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Abstract 
 
Diseases of the eye such as diabetic retinopathy, glaucoma, and cataract remain among the leading causes of blindness and 
vision impairment worldwide. Diagnosis in its early stages followed by early treatment is crucial to preventing permanent 
loss of vision. Recent advances in Artificial Intelligence (AI), particularly Transfer Learning and Explainable AI (XAI), 
have proven highly promising in automating the identification of retinal pathologies from medical images. In this paper, we 
propose an ensemble deep learning approach that integrates four pre-trained convolutional neural networks, i.e., VGG16, 
MobileNet, DenseNet, and InceptionV3, to classify retinal images into four categories: diabetic retinopathy, glaucoma, 
cataracts, and normal. The ensemble method leverages the power of multiple models to improve classification accuracy. 
Additionally, Explainable AI techniques are applied to make the model more interpretable, with visual explanations and 
insights into AI system decision-making and thereby establishing clinical trust and reliability. The system is evaluated on a 
new benchmarked eye disease dataset used from Hugging Face, and the results in terms of accuracy and model transparency 
are encouraging. This research contributes towards developing reliable, explainable, and efficient AI-driven diagnostic 
systems to assist healthcare professionals in the early detection and management of eye diseases 
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1. Introduction 

The eye is one of the most important sensory organs of the 
human body. In the contemporary period, ocular disease has 
emerged as a significant worldwide health concern [1], 
affecting the productivity and autonomy of individuals [2]. 
The standard visual acuity is established at 20/20; conversely, 
measurements less than 20/40 or 20/60 represent low vision 
capabilities [3]. Many individuals globally suffer from retinal 
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diseases, which, if not diagnosed and treated early, may result 
in blindness [2].  

Eye disease includes several conditions such as diabetic 
retinopathy, diabetic macular edema, glaucoma, and cataracts 
[4][5]. One of the leading causes of blindness among 
working-age adults is diabetic retinopathy [6]. Glaucoma is 
the most common cause of blindness globally, and it 
contributes to a high percentage of vision loss cases. 
Glaucoma results from optic nerve damage, which is usually 
accompanied by increased intraocular pressure. Glaucoma, if 
not detected and treated early, can result in irreversible 
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blindness. In 2020, an estimated 79 million individuals 
worldwide were affected by glaucoma, with its incidence 
increasing at a fast rate, especially in urban areas [7][8]. 
Cataracts cause opacification of the lens in the eye, which in 
turn leads to a gradual loss of visual acuity. Over half of the 
population older than 65 years suffer from age-related 
cataracts, which occur due to accumulation of proteins in the 
lens. Surgery to replace the opaque lens with an artificial one 
has shown effectiveness; however, the rising incidence of 
cataracts, particularly diabetes-related cataracts, remains a 
significant public health concern [9] - [13]. 

Artificial intelligence (AI), specifically through Transfer 
Learning and Explainable AI (XAI), has become a promising 
means for transforming the diagnosis of eye diseases. 
Artificial intelligence algorithms have shown proficiency in 
detecting a variety of retinal and eye conditions, such as 
diabetic retinopathy, glaucoma, and cataracts, from high-
resolution digital images of the eye [14][15]. Transfer 
Learning entails utilizing pre-trained models, i.e., 
Convolutional Neural Networks (CNNs), in detecting new 
images corresponding to medical conditions, thereby 
enhancing the accuracy and effectiveness of disease detection 
[16]- [18]. In parallel, Explainable AI (XAI) enhances model 
interpretability and transparency, providing clinicians with 
clearer insights into the decision-making algorithms utilized 
by AI tools, an element critical to establishing clinical trust 
and adoption. Such innovations through artificial intelligence 
allow for faster and more accurate diagnoses, thus improving 
patient outcomes and assisting clinicians in making informed 
decisions. 

In current context, diabetic retinopathy, glaucoma, and 
cataracts are three of the globe's most common causes of 
blindness and visual impairment, impacting millions of 
people and placing a significant burden on healthcare 
systems. Existing diagnostic techniques are based largely on 
ophthalmologists' subjective analysis of retinal photographs, 
which is not only time-consuming and prone to human error 
but also of limited availability especially in rural or 
disadvantaged areas where trained ophthalmologists are 
scarce. With the increased incidence of eye diseases and the 
need for increased speed and accuracy in diagnosis, artificial 
intelligence (AI) stands out as a revolutionary solution. By 
automating the interpretation of retinal scans, AI has the 
potential to greatly speed up the diagnostic process, improve 
precision, and aid timely interventions before irreversible 
vision impairment sets in. To overcome these problems, this 
study aims to develop a robust AI-driven system for the 
diagnosis and classification of severe eye diseases i.e., 
diabetic retinopathy, glaucoma, and cataracts using transfer 
learning techniques on retinal scans. Moreover, to make the 
model outputs clear and trustworthy, explainable AI (XAI) 
techniques will be integrated, enabling healthcare 
professionals to understand and validate the AI-generated 
diagnoses with confidence. The model will be validated for 
performance using the standard performance metrics like 
accuracy, sensitivity, specificity, and area under the receiver 
operating characteristic curve (AUC-ROC) to determine its 
clinic value for early and accurate eye disease diagnosis. 

