various metrics by peer1 LLMs
14

EAI Endorsed Transactions
on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

Finally, for network duration, ‘smolm2:360m-instruct-
q8_0‘ performs better with 40.63 ns × 109, which is
14.3% faster compared to ‘qwen2.5:0.5b-instruct‘ at
47.44 ns × 109. This indicates ‘smolm2:360m-instruct-
q8_0‘’s efficiency in network-related tasks. Overall,
‘smolm2:360m-instruct-q8_0‘ demonstrates superior
performance in terms of total duration, evaluation
duration, prompt evaluation duration, and network
duration. However, ‘qwen2.5:0.5b-instruct‘ excels in
load duration, evaluation count, and token rate. The
choice of LLM should be guided by the specific task
requirements and workload characteristics.

4.4. Peer2 LLM Wise Analysis

The analysis of Peer2’s LLMs performance is conducted
across multiple metrics, as illustrated in the eight
charts provided (Figure 6). Each chart compares
the performance of four LLMs: Granite3.1-moe:1b,
Llama3.2:1b, Qwen2.5:1.5b, and Smolm2:1.7b, on the
Ubuntu Laptop environment. The total duration for
processing demonstrates that Granite3.1-moe:1b is the
most efficient with a duration of 13.98 ns × 109,
followed by Llama3.2:1b at 16.89 ns × 109 and
Qwen2.5:1.5b at 26.46 ns × 109. Smolm2:1.7b is the
least efficient with a duration of 40.29 ns × 109.
This highlights the efficiency of smaller models in
computational performance. Load duration analysis
shows that Granite3.1-moe:1b requires the least time
at 0.75 ns × 109. Llama3.2:1b and Qwen2.5:1.5b follow
with durations of 1.08 ns × 109 and 0.85 ns ×
109, respectively. Smolm2:1.7b has the highest load
duration of 1.44 ns × 109, which indicates a trade-
off in larger model initialization. Granite3.1-moe:1b
outperforms the other LLMs with a count of 423.95,
while Smolm2:1.7b achieves 400.60. Qwen2.5:1.5b
and Llama3.2:1b achieve 366.35 and 327.30 counts,
respectively. This reflects the capability of models to
handle higher workloads effectively.

The evaluation duration is lowest for Granite3.1-
moe:1b at 8.08 ns × 109, closely followed by
Llama3.2:1b at 8.36 ns. Qwen2.5:1.5b and Smolm2:1.7b
exhibit higher durations of 18.03 ns × 109 and 17.74
ns × 109, respectively, suggesting more computation-
intensive processes. Granite3.1-moe:1b achieves the
highest evaluation count of 108.40, with Smolm2:1.7b
following at 136.50. Llama3.2:1b and Qwen2.5:1.5b
demonstrate moderate counts of 69.90 and 77.55,
respectively, revealing variations in task throughput.
The evaluation duration for Granite3.1-moe:1b is 5.15
ns × 109, making it the fastest model. Llama3.2:1b
and Qwen2.5:1.5b exhibit durations of 7.44 ns × 109

and 7.57 ns × 109, while Smolm2:1.7b has the highest

duration of 21.11 ns × 109, indicating higher com-
putational requirements. Token processing rates high-
light Granite3.1-moe:1b as the fastest with 21.77 token-
s/second. Qwen2.5:1.5b follows at 10.30 tokens/sec-
ond, with Llama3.2:1b achieving 9.46 tokens/second.
Smolm2:1.7b demonstrates the lowest token rate of 6.72
tokens/second, reflecting its larger architecture. Finally,
the network duration is lowest for Granite3.1-moe:1b
at 14.30 ns × 109. Llama3.2:1b, Qwen2.5:1.5b, and
Smolm2:1.7b exhibit progressively higher durations of
17.34 ns × 109, 26.90 ns × 109, and 40.57 ns × 109,
respectively, indicating the impact of model size on
network communication latency. Overall, Granite3.1-
moe:1b consistently outperforms other LLMs in effi-
ciency metrics, while Smolm2:1.7b shows strengths in
handling more complex tasks but at a higher compu-
tational cost. These findings highlight the trade-offs
between model complexity and performance.

4.5. Prompt Type and Web Server Wise Analysis

This section presents a comparative analysis of various
prompt types across two different web server envi-
ronments: Peer1: Raspberry Pi 4B and Peer2: Ubuntu
Laptop. The results, illustrated in Figures 7, pro-
vide insights into execution time, evaluation efficiency,
throughput, and network latency. The Ubuntu Lap-
top consistently demonstrates lower execution times
compared to the Raspberry Pi 4B, with the difference
being more pronounced for computationally intensive
prompts. The Total Duration (Figure 7a) highlights
the overall execution time, with the Ubuntu Laptop
consistently performing faster than the Raspberry Pi
4B. The Load Duration (Figure 7b) shows the time taken
for initializing execution, where the Raspberry Pi 4B
experiences significantly higher overhead compared to
the Ubuntu Laptop. The Prompt Evaluation Count (Fig-
ure 7c) represents the number of evaluations completed
for different prompt types. The Ubuntu Laptop handles
a higher number of evaluations, whereas the Raspberry
Pi 4B processes fewer due to computational limitations.
The Prompt Evaluation Duration (Figure 7d) further
illustrates this efficiency gap, with the Raspberry Pi 4B
taking considerably longer to process each evaluation
compared to the Ubuntu Laptop. The Evaluation Count
(Figure 7e) and Evaluation Duration (Figure 7f) show
similar trends, where the Ubuntu Laptop consistently
supports more evaluations while requiring significantly
less time per evaluation, reinforcing its computational
advantage. The Tokens per Second metric (Figure 7g)
evaluates the processing speed in terms of token gen-
eration, with the Ubuntu Laptop achieving a notably
higher token throughput compared to the Raspberry
Pi 4B. The Network Duration (Figure 7h) indicates the
latency in data transmission, where the Raspberry Pi

