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Abstract 
 
In response to the limitations of existing robotic parameter calibration methods in terms of computational complexity, 
convergence speed, data requirements, and accuracy, this study proposes an innovative calibration scheme that combines an 
improved Lagrangian Starfish Optimization Algorithm (LSFA) with a Support Vector Machine (SVM) algorithm. By 
incorporating Lagrange interpolation and a multi-dimensional distance metric model (including Mahalanobis distance, 
Manhattan distance, Chebyshev distance, cosine distance, standardized Euclidean distance, and Euclidean distance), the 
enhanced starfish optimization algorithm significantly improves global search capabilities and local search accuracy. This 
effectively addresses issues such as initial value sensitivity, noise, and outliers, with the algorithm specifically designed for 
kinematic parameter calibration of robotic arms. Furthermore, the improved local search mechanism optimizes the position 
update strategy of starfish through a weighted system, preventing the algorithm from becoming trapped in local optima. To 
further enhance the accuracy of dynamic parameter calibration, this study integrates the SVM algorithm into the LSFA 
framework, proposing the LSFA-SVM method specifically for dynamic parameter calibration of robotic arms. Experiments 
demonstrate a 43.93% reduction in error compared to traditional SVM. The results indicate that LSFA excels in kinematic 
calibration of robotic arms, achieving a root mean square error (RMSE) of 0.29 mm, a 29.27% improvement over the 
traditional Starfish Optimization Algorithm (SFOA). This study provides an efficient and precise solution for robotic 
parameter calibration in complex environments. 
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1. Introduction 

With the advancement of industrial automation, robotic 
technology is increasingly utilized in manufacturing, logistics, 
and material handling. The performance of robotic arms, 
critical to automated production lines, directly impacts 
production efficiency and product quality. 

 
*Corresponding author. Email: Etesop0712@outlook.com; 
Chenth199208@163.com 
 
Ensuring high-precision positioning and motion control in 
complex tasks is essential for efficient automated production 
[1,2,3]. Robotic arm precision depends critically on accurate 
kinematic and dynamic parameters [4,5,6]. Kinematic 
parameters, such as joint lengths and offsets, define motion 
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trajectories, while dynamic parameters, including joint mass 
and inertia, influence movement responses. Accurate 
calibration of both parameters is therefore essential for 
optimal robotic arm performance [7,8,9]. 

To enhance robotic arm positioning precision, various 
calibration algorithms have been proposed, including least 
squares [10], Extended Kalman Filter (EKF)[11], Beetle 
Antennae Search [12], the Levenberg-Marquardt (LM) 
method [13], genetic algorithms [14], and particle swarm 
optimization [15]. Recent hybrid approaches integrate LM 
with differential evolution for kinematic deviation 
assessment [16], parallel arm calibration for error estimation 
[17], and hybrid genetic algorithms for over-constrained 
mechanisms [18]. Advanced techniques leverage neural 
networks for real-time parameter updates in large-scale tasks 
[19], genetic algorithms for optimal pose selection to reduce 
errors [20], and fuzzy-based multi-algorithm systems to 
achieve high-precision calibration [21], collectively 
improving flexibility and accuracy in complex robotic 
applications. 

Existing calibration methods have notable limitations: 
genetic algorithms are computationally intensive with slow 
convergence, while neural networks require substantial 
training data, as evidenced in recent robotics studies [22].To 
address these challenges, this study proposes an innovative 
calibration scheme combining the Lagrange Starfish 
Optimization Algorithm (LSFA) based on a multi-
dimensional distance metric model and improved local search 
with the Support Vector Machine (SVM) algorithm [23], 
building upon foundational work in robotic mathematical 
modeling [24]. 

As a novel intelligent optimization algorithm, SFOA 
includes two core phases: exploration and exploitation. The 
exploration phase mimics starfish foraging behavior, using a 
hybrid strategy that combines five-dimensional and one-
dimensional search patterns to enhance computational 
efficiency and global search capabilities. The exploitation 
phase simulates starfish predatory and regenerative behaviors, 
employing bidirectional search and specialized motion 
mechanisms to ensure convergence [25]. Lagrange 
interpolation optimizes SFOA-processed data, further 
improving calibration accuracy. The SVM algorithm 
demonstrates exceptional capability in high-dimensional 
feature processing and generalization, precisely modeling 
complex dynamics for accurate parameter estimation. The 
main contributions include: 

(i)This study introduces the Lagrange Starfish
Optimization Algorithm (LSFA) by integrating Lagrange 
interpolation into the Starfish Optimization Algorithm 
(SFOA), effectively addressing initial value sensitivity, noise, 
and outliers in parameter calibration. LSFA leverages 
SFOA's optimization capabilities to refine state estimation 
and enhances output smoothness through Lagrange 
interpolation. A weighting system further reduces noise and 
outliers during calibration. Experiments confirm improved 
accuracy and reduced measurement noise errors [26]. 