This research explores the use of Transfer Learning and 
Explainable AI (XAI) to classify retinal images with focus on 
diseases like diabetic retinopathy, glaucoma, cataracts, and 
normal eyes with a new benchmark dataset from Hugging 
Face. The aim is to develop an accurate, interpretable, and 
clinically relevant AI system to help the early diagnosis of 
these ocular conditions. The system will help in providing an 
accelerated, more accurate diagnosis, allowing healthcare 
professionals to take prompt action and enhance patient care.  

2. Related Work 

2.1. Deep learning for Eye Disease 

Deep learning has emerged as a revolutionary approach for 
the detection and classification of many eye diseases using 
high-powered neural network models for enhancing 
diagnostic yield as well as ophthalmic functioning. The 
exponential rise in the use of these technologies, particularly 
in the evaluation of fundus images, demonstrates their 
capacity to identify an extensive spectrum of ocular diseases 
with high sensitivity and specificity. 

Cen et al., [20] who came up with an automated system 
capable of detecting up to 39 different fundus diseases and 
conditions, with their accuracy rates on par with expert retina 
specialists. This work shows the capabilities of deep learning 
models in advanced diagnostic applications. On the same 
lines, Kumar and Dhanalakshmi [21]  came up with a new 
architecture, i.e., EYE-YOLO, based on utilizing multi-
spatial pyramid pooling for improving detection of eye 
disease from fundus images since it represents innovation in 
deep learning approaches towards fulfilling ocular health-
specific demands. Shibata et al. [22] highlighted the efficacy 
of the ResNet architecture in accurately diagnosing glaucoma 
from fundus photography, emphasizing its role in enhancing 
the diagnostic processes, especially in challenging cases like 
highly myopic eyes. Aurangzeb et al., [23] used advanced 
machine learning techniques are critical in streamlining early 
detection and diagnosis across various ocular conditions, 
including diabetic retinopathy and glaucoma. Sarhan et al. 
[24] also reinforces the extensive utilization of machine 
learning in ophthalmic data processing, affirming its 
significance in image analysis for eye disease diagnosis. Deep 
learning models have shown remarkable capabilities in 
feature extraction and pattern recognition directly from 
medical images. Alam et al., [25] who reported a high 
sensitivity of 94.84% in identifying retinopathies through 
their AI-based tool. Albalawi et al. [26] shows the integration 
of dynamic Swin transformers in developing a classification 
system for multiple retinal diseases, showcasing the 
importance of utilizing contemporary architectures to 
enhance diagnostic precision. 

2.2. Transfer learning for Eye Disease 

Transfer learning has been shown to be a critical technique in 
the identification and classification of eye diseases, 
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particularly where insufficient significant labeled data is 
available. Using pre-trained models on large datasets, 
researchers can fine-tune these models to improve their 
performance on tasks in ophthalmic research. 

Madduri and Rao [27] created a VGG16-SGD model using 
transfer learning to address diabetic eye disease with an 
accuracy of 96.49% for multi-class classification in the 
fundus imaging scenario. They provided a hybrid R-CNN + 
LSTM model methodology, which could classify different 
retina disorders successfully, proving the successful 
application of transfer learning in the field. Mahmood et al. 
[28] in which transfer learning using ResNet50 yielded high 
accuracies (95.8%) in cataract detection, highlighting the 
potential of pre-trained models to generalize across different 
pathologies. Chen et al. [29] pointed out the effective use of 
deep transfer learning for the diagnosis of some ocular 
diseases by the analysis of fundus images, indicating that pre-
trained deep Convolutional Neural Networks (CNNs) enable 
models to obtain excellent performance metrics despite the 
constraints of small datasets. Aranha et al. [30] corroborated 
this opinion, asserting that disease classification is enhanced 
by pre-trained CNNs, and therefore they are suitable for 
detection of different ocular diseases from poor-quality 
fundus images. 

2.3. Deep Ensemble for Eye Disease 

Deep ensemble learning has become a powerful approach 
in eye disease classification and diagnosis, taking advantage 
of the strengths of various models to boost diagnostic 
precision and robustness. Ensemble techniques, by 
aggregating the predictions from various deep learning 
models, have the potential to enhance the detection of 
diseases such as diabetic retinopathy (DR), age-related 
macular degeneration (AMD), and glaucoma. 