15
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

(a) Total Duration (b) Load Duration

(c) Prompt Eval Count (d) Prompt Eval Duration

(e) Eval Count (f) Eval Duration

(g) Tokens by Second (h) Network Duration

Figure 6. Visualization of various metrics by peer2 LLMs
16

EAI Endorsed Transactions
on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

4B exhibits significantly higher network delays, fur-
ther limiting its feasibility for real-time applications.
The Ubuntu Laptop consistently outperforms the Rasp-
berry Pi 4B across all execution time and evaluation
metrics. Prompt evaluation efficiency is constrained
on the Raspberry Pi 4B, leading to fewer evaluations
and longer processing times. Token throughput is sig-
nificantly higher on the Ubuntu Laptop, making it
more suitable for high-speed text generation. Network
latency is considerably lower on the Ubuntu Laptop,
which is beneficial for real-time applications. These
findings underscore the trade-offs between deploying
LLM-based applications on edge devices versus more
powerful server hardware. Future optimizations could
explore load balancing techniques, caching strategies,
and hardware acceleration to enhance the feasibility of
Raspberry Pi 4B for lightweight deployments.

4.6. Correlation Matrix

The analysis of the P2P interaction within the local-
ized LLM framework highlights the interdependencies
between metrics of peer1 and peer2 during sequential
task processing. Peer1 generates text output, which
is subsequently utilized by peer2 for summarization.
From the correlation matrix (Figure 8), we observe
a strong positive correlation (r > 0.9) between the
total duration metrics of peer1 and peer2, suggest-
ing that the generation and summarization stages are
temporally linked. This indicates that any delay or
performance optimization in peer1’s text generation
directly affects peer2’s summarization process, making
it crucial to balance both operations for effective real-
time performance. A deeper inspection reveals that
peer1’s token-per-second metric exhibits a moderate
negative correlation (r = −0.57) with its total duration,
reflecting a trade-off between throughput and response
latency. This trade-off implies that as peer1 processes
tokens faster, the total duration required for generating
responses decreases, improving its efficiency. However,
it also points to potential bottlenecks that could arise
if the system is optimized purely for speed without
considering the quality or structure of the generated
text. The prompt evaluation count of peer1 and peer2
is highly correlated (r ≈ 0.99), indicating consistency
in token usage between generation and summarization
tasks. This high correlation suggests that peer2 effec-
tively utilizes the tokens produced by peer1, ensur-
ing minimal loss or redundant processing in the sum-
marization phase. Similarly, the evaluation duration
for peer2 shows a significant positive correlation (r =
0.85) with its token-per-second metric, reinforcing the
efficiency of token processing during summarization.
This observation underscores the capability of peer2

to handle high-throughput scenarios without compro-
mising its summarization quality or speed. Interest-
ingly, the load duration of peer1 and peer2 exhibits a
weak correlation (r = 0.28), which may be attributed to
independent model initialization or caching strategies
employed by each peer. This weak dependency suggests
that each peer operates semi-autonomously in terms of
model loading, allowing for flexibility and scalability
in distributed environments. Moreover, the network
duration (r ≈ 0.61) demonstrates a notable correlation
between peers, signifying consistent communication
overheads during data exchange. This consistency in
network communication ensures reliable data transfer
between peers, which is critical for maintaining syn-
chronization in sequential tasks. These findings collec-
tively highlight the efficiency and interdependency of
the P2PLLMEdge framework in orchestrating peer-to-
peer interactions for real-time localized language pro-
cessing. The framework effectively balances computa-
tion time with throughput, ensuring high-performance
demands are met. By leveraging the strengths of each
peer, the system demonstrates scalability, adaptability,
and robustness in handling complex language process-
ing tasks, making it an ideal solution for decentralized
AI-driven applications.

4.7. Outlier and Distribution

The violin plot presented in Figure 9 provides
a comprehensive visualization of the distribution
and variability of key metrics across peer1 and
peer2 interactions within the P2PLLMEdge framework.
The distributions highlight critical insights into the
temporal and computational dynamics of localized
language processing tasks.

The peer1_total_duration and peer2_total_duration
metrics exhibit broad distributions, indicating substan-
tial variability in the time required for generation
and summarization tasks. This variability underscores
the complex dependencies on task-specific inputs,
computational overheads, and network delays. Such
dependencies suggest that variations in input size
or model complexity can significantly impact pro-
cessing times, necessitating dynamic resource alloca-
tion strategies to mitigate delays. The narrower dis-
tribution of peer1_load_duration suggests that model
loading times are relatively consistent, likely due to
efficient caching and initialization strategies, which
are critical for optimizing response readiness. How-
ever, peer2_load_duration displays a slightly wider
spread, potentially reflecting differences in work-
load balancing or initialization dependencies aris-
ing from peer1 outputs. The peer1_prompt_eval_count

17
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

(a) Total Duration (b) Load Duration

(c) Prompt Eval Count (d) Prompt Eval Duration

(e) Eval Count (f) Eval Duration

(g) Tokens by Second (h) Network Duration

Figure 7. Visualization of various metrics by prompt type and web server

18
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

Figure 8. Correlation matrix.