(ii)To enhance the precision of local exploration and
determine the optimal starfish position, this paper proposes 
an improved local search method for the Starfish 

Optimization Algorithm (SFOA). During the local search 
phase of SFOA, five starfish individuals are randomly 
selected from the initial population, and their fitness values 
are evaluated. The fitness values of these five starfish 
positions are summed, and their respective weight ratios are 
calculated and sorted in ascending order. The position of the 
starfish with the highest fitness value is multiplied by the 
largest weight, while the position of the starfish with the 
lowest fitness value is multiplied by the smallest weight, 
thereby updating the starfish positions. This enhanced 
mechanism focuses on the internal optimization of the local 
search process—specifically, the weighted position update 
strategy—which prevents the algorithm from converging to 
local optima and significantly improves the efficiency and 
accuracy of SFOA. 

(iii)Traditional robotic arm kinematic calibration methods
often rely solely on Euclidean distance, limiting the 
comprehensiveness of accuracy assessment. This study 
introduces a multidimensional distance metric model that 
integrates Mahalanobis, Manhattan, Chebyshev, cosine, 
standardized Euclidean, and Euclidean distances to evaluate 
kinematic parameters. The proposed method incorporates an 
external multidimensional evaluation framework, validating 
the optimization precision and algorithmic robustness of 
individual effects and synergistic effects in complex 
environments. Experimental results demonstrate that the 
Lagrange Starfish Optimization Algorithm (LSFA) 
outperforms existing methods, providing an effective solution 
for robotic kinematic calibration [27, 28]. 

(iv)Building upon the LSFA framework, we introduce the
Support Vector Machine (SVM) algorithm, termed the 
LSFA-SVM method. This approach significantly enhances 
the calibration accuracy of robotic arm dynamic parameters 
compared to the standalone SVM algorithm, achieving a 
43.93% reduction in error and enabling high-precision 
calibration of dynamic parameters. 

2. Preliminary Work

The kinematic calibration of industrial robots involves four 
key steps: kinematic modeling, measurement, parameter 
identification, and compensation [29,30], as illustrated in 
Figure 1. 

(i)Kinematic Modeling: The kinematic model defines the
geometric relationships between a robot's joints and links. 
The Denavit-Hartenberg (D-H) model is widely used for this 
purpose [31,34]. 

(ii)Measurement: Actual operational data are collected
using sensors and measuring devices, providing essential 
information for calibration analysis and optimization. 

(iii)Parameter Identification: This step determines the
robot's kinematic and dynamic parameters. Kinematic 
parameters are optimized using the Lagrange Starfish 
Optimization Algorithm (LSFA), based on a 
multidimensional distance metric and improved local search. 
Dynamic parameters are refined using the Support Vector 
Machine (SVM) algorithm. The integrated LSFA-SVM 
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model further minimizes dynamic parameter errors, 
enhancing calibration accuracy. 

(iv)Compensation: The kinematic parameters are adjusted
based on the identified errors to improve the robot's absolute 
positioning accuracy. 
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Figure 1. Flowchart illustrating the algorithm calibration procedure. 
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Figure 2. ABB irb 120 industrial robot. 

 
The D-H model is a standardized method for robot 

modeling, defining geometric relationships between joints 
and links through a set of parameters. As shown in Figure 2, 
this study uses the ABB IRB 120 multi-joint robot as a case 
study, applying the D-H model to establish the robot's 
kinematic model through the following steps. 

2.1. Parameter Definition 

Table 1 lists ABB's standard D-H values for this robot, where 
“α” is the link twist angle, “a” the link length, “θ” the joint 
angle, and “d” the joint offset. These parameters define joint 
transformations and relationships under the Denavit-
Hartenberg (D-H) convention. 
 

Table 1. Nominal D-H values for the abb irb 120 
manipulator. 

The Denavit-Hartenberg (D-H) model defines the 
transformation matrix for the i-th joint as follows: 


















−

−

=−

1000
0

1

iii

iiiiiii

iiiiiii

i
i dcs

sascccs
casscsc

T
αα

θαθαθθ
θαθαθθ

.              (1) 

The transformation matrix i
iT 1− represents the shift from 

the (i-1)-th coordinate frame to the i-th coordinate frame. It 
encapsulates both translation and rotation, facilitating the 
conversion of points from the (i-1)-th frame to the i-th frame. 
The transformation matrices of neighboring joint are 
successively multiplied to create the total transformation 

matrix Tn
0 from the robot's base coordinate frame to the end-

effector frame. 
TTTTT n

nn
12

3
1
2

0
1

0 −××××=  ,                   (2) 

The matrix Tn
0 represents the complete coordinate 

transformation from the robot's base to the end-effector, 
specifying both its orientation and position. It plays as a 
critical role in the calculation of calibration errors. During the 
experimental phase of this work, a gripper-like instrument 
was attached to the robot's end-effector to facilitate data 
measurement. Consequently, the comprehensive equation 
from the robot's base coordinate system to the gripper 
coordinate system is articulated as follows [20]: 

TTTTT 6
7

2
3

1
2

0
1

0
7 ××××=  .                       (3) 

When performing robot kinematic modeling, it is essential 
to account for errors in the kinematic parameters of each link. 
By introducing an error model, we can express the deviations 
in the robot's transformation matrix. These inaccuracies 
predominantly stem from deviations between the actual 
parameters and their theoretical parameters, including link 
lengths, joint angles, link offsets, and link twist angles. The 
following section provides a detailed explanation and 
mathematical formulations [35,36]. 