Sanamdikar et al. [31] proposed a deep ensemble learning 
method with vessel segmentation for the purpose of 
improving diabetic retinopathy classification accuracy from 
retinal images. They utilized the Canny edge detection 
operator to segment the retinal images prior to utilizing an 
ensemble of models that were specifically developed for 
identifying unique features pertinent to different classes of 
diabetic retinopathy. Desiani et al. [31] showed that an 
ensemble learning approach with weighted voting, based on 
multiple convolutional neural network (CNN) models, 
achieved competent diabetic retinopathy classification with 
an accuracy rate of 87%. The study emphasized the value of 
integrating heterogeneous models to take advantage of their 
complementary strengths in feature extraction and 
representation processes. Wali et al. [32] also provided 
additional proof of this concept in their research on the 
classification of optical coherence tomography (OCT) 
images. They integrated the merits of several deep learning 
models, such as DenseNet121 and InceptionV3, for the 
classification of retinal images into specific categories like 
choroidal neovascularization and diabetic macular edema. 
Their ensemble model exhibited improved accuracy and 
robustness in ocular disease detection. 

3. Methodology 

Our proposed framework primarily uses an ensemble of 
transfer learning models to predict the classification of eye 
disease. Our step-by-step procedure of the paper shows in the 
Figure 1: 

3.1. Dataset 

We use new benchmark dataset which no other research yet 
used named NKS_EYE_DISEASE_CLASSIFICATION 
[33] dataset consists of labeled eye disease images, 
categorized into four classes: diabetic retinopathy, cataract, 
glaucoma, and normal. It contains 4,217 images which are 
divided into training and testing sets, allowing for multi-class 
classification tasks. This dataset is primarily designed for 
developing machine learning models focused on diagnosing 
eye diseases from retinal images. 

3.2. Data Preprocessing 

• Image Representation: In our preprocessing step for 
ensuring consistency across all input images, each 
sample was resized to 224×224 pixels using bilinear 
interpolation. This image resizing ensures that all images 
have a uniform size, which is required for transfer 
learning models such as Mobilenet, DenseNet. Without 
resizing, the model would not be able to process images 
of varying resolutions, leading to inconsistencies in 
feature extraction. This preprocessing ensures that the 
model effectively extracts key features related to eye 
diseases, improving classification accuracy. 

• Label Encoding: The labels for eye diseases 
classification in this dataset are usually categorical form 
(e.g., "Glaucoma", "Diabetic Retinopathy", "Cataract",” 
Normal”), whereas deep learning models need 
numerical inputs. To convert categorical disease labels 
into a numerical format we applied Label Encoding. The 
transformation was fit on the training set and then 
applied to the test set to ensure consistency. This 
encoding allowed the model to process class labels 
effectively and make predictions that could be mapped 
back to the original disease names.  

• SMOTE (Synthetic Minority Over-sampling 
Technique): For reducing the issue of class imbalance 
problem in our dataset, we applied SMOTE technique to 
generate synthetic samples for underrepresented disease 
categories. Since SMOTE operates on tabular data, we 
initially flattened the image matrices into 2D feature 
representations. After applying SMOTE, the dataset was 
reshaped back into its original (224, 224, 3) format to 
maintain compatibility with deep learning models. This 
balancing technique prevents the model from biasing 
toward majority classes, ensuring fair representation 
across different eye disease classification. The 
effectiveness of this approach was validated by 
analyzing class distributions before and after SMOTE 
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application. The class distribution before and after 
applying SMOTE, where the data is balanced for class 
0, 1, 2, and 3 are showing Table-1 whereas 0 as Cataract, 
1 as Diabetic Retinopathy, 2 Glaucoma and 3 is Normal. 
The pie chart shows in Figure 2 of SMOTE analysis 
displays the class distribution of the eye disease dataset 
before and after balancing. The class distribution was 
not balanced prior to using SMOTE, with the red slice 
indicating 23.8% for glaucoma, green 24.7% for 
cataract, orange 25.3% for normal, and blue 26.3% for 
diabetic retinopathy. With the use of SMOTE, the 
distribution was made more balanced because each class 
was now equally distributed at 25.0% as seen by the 
equal-sized portions of red, green, orange, and blue. 

• Splitting data & Normalization: After completing 
several preprocessing steps, now we split the dataset into 
training and validation sets using an 80-20 ratio, 
allowing for performance monitoring and 
hyperparameter tuning during training. Then we 
normalized all image pixel values to a [0, 1] range by 
dividing by 255.0, which accelerates model convergence 
and stabilizes the gradient updates. Furthermore, the 
class labels were transformed into one-hot encoded 
vectors to facilitate multi-class classification, where 
each label is represented as a binary vector, enabling the 
model to compute class-wise prediction probabilities. 