Figure 9. Outlier detection and distribution.

19
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

and peer2_prompt_eval_count metrics demonstrate dis-
tinct peaks with minimal variance, indicative of con-
sistent token counts during evaluation. This con-
sistency aligns with the high correlation observed
between these metrics, ensuring seamless data flow
between peers. The uniformity in token counts sug-
gests that the input-output token pipeline is robust,
enabling predictable performance across tasks. Con-
versely, the peer1_eval_duration and peer2_eval_duration
metrics reveal longer tails, suggesting occasional out-
liers that significantly impact response times. These
outliers could be attributed to increased token com-
plexity, model attention mechanisms, or tempo-
rary network congestion during summarization. The
peer1_token_per_second metric, characterized by a rel-
atively compact distribution, highlights the efficiency
of token processing during text generation. A sim-
ilar pattern is observed for peer2_token_per_second,
though with a slightly broader spread, likely reflecting
additional computational demands of summarization.
These metrics underline the importance of throughput
optimization to balance speed and accuracy in token
generation. Interestingly, the peer1_network_duration
and peer2_network_duration metrics exhibit overlap-
ping distributions, suggesting consistent and reliable
communication overheads between peers. This con-
sistency is essential for ensuring synchronization and
data integrity in P2P frameworks, where any delay in
communication could cascade into performance bottle-
necks. The overlapping distributions also imply that
the network infrastructure supporting the framework is
robust. Overall, the violin plot illustrates the nuanced
interplay between computational efficiency, network
reliability, and task complexity in the P2PLLMEdge
framework. The observed distributions and outliers
provide actionable insights into potential optimiza-
tion areas, such as minimizing evaluation durations,
improving token throughput, and streamlining net-
work communication. These findings reinforce the
robustness and scalability of the P2PLLMEdge frame-
work in handling dynamic, decentralized language
processing tasks, making it well-suited for real-world
applications where adaptability and performance are
paramount.

4.8. Hypothesis Testing

One-Way Analysis of Variance (ANOVA)
The one-way ANOVA is used to determine whether

there are statistically significant differences between the
means of three or more independent groups. The test
statistic, F, is calculated as:

F =
MSB
MSW

(1)

where:

MSB =
∑k

i=1 ni(X̄i − X̄)2

k − 1
,

MSW =

∑k
i=1

∑ni
j=1(Xij − X̄i)2

N − k
.

Here:

• k: Number of groups.

• ni : Sample size of the i-th group.

• X̄i : Mean of the i-th group.

• X̄: Overall mean of all observations.

• N : Total number of observations.

• MSB: Mean square between groups (variation due
to group differences).

• MSW: Mean square within groups (variation
within each group).

The F-value is compared to the critical value
from the F-distribution table to determine statistical
significance.

Tukey’s Honest Significant Difference (HSD) Test:
If the ANOVA result is significant, Tukey’s HSD test

is performed for pairwise comparisons. The HSD value
is computed as:

HSD = q ·
√

MSW
n

(2)

where:

• q: Critical value from the Studentized range
distribution for the given degrees of freedom and
number of groups.

• MSW: Mean square within groups (as calculated
in ANOVA).

• n: Number of observations per group (assuming
equal group sizes).

For unequal group sizes, the formula adjusts n to:

n =
2

1
n1

+ 1
n2

(3)

where n1 and n2 are the sizes of the two groups being
compared.

The test compares the absolute mean difference
between each pair of groups to the HSD value. For any
pair, if:

|X̄i − X̄j | > HSD, (4)

then the difference between groups i and j is
considered statistically significant.

20
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

Statistical Analysis of Peer1 Metrics by Prompt Type. The
statistical analysis evaluates the impact of prompt_type
on various performance metrics of Peer1. The null
hypothesis (H0) and the alternative hypothesis (Ha) are
formulated as follows:

• H0: There is no significant difference in the mean
performance metrics of Peer1 across different
prompt_type.

• Ha: At least one prompt_type has a significantly
different mean performance metric compared to
others.

The hypotheses are tested using a one-way ANOVA,
followed by post-hoc Tukey HSD tests when significant
differences are detected. The results of the ANOVA
tests for Peer1 metrics grouped by prompt_type

are summarized in Table 4. Metrics with significant
differences (p < 0.05) are indicated.

Post-hoc Tukey HSD tests were conducted for
metrics with significant ANOVA results (p < 0.05).
Selected comparisons are presented in Table 5 for the
peer1_total_duration metric. Full results for other
metrics are available upon request.