2.2. Introduction of Errors 

We may describe the robotic model's actual kinematic errors 
as follows, assuming that they differ from the theoretical 
kinematic parameters: 

Actual link length: iii aaa ∆+=' ,               (4) 

Actual link offset: iii ddd ∆+=' ,               (5) 

Actual joint angle: iii θθθ ∆+=' ,              (6) 

Actual link twist angle: iii ααα ∆+=' .              (7) 

In this context, ia∆ , id∆ , iθ∆ ,and iα∆ represent the 
errors in link length, link offset, joint angle, and link twist 
angle, respectively. 

Jointi αi (mm) ai (mm) θi (mm) di (mm) 
 

 
i 

1 -90 0 0 290 
2 0 270 -90 0 
3 -90 70 0 0 
4 90 0 0 302 
5 -90 0 0 0 
6 0 0 0 72 
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2.3. The robotic kinematic error model has a 
transformation matrix as follows 

The actual link transformation matrix can be articulated in 
a manner that incorporates the errors introduced: 
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Consequently, the error matrix Ti

i
1−∆ ,which denotes the 

discrepancy between the actual transformation matrix '1Ti
i

−

and the theoretical transformation matrix Ti
i
1− ,is defined as 

follows: 
TTT i

i
i

i
i

i
1'11 −−− −=∆ ,    (9) 

This error matrix illustrates the variations in the robot's end-
effector attitude resulting from small adjustments in various 
parameters. For multi-link robotic systems, the total error can 
be represented as the product of the error matrices of each 
link, thus leading to the total end-effector pose error T0

7∆ . 
Based on linearization approximation theory and the actual 
kinematic model, we typically employ Taylor expansion to 
derive the error formula for the end-effector pose [37]. 
According to the Taylor expansion, the error in the 
transformation matrix of each link can be approximated as a 
linear superposition of the errors in the kinematic parameters. 
This linear approximation approach aligns well with 
contemporary constrained optimization methods used in 
kinematic control of redundant manipulators [38]. 
Specifically, we can derive a linear expression for the 
transformation matrix of each link. Assume that the 
transformation matrix of each link is a function of the 
parameters α, a, θ, and d. 
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i daTT ,,,11 θα−− = ,                   (10) 
In the case of small variations in the parameters, let the 
infinitesimal change in the current parameters be denoted as 
Δα, Δa, Δθ and Δd. The linearized expression for the 
transformation matrix can be expressed as follows [39]: 
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Ultimately,the linearized representation of the 

transformation matrix can be expressed as [39]: 
pJT i

i
i ∆×=∆ −1 .                             (12) 

Here, “J” denotes the Jacobian matrix [40], which can be 
expressed as: 
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Moreover, p∆ represents the vector of parameter 
variations: 

[ ]Tiiii dap ∆∆∆∆=∆ θα .               (14) 
In this context, each of Δα, Δa, Δθ and Δd comprises six 

parameters. ω∆ denotes the deviation of the robotic 
kinematic parameters,it represented as a 24×1 vector, thus 
[15]: 

[ ]TTTT da ∆∆∆∆=∆ θαω .           (15) 
In summary, by analyzing the effects of small variations in 

each Denavit-Hartenberg (DH) parameter on the robotic 
transformation matrix, we can develop a kinematic error 
model. This model elucidates the specific impacts of 
inaccuracies in different parameters on the robot's 
localization accuracy, thereby providing a more systematic 
approach and strategy for robot calibration and error 
compensation [19]. 

The error transformation matrix Ti
i
1−∆ represents the 

posture deviation of the robot’s end effector. The first three 
rows of the fourth column in this matrix clearly represent the 
positional error of the end effector[41]. 

2.4. Kinematic Parameter Error Identification 
Model for Robots 

In the calibration of industrial robot dynamic and kinematic 
parameters, commonly used instruments include laser 
trackers, 3D measuring arms, optical sensors, vision systems, 
torque sensors, accelerometers, and gyroscopes. While these 
instruments provide high measurement accuracy, they suffer 
from drawbacks such as high costs, operational complexity, 
and sensitivity to environmental conditions [42,43]. 

Additionally, conversion errors occur between the robot's 
base coordinate system, end effector's coordinate system, and 
the measuring apparatus's coordinate system. To reduce 
calibration costs and complexity, this study proposes a 
measurement scheme based on spatial fixed-point constraints 
for evaluating the calibration procedure. 