3.3. Model Description 

In our proposed framework we choose Transfer learning 
model over training deep learning models from scratch for 
eye disease classification due to its ability to handle limited 
datasets, prevent overfitting, and improve classification 
accuracy. Medical image datasets are often small and difficult 
to annotate, making it challenging for traditional deep 
learning models to generalize well. By utilizing pre-trained 
architectures such as ResNet, EfficientNet, and DenseNet, 
enables the extraction of high-level visual features without 
requiring extensive labeled data. This approach reduces 
computational costs, accelerates training, and enhances 
model generalization. Additionally, transfer learning allows 
fine-tuning of specific layers, ensuring the model effectively 
adapts to domain-specific features in medical imaging, 
ultimately leading to more accurate and reliable disease 
detection. In our study, we choose six pre-trained models for 
eye disease classification. VGG16, DenseNet121, 
MobileNetV2, EfficientNetB0, ResNet50, and InceptionV3. 
Each of these models has distinct architectural characteristics 
that contribute to their performance in feature extraction and 
classification. We trained and tested our models on the 
NKS_EYE_DISEASE dataset. Each model was initialized 
with pre-trained ImageNet weights and fine-tuned by adding 
a Global Average Pooling (GAP) layer, a fully connected 
dense layer with 256 neurons and ReLU activation, followed 
by a final SoftMax classification layer. The models were 
compiled using the Adam optimizer and the categorical cross-
entropy loss function, ensuring stable weight updates and 
efficient learning during backpropagation. During training, 

the models fit on the training data for 10 epochs with a batch 
size of 32, while validation data is used to monitor the 
performance and prevent overfitting. After training, each 
model is evaluated on the test set to assess its classification 
accuracy and performance metrics. The loss function used in 
this training process is categorical cross-entropy, which is 
designed for multi-class classification tasks. It measures the 
difference between the true class labels and the predicted 
probability distribution generated by the SoftMax function. 

• VGG16: VGG16 is a deep CNN architecture consisting 
of 16 layers, primarily composed of 3×3 convolutional 
filters and max pooling layers. It follows a simple yet 
powerful sequential design, making it effective in 
extracting hierarchical visual features. Despite its large 
number of parameters, VGG16 is widely used for 
medical image classification due to its ability to capture 
fine-grained details in images. 

• DenseNet121: DenseNet121 is a densely connected 
convolutional network that enhances gradient flow and 
feature reuse by connecting each layer to all subsequent 
layers. This architecture improves learning efficiency, 
reduces the number of parameters, and captures complex 
patterns within eye disease images. DenseNet’s ability 
to extract detailed features makes it particularly useful 
for medical image analysis. 

• MobileNetV2: MobileNetV2 is a lightweight deep 
learning model optimized for efficiency with depthwise 
separable convolutions and inverted residual blocks. It is 
computationally less expensive compared to other 
architectures, making it well-suited for real-time 
medical applications and deployment in resource-
constrained environments such as mobile or edge 
devices. 

• InceptionV3: InceptionV3 is a deep CNN architecture 
that employs parallel convolutional filters of different 
sizes within the same layer. This multi-scale feature 
extraction helps capture both fine and coarse details in 
images, making it particularly effective for medical 
imaging tasks where intricate patterns must be identified 
for accurate disease classification. 

3.4. Proposed Deep Ensemble Model 

Our proposed system is designed to facilitate automatic eye 
disease detection and classification through an ensemble of 
multiple CNN-based transfer learning models. The purpose 
of the ensemble system is to improve classification accuracy 
by leveraging the strengths of various deep learning models 
while preserving model interpretability and clinical 
reliability. A diagrammatic sketch of the proposed system is 
shown in Figure 3. 

From the Figure 3 we can see that the initial step is the 
collection of retinal fundus images, which are the inputs to 
the system. To make them processable by deep learning 
models, a sequence of data preprocessing steps is carried out. 
These encompass image resizing to fit standard input sizes 
accommodating the pre-trained model requirements, and 
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label encoding to transform categorical disease labels into 
numerical format. SMOTE is also applied to address class 
imbalance in the dataset through the creation of synthetic 
samples for under-sampled classes, thereby accommodating 
equitable model training and enhancement of predictive 
capability with respect to minority classes. Following 
preprocessing, the images are input in parallel into four pre-
trained transfer learning architectures: VGG16, 
DenseNet121, MobileNetV2, and InceptionV3. These 
architectures are pre-trained on large image datasets before 
being fine-tuned on the target retinal image dataset for 
learning task-specific features. These architectures are chosen 
due to their complementary strengths in learning rich, 
discriminative, and hierarchical visual features from medical 
images. Within every model, images undergo feature 
extraction by convolutional and pooling layers, followed by 
several fully connected layers meticulously crafted for 
disease prediction. The prediction units generally consist of a 
feature extraction layer, one or several dense (fully 
connected) layers, an activation function and a final output 
layer predicting the probability distribution across the 
potential disease classes. After individual predictions are 
obtained from each model, an ensemble method is used to 
decide the ultimate disease label. A majority-voting ensemble 
technique is utilized, in which the predicted labels of the 
models are counted and the class receiving the most votes is 
chosen as the final prediction. This approach to fusion 
exploits the varied decision-making tendencies of the 