The ANOVA results indicate that all
metrics tested exhibited statistically significant
differences across prompt_type, with p < 0.05. For
peer1_total_duration, the Tukey HSD analysis
revealed that: (i) significant differences exist between
the Comparative prompt type and the Explanation,
Logical, and Numerical prompt types and (ii) similar
significant differences were found between Creative

prompts and other types, except Comparative. For
peer1_load_duration, while significant differences
were observed overall, post-hoc analysis highlighted
specific differences primarily between Explanation

and other types (Creative, Numerical). The analysis of
peer1_prompt_eval_count and peer1_eval_duration

revealed highly significant differences among all
prompt types, suggesting that the nature of the prompt
directly influences the token count and evaluation
time. This analysis confirms that prompt_type has a
substantial effect on the performance metrics of Peer1.
These insights are crucial for optimizing localized LLM
deployments, particularly in resource-constrained edge
environments where task-specific configurations can
significantly enhance performance.

Statistical Analysis of Peer2 Metrics by Prompt Type. The
study conducts the effect of prompt_type on Peer2’s
performance metrics. The hypotheses are defined as
follows:

• H0: There is no significant difference in the mean
performance metrics of Peer2 across different
prompt_type.

• Ha: At least one prompt_type exhibits a signif-
icantly different mean performance metric com-
pared to others.

Table 6 summarizes the results of the ANOVA
tests for Peer2 metrics by prompt_type. Metrics with
significant differences are highlighted.

For metrics with significant ANOVA results, post-hoc
Tukey HSD tests were conducted. Table 7 provides the
pairwise comparisons for peer2_total_duration.

Similarly, the Tukey HSD results for
peer2_load_duration and peer2_prompt_eval_count

showed significant differences between Explanation

and other prompt types. The one-way ANOVA results
indicate crucial observations as mentioned follows.
Significant differences in peer2_total_duration

were observed between Comparative prompts
and both Logical and Numerical prompts.
peer2_load_duration exhibited the most significant
differences (F = 111.873, p = 0.000), with Explanation

prompts differing notably from all others. The
peer2_prompt_eval_count metric also showed
significant variation, with Explanation, Logical, and
Numerical prompts differing from Comparative and
Creative prompts. Metrics such as peer2_eval_count,
peer2_eval_duration, and peer2_token_per_second

did not show significant differences, indicating
consistency in Peer2’s processing capacity for
these metrics across different prompt types.
This analysis demonstrates that prompt_type

influences key performance metrics such as
peer2_total_duration, peer2_load_duration,
and peer2_prompt_eval_count, while others remain
unaffected. These findings are critical for optimizing
task distribution in Peer2’s LLM framework, especially
for load-intensive or token-rich prompts.

Statistical Analysis of Peer1 Metrics. We study the impact
of different web server frameworks (fastapi and
flask) on Peer1’s performance metrics. The hypotheses
are as follows:

• H0: There is no significant difference in the mean
performance metrics of Peer1 across different web
server frameworks.

• Ha: At least one web server framework exhibits
a significantly different mean performance metric
compared to the others.

Table 8 summarizes the results of the ANOVA tests
for Peer1 metrics. Metrics with significant differences
are highlighted.

For metrics with significant ANOVA results, post-
hoc Tukey HSD tests were conducted. The results are
presented in Tables 9 and 10.

Significant differences were observed in
peer1_prompt_eval_duration (F = 10.806, p = 0.002)

21
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

Table 4. ANOVA Results for Peer1 Metrics by prompt_type

Metric F-statistic p-value Significant Difference?
peer1_total_duration 29.992 0.000 Yes
peer1_load_duration 6.332 0.000 Yes
peer1_prompt_eval_count 3266.250 0.000 Yes
peer1_prompt_eval_duration 14.320 0.000 Yes
peer1_eval_count 29.557 0.000 Yes
peer1_eval_duration 30.677 0.000 Yes
peer1_token_per_second 8.123 0.000 Yes
peer1_network_duration 29.931 0.000 Yes

Table 5. Tukey HSD Test Results for peer1_total_duration by prompt_type

Group1 Group2 Mean Difference Significant?
Comparative Creative -3915045883.375 No
Comparative Explanation -27902870708.75 Yes
Comparative Logical -40520788112.25 Yes
Comparative Numerical -51411900707.25 Yes
Creative Explanation -23987824825.375 Yes
Creative Logical -36605742228.875 Yes
Creative Numerical -47496854823.875 Yes
Explanation Logical -12617917403.5 No
Explanation Numerical -23509029998.5 Yes
Logical Numerical -10891112595.0 No

Table 6. ANOVA Results for Peer2 Metrics by prompt_type

Metric F-statistic p-value Significant Difference?
peer2_total_duration 3.978 0.006 Yes
peer2_load_duration 111.873 0.000 Yes
peer2_prompt_eval_count 27.167 0.000 Yes
peer2_prompt_eval_duration 11.147 0.000 Yes
peer2_eval_count 1.847 0.129 No
peer2_eval_duration 1.342 0.262 No
peer2_token_per_second 0.102 0.981 No
peer2_network_duration 4.001 0.005 Yes