First, a wire encoder measures the distance between the 
end effector of the ABB IRB 120 industrial robot and a fixed 
ground point. The wire length and joint angles are recorded 
from the encoder displacement display and teaching pendant. 
Using forward kinematics theory, the wire length is 
calculated. The difference between the calculated and 
measured wire lengths represents the end effector's position 
error [39]. This study establishes a kinematic parameter error 
identification model and calculates the end effector's position 
inaccuracy using Euclidean distance [44,46]. 
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With this framework, f represents the goal function ω
denotes the kinematic parameters, n denotes the number of 
samples, iY represents the quantified wire length, and '

iY
indicates the calculated wire length. The value of rP can be 
obtained from the Cartesian coordinate system displayed on 
the teach pendant, while u

iP is the computed position of the i-
th end effector, specifically the first three rows of the last 
column of the transformation matrix Tn

0 .The fixed 0P point of 
the wire encoder on the ground is then computed as expressed 
follows: 

( )20
' PPY u

ii −= .                           (17) 
ABB robots typically use a stationary reference coordinate 

system at the base. Cartesian coordinates and joint angles 
from the teach pendant are measured relative to this base 
system. Defining a tool coordinate system enhances precision 
and adaptability in specific applications. During calibration, 
a gripper attached to the end effector measures the distance 
between the end effector and a fixed point. Hand-eye 
calibration is essential for kinematic modeling, establishing a 
coordinate system at a specific position. Additionally, 
converting the gripper's coordinate system to one relative to 
the fixed point is critical [47,48]. 

3. Calibration of Robotic Kinematic and 
Dynamic Parameters Based on LSFA and 
SVM Algorithm 

3.1. Establishment of a Calibration Device for 
Robot calibration Based on the LSFA 

The Starfish Optimization Algorithm (SFOA) is a novel 
metaheuristic algorithm characterized by rapid convergence, 
strong high-dimensional optimization capabilities, and the 
ability to avoid local optima. Leveraging these advantages, 
this study applies SFOA to the calibration of kinematic 
parameters for ABB robots. This paper proposes an 
innovative approach that integrates SFOA with Lagrange 
interpolation, termed the Lagrange-Starfish Fusion 
Algorithm (LSFA). The following section details the steps for 
calibrating kinematic parameters using LSFA [49]. 

3.1.1 Initialization of the SFOA 

The state vector X is defined to represent all the kinematic 
parameters of the joints. 

[ ]Tnnnn dadaX ,,,,,,,, 1111 θαθα = .         (18) 
Initialization of the Population: In the SFOA, the population 
is initialized by generating the positions of starfish 
individuals within the predefined bounds of the search space. 
The population position matrix is constructed as follows: 

lblbubDNrandX +−•= )(),(pos .         (19) 
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Equation (18) represents the measurement equation of the 
state space model. posX denotes the population position 

matrix, N represents the number of individuals in the 
population, and D signifies the number of decision variables, 
the lower and upper bounds of the search space are denoted 
as lb ,and ub ,showing in Table 5 as follows. 
After generating the initial position matrix, the fitness 
function values of the starfish positions are evaluated using 
the objective function. For the i-th individual in the 
population, its fitness value is calculated as shown in 
Equation (21): 

The fitness values of all starfish are stored in vector
F ,This method of storing fitness values simplifies the 
comparison and optimization of individual performances, 
thereby enhancing the efficiency of algorithm iterations, as 
shown in Equation (22). 

),,:),(()( '
iiposi YiXXfhXFit θ+= .           (21) 

[ ]TNNXFitXFitXFitF )()()( 21 = .       (22) 

3.1.2 Exploration of the SFOA 

The exploration phase in the SFOA is designed to perform 
global search, aiming to extensively explore the solution 
space and identify potential promising regions while avoiding 
premature convergence to local optima. 

During the exploration phase, the five arms of the starfish 
represent five potential search directions. The position of the 
starfish is updated by incorporating both the current best 
solution and a random solution. Specifically, the formula for 
adjusting the position of the starfish is presented as follows: 
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(23) 
Where iX represents the current position of the starfish,

bestX denotes the position of the starfish with the minimum 

fitness value in the population; α and θ are control 
parameters used to balance global search; new

iX is the updated 

position;T is the current iteration count of the algorithm; mT
is the maximum number of iterations; and r is a random 
number between 0 and 1. 

Characteristics of the exploration phase include an 
emphasis on diversity, thereby avoiding premature 

EAI Endorsed Transactions 
on AI and Robotics 
| Volume 4 | 2025 |



Paper title 
 
 
 

5 

convergence. This phase is particularly suited for identifying 
new promising regions within the solution space. 

3.1.3 Exploitation of the SFOA 

The primary objective of the exploitation phase is to perform 
local search, aiming to further refine the quality of solutions 
within promising regions identified during the exploration 
phase. This phase simulates the predatory and regenerative 
behaviors of starfish to update and optimize solutions. The 
specific update strategies are described as follows: 

Calculate the vector difference between the global best 
position bestX of the starfish population and the positions of 

five randomly selected starfish jX : 

)( jbestqj XXV −= .                          (24) 

where qjV represents the vector between the global best 
position and the position of the j-th starfish. 