individual classifiers and hence decreases the possibility of 
incorrect or biased predictions by any one classifier and 
enhances the overall strength of the system. After procuring 
probability scores for each of the classes from the VGG16, 
DenseNet121, MobileNetV2, and InceptionV3 models, we 
take on a probability averaging ensemble approach to 
determine the ultimate class label.  

3.5. Performance Evaluation 

We evaluated performance using various metrics to identify 
the most effective classifier for detecting eye diseases. 
Performance indicators, expressed as percentages (%), were 
calculated using Eqs. (1–3). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
𝑇𝑇𝑃𝑃𝑃𝑃𝑁𝑁𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇 𝑃𝑃𝑜𝑜 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇𝑃𝑃

× 100% (1) 

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇

× 100% (2) 

 𝐹𝐹1 𝑆𝑆𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 × 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×𝑅𝑅𝑇𝑇𝑃𝑃𝑁𝑁𝑇𝑇𝑇𝑇
𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑇𝑇𝑃𝑃𝑁𝑁𝑇𝑇𝑇𝑇

× 100% (3)  

 
Additionally, we generated a confusion matrix, AUC-

ROC, train, and validation graph for each model to assess 
their performance comprehensively.

 
 

Figure 1. Step by Step Procedure Diagram of Workflow 
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Figure 2. Class Distribution of Eye Disease Dataset Before and After SMOTE Balancing 
 
 

Table 1. Class Distribution Before and After SMOTE 

Class Before SMOTE Count After SMOTE Count 
Cataract 937 997 

Diabetic Retinopathy 997 997 
Glaucoma 902 902 

Normal 959 959 

 
Figure 3. Proposed Framework of Ensemble Model

4. Result and Discussion 

The experiments in this study were conducted using multiple 
pre-trained deep learning models for the classification task. 
The models used include VGG16, DenseNet121, 
MobileNetV2 and InceptionV3. All models were 
implemented using Python 3.12 and TensorFlow 2.12. 
Training was conducted on an CPU with 16 GB RAM. The 
coding and execution were performed in Google Colab, 
which provided a cloud-based platform to efficiently handle 
the computational requirements. The models were first 
initialized with ImageNet weights and fine-tuned on the 
NKS_EYE_DISEASE dataset. For model evaluation, various 
metrics were used, including accuracy, classification reports, 
confusion matrices, and Receiver Operating Characteristic 
(ROC) curves. The confusion matrix was calculated to assess 
true positive, false positive, true negative, and false negative 

counts for each class. To assess the ensemble model’s 
performance, an average prediction was computed across the 
models. The accuracy of the ensemble model was evaluated, 
providing a comparative insight into the collective 
performance of the models. Finally, the results from the 
individual models were plotted in an accuracy comparison 
chart to visualize the overall performance of each model and 
the ensemble. The complete analysis was done using Python 
libraries, including TensorFlow, Keras, and Scikit-Learn. 

We present the detailed evaluation of the performance of 
the proposed ensemble model, along with several individual 
models. The individual models tested were VGG16, 
DenseNet121, MobileNetV2, and InceptionV3, each 
showcasing different levels of performance in terms of 
accuracy. VGG16 achieved 82.27%, DenseNet121 led with 
the highest accuracy of 87.91%, MobileNetV2 attained 
86.01%, and InceptionV3 recorded 82.22%. Following the 
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evaluation of these individual models, we proceeded with the 
ensemble model, which integrated the outputs of the models. 
The ensemble model demonstrated a significant improvement 
in performance, achieving an accuracy of 90%. 

Table 2 gives a comparative evaluation of applied deep 
learning models VGG16, DenseNet121, MobileNetV2, 
InceptionV3, and a custom Deep Ensemble for classifying 
four eye disease classes: Cataract, Diabetic Retinopathy, 
Glaucoma, and Normal. The Deep Ensemble model achieved 
the highest combined accuracy of 90%, far outperforming the 
single models through pooling their prediction capability. It 
was highly consistent in all classes, with very high precision 
and recall for Diabetic Retinopathy (F1-score: 1.00) and 
satisfactory performance on Normal and Cataract too. The 
top-performing single model was DenseNet121, which 
achieved 87.91% accuracy and satisfactory F1-scores on 
most classes, demonstrating its robustness and efficiency in 
deep feature extraction. MobileNetV2, while lightweight, 
also worked efficiently with 86.01% accuracy and can be 
employed in low-resource environments like mobile 
platforms or edge computing in telemedicine applications. 
However, while moderate accuracies were achieved by 
VGG16 (82.27%) and InceptionV3 (82.22%), both were poor 
in detecting Glaucoma, which appears to be the most difficult 
class for all models due to its subtle and overlapping nature. 