Table 7. Tukey HSD Test Results for peer2_total_duration by prompt_type

Group1 Group2 Mean Difference Significant?
Comparative Creative -8642804472.0625 No
Comparative Explanation -12282504079.25 No
Comparative Logical -22130071674.875 Yes
Comparative Numerical -24917155305.5625 Yes
Creative Explanation -3639699607.1875 No
Creative Logical -13487267202.8125 No
Creative Numerical -16274350833.5 No
Explanation Logical -9847567595.625 No
Explanation Numerical -12634651226.3125 No
Logical Numerical -2787083630.6875 No

and peer1_token_per_second (F = 67.372, p = 0.000).
However, post-hoc Tukey HSD tests did not indicate
significant pairwise differences between fastapi

and flask. Metrics such as peer1_total_duration,
peer1_load_duration, and peer1_network_duration

showed no significant differences, suggesting consistent

22
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

Table 8. ANOVA Results for Peer1 Metrics by Web Server Framework

Metric F-statistic p-value Significant Difference?
peer1_total_duration 1.375 0.244 No
peer1_load_duration 0.315 0.576 No
peer1_prompt_eval_count 0.358 0.551 No
peer1_prompt_eval_duration 10.806 0.002 Yes
peer1_eval_count 2.709 0.104 No
peer1_eval_duration 1.327 0.253 No
peer1_token_per_second 67.372 0.000 Yes
peer1_network_duration 1.406 0.239 No

Table 9. Tukey HSD Test Results for peer1_prompt_eval_duration

Group1 Group2 Mean Difference Significant?
fastapi flask 83875000.0 No

Table 10. Tukey HSD Test Results for peer1_token_per_second

Group1 Group2 Mean Difference Significant?
fastapi flask 0.0573 No

performance across web server frameworks for these
metrics. The lack of significant pairwise differences
in Tukey HSD tests for the significant ANOVA results
indicates that while overall variability exists, the
differences between the two web server frameworks are
not substantial. The results suggest that while there are
overall differences in peer1_prompt_eval_duration

and peer1_token_per_second, the specific choice
between fastapi and flask does not lead to significant
performance improvements for Peer1 metrics.

Statistical Analysis of Peer2 Metrics. The present
statistical analysis finds the significance of different
web server frameworks (fastapi and flask) on Peer2’s
performance metrics. The hypotheses are stated as
below:

• H0: There is no significant difference in the mean
performance metrics of Peer2 across different web
server frameworks.

• Ha: At least one web server framework exhibits
a significantly different mean performance metric
compared to the others.

The ANOVA results for Peer2 metrics are summa-
rized in Table 11. Metrics with significant differences
are highlighted.

For metrics with significant ANOVA results, post-
hoc Tukey HSD tests were conducted. The results are
provided in Tables 12, 13, 14, 15, and 16.

The analysis can be be framed as follows. Significant
differences were observed in peer2_total_duration,
peer2_prompt_eval_duration,
peer2_eval_duration, peer2_token_per_second,

and peer2_network_duration. However, post-hoc
Tukey HSD tests did not reveal significant pairwise
differences between fastapi and flask. Metrics such
as peer2_load_duration, peer2_prompt_eval_count,
and peer2_eval_count showed no significant
differences, indicating consistent performance
across web server frameworks for these metrics.
While the ANOVA results highlight some significant
overall variability, the lack of significant Tukey HSD
pairwise differences suggests that the choice between
fastapi and flask has a minimal impact on Peer2’s
performance metrics. The findings suggest that while
there are variations in certain metrics for Peer2, the
choice of web server framework (fastapi or flask)
does not lead to significant differences in practical
performance.

4.9. Limitations and Future Scope

While P2PLLMEdge demonstrates that localized, CPU-
only peers can cooperatively execute LLM workloads,
several limitations remain. First, our current implemen-
tation supports only two peers with statically assigned
roles (generation vs. summarization). In real deploy-
ments, dynamic peer discovery, heterogeneous model
placement, and automated load balancing would be
required to accommodate varying device availability
and task demands. Second, security and authentica-
tion between peers have not been addressed; sensi-
tive environments (e.g., healthcare clinics) will require
encrypted channels and mutual attestation. Third,
energy consumption and thermal characteristics on
battery-powered devices were not evaluated; future

23
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

Table 11. ANOVA Results for Peer2 Metrics by Web Server Framework

Metric F-statistic p-value Significant Difference?
peer2_total_duration 7.313 0.000 Yes
peer2_load_duration 0.395 0.757 No
peer2_prompt_eval_count 0.871 0.460 No
peer2_prompt_eval_duration 9.015 0.000 Yes
peer2_eval_count 2.157 0.100 No
peer2_eval_duration 4.965 0.003 Yes
peer2_token_per_second 372.732 0.000 Yes
peer2_network_duration 7.244 0.000 Yes

Table 12. Tukey HSD Test Results for peer2_total_duration

Group1 Group2 Mean Difference Significant?
fastapi flask -2083343018.125 No

Table 13. Tukey HSD Test Results for peer2_prompt_eval_duration

Group1 Group2 Mean Difference Significant?
fastapi flask -3290225000.0 No

Table 14. Tukey HSD Test Results for peer2_eval_duration

Group1 Group2 Mean Difference Significant?
fastapi flask 1565375000.0 No

Table 15. Tukey HSD Test Results for peer2_token_per_second

Group1 Group2 Mean Difference Significant?
fastapi flask 1.9538 No

Table 16. Tukey HSD Test Results for peer2_network_duration

Group1 Group2 Mean Difference Significant?
fastapi flask -2108524204.275 No

work should profile power usage to inform model-
selection heuristics for truly untethered edge deploy-
ments [37–39].