Randomly select two vectors 1qjV and 2qjV from the five 
computed vectors and use them to update the position of the 
current starfish: 

21 21 qjqji
new
i VrVrXX ∗+∗+= .        (25) 

where 1r and 2r are random numbers within the range
[ ]1,0 , 1qjV and 2qjV are the randomly selected vectors. 

To enhance the precision of local exploration and 
determine the optimal starfish position, this study proposes an 
improved local search method for the Starfish Optimization 
Algorithm (SFOA). The specific steps are as follows: 

(i)Fitness Value Calculation and Sorting: Five starfish 
positions are randomly selected from the population, and their 
corresponding fitness function values )5,...,2,1( == ifi

are calculated.These values are sorted in ascending order and 
stored in vector [ ]521 ,,, fffVf = , where

521 fff ≤≤≤  . 

(ii)Weight Calculation and Sorting: The weight ratio ir for 
each fitness function value is calculated, sorted in descending 
order, and stored in vector [ ]521 ,,, rrrVr = , where 

54321 rrrrr ≥≥≥≥ . 
(iii)Position Difference Calculation: The vector difference

ibesti XXp −= between the starfish positions 

corresponding to the fitness function values in fV and the 

optimal starfish position bestX is calculated and stored in 

vector ],...,[ 521 pppX p = . 

(iv)Position Update: The sorted weight ratios rV are 

multiplied by the position differences pX and summed to 

obtain the updated local starfish position newX ,as shown in 
the following equation: 

15
1 )( −
=∑•= ijii ffr .                        (26) 

i
i

ii
new
i prXX •+= ∑

=

5

1
.                     (27) 

This method significantly improves the precision of local 
search while effectively avoiding the risk of the algorithm 
converging to local optima. 

Furthermore, when a starfish is attacked or captured by a 
predator, it activates a self-protection mechanism by 
detaching an arm to escape. In the algorithm, this mechanism 
is employed to repair or update the positions of starfish with 
poor fitness function values. The specific steps are as follows: 

( ) imnewi XTNTX ∗∗∗−= −1exp .           (28) 
The exploration phase emulates the five-arm search 

capability of starfish to comprehensively explore the solution 
space, thereby mitigating the risk of converging to local 
optima. The exploitation phase replicates the predatory and 
regenerative behaviors of starfish to perform precise searches 
within identified promising regions, with the objective of 
locating the global optimum. These two phases operate in a 
synergistic manner, enabling the Starfish Optimization 
Algorithm (SFOA) to maintain an effective balance between 
global exploration and local exploitation, thus providing an 
efficient approach to solving complex optimization problems. 

3.2. Calibration results based on Lagrange 
interpolation with the SFOA. 

ABB industrial robots are widely used in high-precision tasks 
like painting, laser cutting, and electronic assembly, making 
precise and smooth motion control essential. This study 
proposes a calibration method (LSFA) combining the 
Lagrange interpolation algorithm with the Starfish 
Optimization Algorithm (SFOA) to refine results. Key 
advantages include: 

Enhanced Accuracy: Lagrange interpolation constructs a 
polynomial through fixed points, improving kinematic 
parameter accuracy for reliable robot control. 

Motion Smoothness: The continuous and differentiable 
interpolation function ensures smooth trajectories, reducing 
instabilities from abrupt parameter changes. 

Robustness to Sparse Data: Lagrange interpolation 
effectively fills data gaps in sparse SFOA outputs, enhancing 
practicality. 

Broad Applicability: As a versatile numerical technique, it 
handles discrete data points across diverse scenarios. 

After SFOA calibration, Lagrange interpolation defines 
interpolation functions for the results. 

∏
≠
= −

−
=

n

ij
j ji

j
i xx

xx
xL

0

)( .                       (29) 

∑
=

=
n

i
ii xLyxP

0
)()( .                         (30) 

EAI Endorsed Transactions 
on AI and Robotics 
| Volume 4 | 2025 |



 
Yongtao Qu et al. 

  6      

In this context, )(xLi denotes the i-th Lagrange basis 

polynomial, while iy represents the function value 
corresponding to the variable x . 

Let 1x represent the initial kinematic parameters of the 

robotic arm, 2x denote the outcomes derived from calibration 

with the Starfish optimization algorithm(SFOA), and 3x
represent the predicted values of the robot's kinematic 
parameters. 
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In order to obtain optimal interpolation results, we can take 

the derivative of the Lagrange interpolation polynomial. 
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The ideal solution value x is presented as follows. 
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(37) 
The Lagrange Starfish Optimization Algorithm (LSFA) 

efficiently calibrates robotic kinematic parameters (e.g., DH 
parameters) by integrating the global search capability of 
SFOA (avoiding local optima), Lagrange interpolation 
(smoothing parameter updates), and a multidimensional 
distance metric (robust error evaluation). Based on geometric 
and nonlinear error model characteristics, LSFA significantly 
enhances multi-parameter optimization, noise suppression, 
and adaptability to complex environments. 