From Table 3 and Figure 4 we can see the True Positives 
(TP), False Positives (FP), True Negatives (TN), and False 
Negatives (FN) by class is given for five deep learning 
models: VGG16, DenseNet121, MobileNetV2, InceptionV3, 
and a Deep Ensemble model. These numbers give further 
insight into the capability of each model to distinguish 
between the four classes of eye diseases: Cataract, Diabetic 
Retinopathy, Glaucoma, and Normal. The Deep Ensemble 
model consistently demonstrates outstanding classification 
ability, especially for Diabetic Retinopathy, where it correctly 
classifies all positive samples (TP = 101, FN = 0) with only 
one false positive, demonstrating nearly perfect sensitivity 
and specificity. For Normal images, it is extremely sensitive 
(TP = 106) with a relatively low FN (9), which is good 
identification. DenseNet121 also performs well in all classes 
with similar TP and zero FN values—highlighting its 
strength, especially for Normal and Cataract detection. 
VGG16 and InceptionV3 are poorer with classification 
errors. VGG16 suffers especially with Glaucoma, with 41 
false negatives and 23 false positives, reflecting inability to 
detect the fine characteristics of this disease. Similarly, 
InceptionV3 works poorly on Diabetic Retinopathy (TP = 83, 
FN = 18) and Glaucoma (TP = 71, FN = 34) and is therefore 
less precise for those classes. MobileNetV2, even though 
computationally more economical, is volatile: it works well 
on Cataract and Diabetic Retinopathy but gives higher values 
of FP for Glaucoma and Normal, which indicates certain 
trade-off between speed and accuracy. 

Figures 5 present the ROC and Precision-Recall curves for 
all our models, illustrating their class-wise performance in 
distinguishing between categories. The performance of the 
VGG16 model, which achieves an AUC of 1.00 for Class 1, 
with a Precision-Recall AUC of 1.00, demonstrating perfect 
classification for this category. DenseNet121 and 

MobileNetV2, both attaining an AUC of 1.00 for Class 1 and 
a Precision-Recall AUC of 1.00, indicating consistently high 
performance. InceptionV3, which achieves a slightly lower 
AUC of 0.98 for Class 1 and 0.99 for Class 0, with 
corresponding Precision-Recall AUC values of 0.94 for Class 
1 and 0.97 for Class 0, reflecting minor variations in the 
precision-recall trade-offs. The performance of the ensemble 
model, which integrates predictions from all architectures and 
maintains an AUC of 1.00 for Class 1, with a Precision-Recall 
AUC of 1.00, ensuring robust classification performance. The 
ensemble model effectively preserves the strengths of 
individual networks while balancing generalization across 
multiple classes. 

Figures 6 shows the training and validation loss, along 
with accuracy curves, for the VGG16, DenseNet121, 
MobileNetV2, and InceptionV3 models over multiple 
epochs. VGG16 model demonstrates effective learning, with 
a progressive decrease in training loss and a similar 
downward trend in validation loss, suggesting good 
generalization. The accuracy curve shows a steady increase, 
with validation accuracy stabilizing at approximately 0.85, 
reflecting strong generalization capability. DenseNet121, 
where training loss consistently declines, while validation 
loss exhibits minor fluctuations before stabilizing. The 
accuracy plot reveals a significant improvement, with 
training accuracy reaching approximately 0.92 and validation 
accuracy stabilizing around 0.88, indicating strong model 
performance with slight overfitting. MobileNetV2 and 
InceptionV3 models, showing a steady decline in both 
training and validation loss. While MobileNetV2’s validation 
loss stabilizes after a few epochs, InceptionV3 exhibits minor 
fluctuations, suggesting variations in learning stability. The 
accuracy trends reveal a consistent increase in training 
accuracy for both models, but the slight gap between training 
and validation accuracy in InceptionV3 suggests minor 
overfitting compared to MobileNetV2. These models exhibit 
effective learning, with DenseNet121 achieving the highest 
performance while InceptionV3 shows some instability in 
validation trends. 