Looking forward, we envision several extensions and
application scenarios [40–42]:

• Multi-Peer Scaling: In place of our fixed two-
node setup, a peer registry service could track
all active devices, their supported models, and
current load. A lightweight scheduler would then
decompose complex tasks—such as simultaneous
translation, named-entity recognition, and sum-
marization—into subtasks and assign them to
peers best suited by compute capacity and mem-
ory bound. When new devices join (or fail), the
registry updates automatically and redistributes
queued jobs, enabling elastic horizontal scaling
without manual reconfiguration.

• Adaptive Task Scheduling: Beyond static offload-
ing rules, we plan to integrate a telemetry
agent into each peer that periodically reports
CPU utilization, free RAM, local temperature,
and round-trip network latency. A centralized
or gossip-based controller can then use these
metrics to predict which peer will complete a
given prompt fastest, dynamically routing queries
accordingly. Machine-learning models trained on
historical performance traces could further antic-
ipate resource contention and preemptively redis-
tribute tasks to maintain consistent quality-of-
service.

• Secure Edge Collaboration: To protect sensi-
tive data in healthcare or financial settings, all
REST/JSON traffic between peers will be encapsu-
lated in mutual-TLS tunnels, ensuring end-to-end
encryption and peer identity verification. Where

24
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

supported, we will leverage hardware roots of
trust (e.g., TPM chips or ARM TrustZone) to
securely store private keys and attest to the
integrity of the LLM binaries at boot. This com-
bination of network-layer and hardware-backed
security will satisfy regulatory requirements for
patient records or proprietary enterprise data.

• Energy-Efficient Model Selection: Mobile and
IoT deployments must balance performance
against battery life and thermal safety. We intend
to measure per-token energy consumption on
representative devices under varied quantization
settings. Using these measurements, the scheduler
can select smaller, lower-precision models for
background or low-priority tasks, reserving full-
precision variants for interactive sessions. Such
energy-aware policies will prolong device uptime
and reduce cooling requirements in sealed
enclosures.

• Prospective Use Cases:

– Remote Healthcare Assistants: Clinics in areas
with intermittent Internet could deploy
P2PLLMEdge on local workstations and
tablets. Patient intake prompts—symptom
checkers, medication schedules—would be
processed entirely on-site, with sensitive
medical histories never leaving the premises.
In emergencies, local AI can still provide
decision support when cloud connectivity is
unavailable.

– Disaster-Response Summarization: First
responders often lose cellular signal or
suffer bandwidth constraints. A mesh of
ruggedized Raspberry Pis and laptops could
collect field reports, voice transcripts, and
drone imagery, then coordinate to generate
concise situation briefs. This on-the-fly
summarization accelerates decision-making
for command centers without relying on
remote data centers.

– Smart Agriculture Monitoring: Soil sensors
and weather stations dispersed over large
fields can feed data to nearby edge nodes
running lightweight LLMs tuned for agro-
nomic advice. By collaboratively interpreting
moisture trends, pest alerts, and growth fore-
casts, P2PLLMEdge clusters can issue irri-
gation or fertilization advisories even when
satellite links are congested or offline.

– Rural Education Tutors: Community learning
centers often lack reliable connectivity to
online educational platforms. A small cluster
of CPU-only devices running P2PLLMEdge

could host interactive tutors that answer stu-
dents’ questions in local dialects, generate
practice exercises, and provide instant feed-
back—empowering self-paced learning with-
out constant Internet access.

5. Conclusion
The P2PLLMEdge framework represents a pivotal step
in realizing decentralized peer-to-peer communica-
tion among localized LLMs on resource-constrained
edge devices. The results reveal significant efficiency
gains in task execution. Peer1, utilizing lightweight
LLMs like ‘qwen2.5:0.5b-instruct‘ and ‘smolm2:360m-
instruct-q8_0‘, achieved an 85.1% reduction in load
duration with the FastAPI configuration compared to
Peer2. Meanwhile, Peer2, leveraging more computa-
tionally intensive models such as ‘Granite3.1-moe:1b‘
and ‘Smolm2:1.7b‘, demonstrated a superior evaluation
capacity, processing up to 423.95 prompts in the most
optimized scenario. The framework?s design allows
Peer2 to handle more complex summarization tasks,
achieving a throughput improvement of up to 56%
in token processing rates compared to Peer1. Notably,
Peer1’s performance metrics highlight its suitability for
low-latency and lightweight tasks, such as preprocess-
ing user inputs, with evaluation durations reduced by
92.2% for certain prompt types. On the other hand,
Peer2 excelled in handling computationally intensive
summarization tasks, showing a 72.8% reduction in
evaluation duration for explanation-type prompts com-
pared to Peer1. Additionally, the framework demon-
strated robust network communication, with Peer2
achieving a 44.9% reduction in network duration com-
pared to Peer1 in specific configurations.

References
[1] Khalfi, M.F. and Tabbiche, M.N., 2025. GPThingSim: A

IoT Simulator Based GPT Models Over an Edge-Cloud
Environments. International Journal of Networked and
Distributed Computing, 13(1), pp.1-20.