3.3. Calibration of dynamic parameters based 
on the Support Vector Machine (SVM) 
algorithm. 

Subsequently, the optimal kinematic parameters from the 
Lagrange Starfish Optimization Algorithm (LSFA) were used 
to calibrate dynamic parameters. Industrial robot dynamic 
models are typically built using joint position, velocity, and 
acceleration parameters to describe operational forces and 
motion. In practice, joint angle errors often approximate 
dynamic errors, as they reflect dynamic model deviations 
through linearization. Studies indicate that correcting joint 
angle errors under certain conditions significantly enhances 
robotic arm motion control accuracy.Support Vector Machine 
(SVM), a supervised learning technique, evaluates joint angle 
deviations in robot calibration, with performance relying on 

the loss function design. The following section details the 
steps for dynamic parameter calibration using SVM based on 
measured joint angles [50-51]. The loss function of a linear 
SVM includes two components: hinge loss and regularization, 
expressed as: 

( ))1
2
1min(

1

'2
11 ∑

=

−+=
n

i
ii LL

n
ωλδ .        (38) 

where 1λ is the regularization coefficient and 1ω represen- 
ts the weights of the hidden layer. In SVM, the input can be 
mapped to a high-dimensional space to facilitate 
classification by a linear classifier. The equation delineating 
the transition from the input layer to the hidden layer is 
expressed as: 

11 bxwz += .                                 (39) 

jix θθ ∗= .                                   (40) 

where z is the input function of the concealed layer. x is 
the kernel function used to compute the similarity between 
samples, and θ represents the joint angles. The equation 
delineating the transition from the hidden layer to the output 
layer is expressed as: 

( ) ( ) 11 −−+== zezfh .                    (41) 
The equation describing the output layer is given by: 

22
' bhLi +=ω .                           (42) 

where h is the output function of the hidden layer, '
iL is the 

output layer function, 2ω represents the regularization 
coefficient. ( )•f denotes the activation function of the buried 

layer, and 1b and 2b are the bias vectors. Following the 
principles of back propagation, the loss function is minimized 
using gradient descent. The weight and bias update scheme is 
formulated as: 
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The parameter values of LSFA are shown in Table 5 as 
follows. 

The Support Vector Machine (SVM), with its advantages 
in nonlinear modeling, noise resistance, small-sample 
adaptability, and high-dimensional optimization, effectively 
calibrates robotic arm dynamic parameters. By training on 
real-world joint angle data, SVM captures the relationship 
between joint angle deviations and dynamic parameters, 
enabling accurate dynamic parameter predictions. Calibrated 
joint angle data compensate for errors, thereby enhancing the 
robotic arm’s repeat positioning accuracy through improved 
motion control precision. 

3.4. Kinematic Parameter Evaluation 
Framework Based on Multi-Dimensional 
Distance Metrics 
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This study proposes a multidimensional distance metric 
method based on the Lagrange Starfish Optimization 
Algorithm (LSFA) for optimizing the kinematic parameters 
of robotic arms. First, the distance between the end-effector 
of the robotic arm and a fixed reference point is precisely 
measured using a cable encoder. This distance is then 
mathematically characterized using Mahalanobis Distance, 
Manhattan Distance, Euclidean Distance, Chebyshev 
Distance, Cosine Distance, and Standardized Euclidean 
Distance. For each distance metric, the LSFA algorithm 
calculates the fitness function values for both the initial and 
updated positions of the starfish.Table 5.Multi-Distance 
Metric Computation. 

By comparing these values, the optimal fitness function 
values corresponding to the six distance metrics are 
determined. Through iterative computation, the best starfish 
positions under the six distance metrics are ultimately 
obtained. Furthermore, the fitness function values 
corresponding to the six distance metrics are sorted in 
ascending order and summed. The weight ratio of each fitness 
function value to the total distance is calculated and sorted in 
descending order. Finally, the six starfish positions 
corresponding to the sorted fitness function values are 
multiplied by their respective weight ratios and summed to 
derive a comprehensive starfish position based on 
multidimensional distance metrics. By integrating the 
advantages of multiple distance metrics, this method 
effectively addresses the limitations of the starfish 
optimization algorithm in exploration and foraging within 
complex environments, significantly improving the accuracy 
and robustness of kinematic parameter optimization. 

Here, mY , mhY , eY , cbY , coY ,and seY represent the 
distances measured by the cable encoder between the end-
effector of the robotic arm and the fixed reference point, 
characterized by Mahalanobis Distance, Manhattan Distance, 
Euclidean Distance, Chebyshev Distance, Cosine Distance, 
and Standardized Euclidean Distance, respectively. Similarly,

muY , mhuY , euY , cbuY , couY ,and seuY denote the distances 
after calibrating the kinematic parameters, characterized by 
the aforementioned six distance metrics. 