In medical image analysis, particularly in critical functions 
like classification of eye diseases, Explainable AI (XAI) 
stands out as the bridge between the deep learning black-box 
and clinical trust. While our deep learning model based on 
ensembling demonstrated superior accuracy for classifying 
retinal conditions such as cataract, diabetic retinopathy, 
glaucoma, and normal ones, clinical use requires something 
beyond performance measures—it requires transparency in 
decision-making. Misclassifications between visually similar 
diseases underscore the need for interpretability; XAI 
techniques such as Grad-CAM can be employed to visualize 
what regions of the retinal image had the greatest impact on 
a prediction. Not only does this enable verification and 
understanding of the thought process behind the model by 
ophthalmologists, but it also facilitates error analysis, 
supporting researchers in improving feature representations 
and reducing diagnostic uncertainty. Also, in real-world 
clinical scenarios where patient outcomes and trust are 
paramount, explanations of automatic decisions promote 
clinician confidence and adhere to regulatory standards for 
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AI-assisted diagnosis. To gain a clearer understanding of the 
misclassification behaviour of our proposed ensemble of 
transfer learning models for eye disease classification, we 
incorporate the Explainable AI and misclassified samples 
presented in Figures 7. The data set has four classes: Cataract, 
Diabetic Retinopathy, Glaucoma, and Normal. These 
misclassification trends indicate feature similarity between 

disease categories, which may have contributed to the 
model’s confusion. The fundus images in Figure 7 illustrate 
specific misclassified cases. We can see through Explainable 
AI that which region effecting to misclassified, a close 
examination of these samples reveals that the visual overlap 
in retinal structures across different diseases makes it 
challenging for the model to distinguish them accurately.

Table 2. Performance Calculation of Class-wise Precision, Recall, F1-score, and Overall Accuracy for Individual 
and Ensemble Models 

Models Class Precision Recall  F1-score Accuracy 
 
 

VGG16 

Cataract 0.83 0.87 0.85  
 

82.27% 
Diabetic Retinopathy 0.98 0.99 0.99 

Glaucoma 0.74 0.61 0.67 
Normal 0.75 0.83 0.79 

 
 

DenseNet121 

Cataract 0.84 0.91 0.88  
 

87.91% 
Diabetic Retinopathy 0.99 0.97 0.98 

Glaucoma 0.84 0.77 0.81 
Normal 0.85 0.87 0.86 

 
 

MobileNetV2 

Cataract 0.99 0.81 0.89  
 

86.01% 
Diabetic Retinopathy 0.97 0.98 0.98 

Glaucoma 0.74 0.80 0.77 
Normal 0.80 0.85 0.82 

 
 

InceptionV3 

Cataract 0.85 0.91 0.88  
 

82.22% 
Diabetic Retinopathy 0.91 0.82 0.86 

Glaucoma 0.83 0.87 0.85 
Normal 0.98 0.99 0.99 

 
 

Deep Ensemble 

Cataract 0.74 0.61 0.67  
 

90% 
Diabetic Retinopathy 0.75 0.83 0.79 

Glaucoma 0.84 0.91 0.88 
Normal 0.99 0.97 0.98 

Table 3. Performance Comparison of True Positive (TP), False Positive (FP), True Negative (TN), and False 
Negative (FN) values for each class across all models. 

Models Class TP FP TN FN 
 
 

VGG16 

Cataract 88 18 303 13 
Diabetic Retinopathy 100 2 319 1 

Glaucoma 64 23 294 41 
Normal 95 32 275 20 

 
 

DenseNet121 

Cataract 92 17 304 9 
Diabetic Retinopathy 98 1 320 3 

Glaucoma 81 15 302 24 
Normal 100 18 289 15 

 
 

MobileNetV2 

Cataract 82 1 320 19 
Diabetic Retinopathy 99 3 318 2 

Glaucoma 84 30 287 21 
Normal 98 25 282 17 

 
 

InceptionV3 

Cataract 92 16 305 9 
Diabetic Retinopathy 83 8 313 18 

Glaucoma 71 16 301 34 
Normal 101 35 272 14 

 
 

Deep Ensemble 

Cataract 90 9 312 11 
Diabetic Retinopathy 101 1 320 0 

Glaucoma 80 14 303 25 
Normal 106 21 286 9 
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Figure 4. Confusion matrices for individual models and the ensemble model in multi-class eye disease 
classification. 

 

 
 

Figure 5. ROC and Precision-Recall curves for individual models and the proposed ensemble model. 
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Figure 6. Training and validation loss and accuracy curves for the four individual transfer learning models.

The comparative study presents in Table 4 that ensemble 
models always perform better than standalone deep learning 
architecture in eye diseases detection problems. Studies [34] 
and [36], conducted on diabetic retinopathy using individual 
or simple models, achieved moderate accuracy of around 
84%. Conversely, studies [35] and [37] utilized ensemble 
CNN and achieved higher accuracy (88.1% and 88.59%) with 
the combination strength of different models. The proposed 
study also follows this trend by achieving the highest 
accuracy (90%) for several eye diseases diabetic retinopathy, 
glaucoma, and cataracts demonstrating that an ensemble 
model well designed can generalize very well across a broad 
spectrum of ocular conditions and improve diagnostic 
performance. Furthermore, this work contributes uniquely by 
applying Explainable AI (XAI) techniques to provide further 
transparency, generalizability, and acceptability to the 
decisions of the model. In providing explainable insights into 
diagnostics, not only does the model achieve superior 
accuracy, but it also gains confidence from clinicians, hence 
becoming deployable in real-world clinical settings. 