[2] Tharayil, S.M., Krishnapriya, M.A. and Alomari, N.K.,
2025. How Multimodal AI and IoT Are Shaping the
Future of Intelligence. In Internet of Things and Big
Data Analytics for a Green Environment (pp. 138-167).
Chapman and Hall/CRC.

[3] Chelliah, A.M.R., Colby, R., Nagasubramanian, G. and
Ranganath, S., 2025. 3.2 Edge AI. Model Optimization
Methods for Efficient and Edge AI.

[4] Nimmagadda, Y., 2025. Model Optimization Techniques
for Edge Devices. Model Optimization Methods for
Efficient and Edge AI: Federated Learning Architectures,
Frameworks and Applications, pp.57-85.

[5] Martin-Salinas, I., Badia, J.M., Valls, O., Leon, G., del
Amor, R., Belloch, J.A., Amor-Martin, A. and Naranjo, V.,
2025. Evaluating and accelerating vision transformers on
GPU-based embedded edge AI systems. The Journal of
Supercomputing, 81(1), p.349.

25
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

Partha Pratim Ray and Mohan Pratap Pradhan

[6] Yu, D., Zhou, X., Noorian, A. and Hazratifard, M.,
2025. An AI-driven social media recommender system
leveraging smartphone and IoT data. The Journal of
Supercomputing, 81(1), pp.1-32.

[7] Zhang, M., Shen, X., Cao, J., Cui, Z. and Jiang, S., 2024.
Edgeshard: Efficient llm inference via collaborative edge
computing. IEEE Internet of Things Journal.

[8] Kok, I., Demirci, O. and Ozdemir, S., 2024. When IoT
Meet LLMs: Applications and Challenges. arXiv preprint
arXiv:2411.17722.

[9] Kalita, A., 2024. Large Language Models (LLMs) for
Semantic Communication in Edge-based IoT Networks.
arXiv preprint arXiv:2407.20970.

[10] Qu, G., Chen, Q., Wei, W., Lin, Z., Chen, X. and
Huang, K., 2024. Mobile edge intelligence for large
language models: A contemporary survey. arXiv preprint
arXiv:2407.18921.

[11] An, T., Zhou, Y., Zou, H. and Yang, J., 2024. Iot-
llm: Enhancing real-world iot task reasoning with large
language models. arXiv preprint arXiv:2410.02429.

[12] Hu, Y., Ye, D., Kang, J., Wu, M. and Yu, R., 2024. A
Cloud-Edge Collaborative Architecture for Multimodal
LLMs-Based Advanced Driver Assistance Systems in IoT
Networks. IEEE Internet of Things Journal.

[13] Xiao, B., Kantarci, B., Kang, J., Niyato, D. and Guizani,
M., 2024. Efficient Prompting for LLM-based Generative
Internet of Things. arXiv preprint arXiv:2406.10382.

[14] Raspberry Pi 4B, 2025. Raspberry Pi 4
Model B Technical Overview. Available at:
https://www.raspberrypi.com/products/raspberry-
pi-4-model-b/ [Accessed 4 Jan. 2025].

[15] Friha, O., Ferrag, M.A., Kantarci, B., Cakmak, B.,
Ozgun, A. and Ghoualmi-Zine, N., 2024. Llm-based edge
intelligence: A comprehensive survey on architectures,
applications, security and trustworthiness. IEEE Open
Journal of the Communications Society.

[16] Gao, Y., Song, Z. and Yin, J., 2023. Gradientcoin: A
peer-to-peer decentralized large language models. arXiv
preprint arXiv:2308.10502.

[17] Karanjai, R. and Shi, W., 2024, May. Trusted LLM
Inference on the Edge with Smart Contracts. In 2024
IEEE International Conference on Blockchain and
Cryptocurrency (ICBC) (pp. 1-7). IEEE.

[18] He, Y., Fang, J., Yu, F.R. and Leung, V.C., 2024.
Large language models (LLMs) inference offloading
and resource allocation in cloud-edge computing: An
active inference approach. IEEE Transactions on Mobile
Computing.

[19] Olshansky, D., Colmeiro, R.R. and Li, B., 2024.
Decentralized AI: Permissionless LLM Inference on
POKT Network. arXiv preprint arXiv:2405.20450.

[20] Hasan, S.M., Alotaibi, A.M., Talukder, S. and Shahid,
A.R., 2024. Distributed Threat Intelligence at the Edge
Devices: A Large Language Model-Driven Approach.
arXiv preprint arXiv:2405.08755.

[21] Chen, H., Deng, W., Yang, S., Xu, J., Jiang, Z., Ngai,
E.C., Liu, J. and Liu, X., 2024. Towards Edge General
Intelligence via Large Language Models: Opportunities
and Challenges. arXiv preprint arXiv:2410.18125.

[22] Ale, L., Zhang, N., King, S.A. and Chen, D., 2024.
Empowering generative AI through mobile edge com-
puting. Nature Reviews Electrical Engineering, pp.1-9.

[23] Bhardwaj, S., Singh, P. and Pandit, M.K., 2024, March.
A survey on the integration and optimization of large
language models in edge computing environments. In
2024 16th International Conference on Computer and
Automation Engineering (ICCAE) (pp. 168-172). IEEE.