In robotic kinematic calibration, Mahalanobis Distance 
evaluates the discrepancy between the end-effector and target 
positions while accounting for correlations between 
dimensions (e.g., positional and orientation errors), providing 
comprehensive error analysis. Manhattan Distance rapidly 
assesses the total discrepancy, offering high computational 
efficiency in high-dimensional spaces. Chebyshev Distance 
measures the maximum deviation, making it suitable for 
scenarios sensitive to extreme errors. Cosine Distance 
evaluates orientation discrepancies by measuring the angle 
between vectors. Standardized Euclidean Distance eliminates 
unit and scale influences, assessing standardized errors and 
enhancing calibration robustness.Mathematical Expressions 
of Distance Metrics: 
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After updating the kinematic parameters using the 
Lagrangian Starfish Optimization Algorithm (LSFA), this 
study recalculates the distances between the robotic arm's 
end-effector and the fixed point using the aforementioned six 
distance metrics, denoted as muY , mhuY , euY , cbuY , 

couY ,and seuY .Subsequently, the error between the initial 
measured distances and the computed distances is calculated 
using Equation (17) to evaluate the optimization performance 

of the kinematic parameters.Here,
mY denotes the fixed point,

mhY represents the measured data point;
eY is the covariance 

matrix of the vector,
cbY is the total number of data points 

measured by the cable encoder and 
coY is the standard 

deviation of
seY . 
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Table 2. Design of the Calibration Algorithm. 

 

 
 
 
 
 

4. Experiment and Analysis 

4.1. calibration experiment 

Building on the theoretical analysis, experiments were 
conducted using an ABB IRB120 robotic arm, cable-driven 
encoders, a displacement display, LabVIEW software, and a 
laptop (Fig. 3). Figure 4 illustrates the data collection 
interface, which gathered training data from 110 spatial 
positions. To evaluate the effectiveness of the calibration 
algorithm, 10 test samples were validated near the robotic 
arm’s workspace boundaries and singularity points. Table 6. 
Parameter tables of LSFA and SVM. 
 

ABB IRB 120 Robot.

Robot Teach Pendant

Drawstring Displacement Indicator.

Drawstring 
Displacement Sensor.

 
Figure 3. Experimental platform for robot calibration. 

To accurately evaluate the performance of the calibration 
algorithm, this study selects uses the Root Mean Square Error 
(RMSE), Standard Deviation (STD), and Maximum Error 
(MAX) as important indicators for evaluating the accuracy of 
the robot calibration [52]. The following provides a detailed 
description of these three metrics. 
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4.2. Analysis of the Calibration Result of the 
Algorithm 

In robot kinematics and dynamics calibration, smaller RMSE, 
STD, and MAX values indicate higher accuracy.Experiment 
Performance Analysis: This experiment evaluates the 
calibration accuracy of kinematic and dynamic parameters 
using the Lagrange Starfish Algorithm (LSFA) with a 
multidimensional distance metric and improved local search, 
combined with the Support Vector Machine (SVM) algorithm. 
Table 3 compares algorithm performance, Table 4 
summarizes the algorithms, and Figure 5 shows post-
calibration localization errors for each approach. 
 

 
Figure 4. illustrates the interface of the data collection 

program. 

 

 

 

Table 3. Performance Comparison of Various 
Calibration Algorithms. 

 

Item RMSE 
(mm) 

STD 
(mm) 

MAX 
(mm) 

Iterati
ons 

Calibrate 
robotic arm 
kinematics 

Before 2.09 2.00 3.36 53 
M1 0.66 0.56 1.71 13 
M2 0.64 0.53 1.38 16 
M3 0.50 0.41 1.16 16 
M4 0.54 0.44 1.26 10 
M5 0.70 0.56 1.76 17 
M6 0.61 0.48 1.51 30 
M7 0.73 0.61 1.60 29 
M8 0.41 0.32 1.03 30 
M9 0.29 0.21 0.91 30 

Calibrate 
robotic arm 
dynamics 

M10 0.66 0.54 1.57 40 

M11 0.37 0.34 0.96 25 

4.3. Based on the experimental result,we 
summarize the following 

As shown in Figures 5(a) and (b), both SFOA and LSFA 
outperform other algorithms in convergence speed and 
accuracy during kinematic parameter calibration. The LSFA-
SVM integration significantly enhances dynamic parameter 
calibration precision. 

In Figure 6, M1 to M8 denote algorithms for calibrating 
the robotic arm's kinematic parameters. M8 shows results 
from the Starfish Optimization Algorithm (SFOA), with an 
RMSE of 0.41 mm, STD of 0.32 mm, and MAX of 1.03 mm. 
M9, based on the Lagrange Starfish Optimization Algorithm 
(LSFA) with a multidimensional distance metric and 
improved local search, achieves RMSE, STD, and MAX 
values of 0.29 mm, 0.21 mm, and 0.91 mm, respectively, 
improving accuracy by 29.27%, 34.4%, and 11.65% over M8. 

M10 represents the Support Vector Machine (SVM) 
algorithm for dynamic parameter calibration, while M11 
denotes the integrated LSFA-SVM algorithm. M11 improves 
calibration accuracy over M10 by 43.93%, 37.03%, and 
38.85%, respectively. 