Cataract being misclassified as Glaucoma suggests that the 
model may struggle to differentiate between lens opacity and 
optic nerve abnormalities, as both conditions can exhibit 
similar retinal brightness and contrast patterns. Glaucoma 
being confused with Normal eyes may result from early-stage 
glaucoma cases lacking prominent symptoms, leading the 
model to classify them as healthy. Normal eyes being 
misclassified as Glaucoma could be attributed to minor 
retinal variations or image artifacts that resemble pathological 
features. These findings highlight the need for enhanced 
feature extraction techniques to improve differentiation 
between disease classes. Possible solutions include 
incorporating attention mechanisms to focus on key 
pathological features, multi-scale feature fusion to capture 
fine-grained differences, and data augmentation to improve 
generalization. Future work can also explore multi-label 
classification approaches to account for overlapping disease 

characteristics, further refining the model’s performance in 
real-world clinical applications. 

To investigate deeper the and check accurate prediction 
trends in our models, we utilize Explainable AI (XAI) with 
our Ensemble Model as well shows in Figure 8. The results 
indicate that regions around the optic disc, retinal vessels, and 
macular area are important in Glaucoma and Normal case 
predictions and therefore their susceptibility for accurate 
prediction. The top row shows segmentation maps which 
accentuate regions the model considers significant using 
techniques such as Grad-CAM. Color intensity (black to 
cyan/blue) illustrates various activation levels for our disease. 
The below row overlays these heatmaps on the retinal images, 
visually demonstrating the specific areas (e.g., lesions, optic 
disc) that the model was focusing on while making the 
accurate prediction. This is done to validate if the model is 
learning clinically relevant features and helps facilitate 
explainability and transparency in AI-driven diagnosis. 

5. Conclusion 

In this study, we proposed an ensemble-based deep 
learning approach for automated eye disease classification, 
leveraging four state-of-the-art transfer learning models: 
DenseNet121, MobileNetV2, VGG16, and InceptionV3. 
Experimental results showed that the ensemble model 
outperformed individual models in terms of classification 
accuracy, robustness, and generalization. Comparative 
analysis of training and validation curves, along with 
confusion matrix evaluations, highlighted its effectiveness in 
distinguishing between eye disease classes—cataract, 
diabetic retinopathy, glaucoma, and normal cases. However, 
misclassifications were noted, particularly between visually 
similar diseases such as cataract and glaucoma, underscoring 
the challenge of feature overlap in retinal images. To enhance 
model performance, we plan to incorporate attention 



 Explainable AI Based Deep Ensemble Convolutional Learning for Multi-Categorical Ocular Disease Prediction 
 
 
 

11 

mechanisms and advanced feature fusion strategies. Despite 
strong results, the model has limitations, including reliance 
on a single publicly available dataset that may not reflect real-
world diversity, and the risk of overfitting due to the depth of 
the ensemble architecture. Future work will address these 
issues by integrating multi-institutional datasets, applying 
cross-dataset validation, and exploring semi-supervised and 

self-supervised learning methods. Additionally, 
incorporating explainable AI (XAI) techniques will improve 
interpretability and foster trust among clinicians. Ultimately, 
we aim to deploy the proposed model in clinical 
environments and mobile-based screening applications to 
support early detection and diagnosis of eye diseases, 
enabling timely medical interventions.

Table 4. Comparative Analysis with Similar Context 
 

Reference Study Context Disease Best Model Accuracy 

[34] 

Diabetic Retinopathy 
Detection 

Diabetic Retinopathy DLM2 84.19% 

[35] 

Glaucoma Stage 
Classification 

Glaucoma Ensemble of 
CNNs 

88.1% 

[36] 

Diabetic Retinopathy 
Grading 

Diabetic Retinopathy Ensemble-based 
architecture 

84% 

[37] 

Retinal Disease 
Detection 

Multiple Retinal 
Diseases 

Ensemble 
Learning 

88.59% 

This Study 

Eye Disease 
Detection 

Diabetic Retinopathy, 
Glaucoma, Cataracts, 

Normal 

Deep Ensemble 
Model 

90% 

 

 
 

Figure 7. Misclassifications with Explainable AI for which Region Confusing Model 
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Figure 8. Explainable AI Visualization of Regions for Accurate Prediction
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