[24] Soltoggio, A., Ben-Iwhiwhu, E., Braverman, V., Eaton,
E., Epstein, B., Ge, Y., Halperin, L., How, J., Itti, L.,
Jacobs, M.A. and Kantharaju, P., 2024. A collective AI
via lifelong learning and sharing at the edge. Nature
Machine Intelligence, 6(3), pp.251-264.

[25] Ollama, 2025. Ollama: Large Language Model Frame-
work. Available at: https://ollama.com/ [Accessed 4 Jan.
2025].

[26] Ollama API, 2025. Ollama API
Documentation. Available at:
https://github.com/ollama/ollama/blob/main/docs/api.md
[Accessed 4 Jan. 2025].

[27] Qwen2.5:0.5b-instruct, 2025. Qwen2.5:0.5b-
instruct Language Model. Available at:
https://ollama.com/library/qwen2.5:0.5b-instruct
[Accessed 4 Jan. 2025].

[28] Smolm2:360m, 2025. Smolm2:360m-
instruct-q8_0. Available at:
https://ollama.com/library/smollm2:360m-instruct-
q8_0 [Accessed 4 Jan. 2025].

[29] Granite3.1, 2025. Granite3.1 Language Models by IBM.
Available at: https://github.com/ibm-granite/granite-
3.1-language-models [Accessed 4 Jan. 2025].

[30] Llama3.2, 2025. Llama3.2 Language Model. Available
at: https://ollama.com/library/llama3.2 [Accessed 4 Jan.
2025].

[31] Qwen2.5:1.5b, 2025. Qwen2.5:1.5b Language Model.
Available at: https://ollama.com/library/qwen2.5:1.5b
[Accessed 4 Jan. 2025].

[32] Smolm2:1.7b, 2025. Smolm2:1.7b Language Model.
Available at: https://ollama.com/library/smollm2
[Accessed 4 Jan. 2025].

[33] Flask, 2025. Flask Web Framework. Available at:
https://flask.palletsprojects.com/ [Accessed 4 Jan.
2025].

[34] FastAPI, 2025. FastAPI Framework Documentation.
Available at: https://fastapi.tiangolo.com/ [Accessed 4
Jan. 2025].

[35] Requests, 2025. Requests Library for Python. Available
at: https://pypi.org/project/requests/ [Accessed 4 Jan.
2025].

[36] Pydantic, 2025. Pydantic for Data Validation and Pars-
ing. Available at: https://pypi.org/project/pydantic/
[Accessed 4 Jan. 2025].

[37] Luo, Z., Yan, H. and Pan, X., 2023. Optimizing Trans-
former Models for Resource-Constrained Environments:
A Study on Model Compression Techniques. Journal of
Computational Methods in Engineering Applications,
pp.1-12.

[38] Liu HI, Galindo M, Xie H, Wong LK, Shuai HH, Li
YH, Cheng WH. Lightweight deep learning for resource-
constrained environments: A survey. ACM Computing
Surveys. 2024 Jun 24;56(10):1-42.

26
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

P2PLLMEdge: Peer-to-Peer Framework for Localized Large Language Models using CPU only Resource-Constrained Edge

[39] Girija SS, Kapoor S, Arora L, Pradhan D, Raj A, Shet-
gaonkar A. Optimizing LLMs for Resource-Constrained
Environments: A Survey of Model Compression Tech-
niques. arXiv preprint arXiv:2505.02309. 2025 May 5.

[40] Careem R, Johar G, Khatibi A. Deep neural net-
works optimization for resource-constrained environ-
ments: techniques and models. Indonesian Journal of
Electrical Engineering and Computer Science. 2024
Mar;33(3):1843-54.

[41] Waheed Z, Khalid S, Riaz SM, Khawaja SG, Tariq
R. Resource-Restricted Environments Based Memory-
Efficient Compressed Convolutional Neural Network
Model for Image-Level Object Classification. IEEE
Access. 2022 Dec 15;11:1386-406.

[42] Shabir MY, Torta G, Damiani F. Edge ai on constrained
iot devices: Quantization strategies for model optimiza-
tion. InIntelligent Systems Conference 2024 Jul 31 (pp.
556-574). Cham: Springer Nature Switzerland.

27
EAI Endorsed Transactions

on AI and Robotics
| Volume 4 | 2025 |

	1 Introduction
	2 Related Works
	3 Tools and Methodology
	3.1 Tools Used
	3.2 Proposed P2PLLMEdge Framework
	3.3 Configuring P2P Edge Network for Ollama
	3.4 Configuration for Peer1: Raspberry Pi 4B
	3.5 Configuration Peer2: Ubuntu Laptop CPU Only
	3.6 P2PLLMEdge Algorithm

	4 Results and Discussions
	4.1 Web Server Wise Analysis
	4.2 Prompt Type Wise Analysis
	4.3 Peer1 LLM Wise Analysis
	4.4 Peer2 LLM Wise Analysis
	4.5 Prompt Type and Web Server Wise Analysis
	4.6 Correlation Matrix
	4.7 Outlier and Distribution
	4.8 Hypothesis Testing
	Statistical Analysis of Peer1 Metrics by Prompt Type
	Statistical Analysis of Peer2 Metrics by Prompt Type
	Statistical Analysis of Peer1 Metrics
	Statistical Analysis of Peer2 Metrics

	4.9 Limitations and Future Scope

	5 Conclusion