 
Table 4. Comparison of Calibration Algorithms. 

 
Method Description 

M1 
The Extended Kalman Filter (EKF) effectively mitigates non-Gaussian noise 
during robot calibration. 

M2 
The Particle Filter (PF) algorithm is a Bayesian filtering technique suitable for 
nonlinear and non-Gaussian state estimation [53]. 

M3 
The Levenberg-Marquardt algorithm is an optimization technique used for 
nonlinear least squares problems[13]. 

M4 
The LMGA algorithm integrates the Levenberg-Marquardt (LM) algorithm 
with Genetic Algorithms (GA) for robotic parameter calibration [45]. 
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M5 
The Beetle Antennae Search (BAS) method is a bio-inspired optimization 
approach based on intelligent design [54,55]. 

M6 
The Genetic Algorithm (GA) pursues optimal solutions using the principles of 
"survival competition" and "survival of the fittest" [56,57]. 

M7 
The EPF algorithm is a technique for calibrating robotic parameters that 
integrates the Extended Kalman Filter (EKF) with the Particle Filter (PF) [58]. 

M8 
The Starfish optimization algorithm (SFOA) is a newly proposed intelligent 
optimization algorithm. 

M9 
The LSFA integrates the Lagrange interpolation algorithm and the Starfish 
Optimization Algorithm. 

M10 SVM is a supervised learning algorithm for classification and regression tasks. 
M11 LSFA-SVM integrates the LSFA and SVM algorithms. 
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Figure 5. Calibration method training curve. 

  
(a) (b) 

EAI Endorsed Transactions 
on AI and Robotics 
| Volume 4 | 2025 |



Paper title 
 
 
 

3 

 

0

50

100

150 Total time cost(s)

Calibration Algorithm

M1
M2
M3
M4
M5
M6
M7
M8
M9

 
(c) (d) 

Figure 5. The result of the calibration method and total time cost. 

Table 5. Multi-Distance Metric Computation and LSFA-SVM Interaction Flow 
 

Multi-Distance Metric Computation Steps LSFA-SVM Interaction Logic 

Input Data: Robot end-effector position Pi  
and fixed reference point P0 LSFA Input: Initial kinematic parameters 

Parallel Computation of Six Distances(Eq.45) LSFA Optimization:(Eq.29-37) 

Weight Assignment: Generate weights ri based on 
error ranking (Eq. 26). 

Output to SVM: Optimized parametersand 
dynamic data  

Integrated Distance Output: Weighted summation SVM Modeling:(Eq.38-44) 

Output compensation:Δkinemic parameters Output compensation:Δdynamic parameters 

 
Table 6. Parameter tables of LSFA and SVM 

 

Parameter 

LSFA Value SVM Value 
Population Size (N) 30 Kernel Function x  

Max Iterations 1000 Regularization( 1λ ) 10.0 
Variables( D ) 24 Kernel Coefficient(λ) 0.1 

ub  0.28 Max Iterations 120 
lb  -1.58 h  6 

 
As shown in Figure 7, the Lagrange Starfish Optimization 

Algorithm (LSFA), integrating a multidimensional distance 
metric model and improved local search, employs six 
distance measures Mahalanobis, Manhattan, Chebyshev, 
cosine, standardized Euclidean, and Euclidean distances—to 
optimize kinematic parameter calibration. By sequentially 

aggregating D1-D6 (120 sample points), LSFA significantly 
enhances calibration accuracy, demonstrating a clear 
downward trend in test errors. Specifically:(a) Model 
aggregation reduces RMSE;(b) Model aggregation reduces 
STD;(c) Model aggregation reduces MAX;(d) Model 
aggregation reduces POSITION. 
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(c) (d) 

Figure 7. The calibration accuracy of model aggregation with six distance metrics.

5. Conclusions and prospective research 

This study proposes the Lagrange Interpolation Local 
Search Improved Starfish Optimization Algorithm (LSFA), 
a comprehensive method for calibrating industrial robotic 
arms. LSFA integrates a multidimensional distance metric 
model—including Mahalanobis, Manhattan, Chebyshev, 
cosine, standardized Euclidean, and Euclidean distances—
to optimize kinematic parameters. Lagrange interpolation 
reduces noise and outliers, while the Starfish Optimization 
Algorithm (SFOA) provides robust global search 
capabilities. Enhanced local search and multiple distance 
metrics further improve the algorithm's robustness and 
adaptability. Additionally, integrating the Support Vector 
Machine (SVM) algorithm into LSFA significantly 
enhances the accuracy of dynamic parameter calibration. 

Experimental results demonstrate the improved 
algorithm's high precision and robustness in complex 
environments. Future research will focus on combining 
intelligent optimization with neural networks, multi-robot 
collaborative calibration, deep learning for automation, and 
validating the method in diverse practical scenarios. These 
efforts aim to advance efficient and precise robotic 
technologies for industrial automation. 
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