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Abstract

LLMs are transforming AI but face challenges in robotics due to domain-specific requirements. This paper
explores LLM-generated URScript code for Universal Robots (UR), improving automation accessibility. A
fine-tuning dataset of 20,000 synthetic samples, based on 514 validated human-created examples, enhances
performance. Using the Unsloth framework, we fine-tune and evaluate the model in real-world scenarios.
Results demonstrate LLMs’ potential to simplify UR robot programming, highlighting their value in industrial
automation. The video demo is available at the following link, and the codebase will be added soon:
https://github.com/t1end4t/llm-robotics
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1. Introduction
Automation and robotics are increasingly becoming
integral components of modern industrial systems.
Current advancements in this field are achieving
remarkable outcomes, largely driven by the emergence
of artificial intelligence (AI) and machine learning
(ML) technologies Universal Robots (UR), with their
versatile and collaborative robot arms, have emerged
as a leader in this field. In 2024, Universal Robots
unveiled its AI Accelerator, a comprehensive hardware
and software toolkit aimed at advancing artificial
intelligence (AI) applications in collaborative robots
(cobots) [1]. By enhancing automation processes and
expanding the scope of cobots’ capabilities, the AI
Accelerator demonstrates how AI can revolutionize
industries ranging from manufacturing to healthcare.
However, this rapid integration of AI into robotics
presents both significant benefits and challenges,
particularly concerning safety, reliability, and system
stability. Ensuring that cobots maintain precision
and adaptability without compromising human safety
remains a critical focus in this evolving landscape.

Among the most promising innovations are genera-
tive models that can generate high-quality, human-like
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text and code such as Large Language Models, Multi-
modal AI, etc. Large Language Models (LLMs) have
emerged as transformative tools in robotics, enabling
advanced capabilities in natural language understand-
ing, decisionmaking, and control. Research in this field
has focused on integrating LLMs to enhance robotic
performance across various dimensions, from task exe-
cution to multi-modal interaction.

The ability of LLMs to ground language in robotic
affordances has been explored in "Do as I Can,
Not as I Say" [2] by Chebotar et al., where natural
language instructions are aligned with a robot’s
physical capabilities for high-level decision-making.
Similarly, Huang et al. in "Voxposer" [9] demonstrate
the use of LLMs to synthesize dense robotic trajectories
and manipulate 3D value maps, showcasing their utility
in spatial reasoning and task execution.

LLMs also play a critical role in state tracking and
dynamic decision-making, as highlighted by Yoneda
et al. in "Statler" [4], where state-maintaining LLMs
enable consistent planning in dynamic environments.
Furthermore, Liang et al. in "Code as Policies"
[5] propose converting natural language inputs into
executable robot control policies, allowing robots
to perform complex tasks with minimal human
intervention.
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Figure 1. Methodological Workflow

In terms of adaptability, Mirchandani et al., in "Large
Language Models as General Pattern Machines" [6],
emphasize the ability of LLMs to extrapolate sequences
and integrate large-scale robotic datasets, making them
versatile tools for automation. Similarly, Ceravola et
al., in "CoPAL", [7] introduce frameworks for real-
time corrective planning of robot actions, ensuring
robustness in unpredictable scenarios.

Multi-modal capabilities are another area of inno-
vation. Driess et al., in "Palm-e", [8] detail the imple-
mentation of embodied multi-modal LLMs that enable
perception and action, bridging the gap between sen-
sory input and motor responses. Additionally, Huang
et al. in "Instruct2Act" [9] explore the mapping of
multi-modal human instructions to robotic actions,
further advancing human-robot interaction. Scalability
and collaboration are addressed in "Scalable Multi-
Robot Collaboration with Large Language Models"
[10] by Chen et al., where LLMs facilitate central-
ized and decentralized strategies for multi-robot sys-
tems. Finally, Firoozi et al., in "Foundation Models in
Robotics", [11] provide a comprehensive overview of
LLMs’ foundational role in advancing robotic auton-
omy, discussing both their potential applications and
the challenges ahead.

These advancements collectively illustrate the trans-
formative impact of LLMs in robotics, paving the way
for more intelligent, adaptable, and autonomous sys-
tems capable of seamlessly integrating into diverse
environments. This study focuses on applying LLM to
the task of generating URscript code to control the
UR robot arm. While technologies LLMs techniques,

have significant potential, their limitations, especially
in niche domains [12], necessitate human oversight.

To address these challenges, we propose a fine-tuned
model trained on a high-quality instruction-tuning
dataset and evaluate its performance across a range
of specific robotic control tasks. Our study follows a
structured workflow, as illustrated in Figure 1, which
outlines the key stages of dataset generation, model
fine-tuning, and evaluation. Our main contributions in
this study are as follows:

• Data collection: In this study, we constructed
a specialized dataset for fine-tuning our model
by utilizing URSim [13], a simulation software
designed for programming and testing Universal
Robots. Using URSim, we developed and col-
lected URScript-based control programs, ensuring
that all dataset instances were generated directly
from URScript code. Following the methodol-
ogy of the Alpaca dataset [14], we created seed
tasks by deriving structured instructions from
these URScript snippets. To expand the dataset,
we employed Gemini to generate additional task
instances, leveraging the initial seed tasks as a
foundation. This process enabled us to scale the
dataset to 20,000 samples while preserving con-
sistency and task diversity. By systematically gen-
erating both concise and detailed task descrip-
tions, we ensure that the dataset remains robust,
syntactically and logically coherent, and highly
relevant to real-world robotic applications. This
comprehensive dataset serves as a reliable foun-
dation for evaluating and fine-tuning our model.
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• Fine-tuning model: To fine-tune our model, we
employed the Unsloth framework, leveraging its
advanced capabilities to refine multiple Qwen2.5
models, including Qwen-Base and Qwen-Coder in
both 3B and 7B configurations. Using the dataset
collected via URsim, we conducted supervised
fine-tuning, enabling the models to adapt to
task-specific patterns and complexities inherent
in our data. This approach allowed for efficient
optimization of specialized coding tasks, ensuring
the models could accurately interpret and execute
robotic commands.

• Testing and deploying: To validate our fine-
tuned model, we conducted testing across five
carefully selected use cases, each reflecting critical
aspects of real-world robotic operations. These
use cases included motion planning, object
manipulation, error recovery, adaptive decision-
making, and multi-step task execution. The
performance of the model was first evaluated
in a simulated environment using URsim to
ensure alignment with the dataset used during
fine-tuning. Subsequently, we deployed the code
generated by the fine-tuned LLM directly onto a
UR3 robotic arm, enabling us to assess its ability
to perform physical tasks accurately and reliably.

2. Literature review
2.1. Large language models
Large Language Models (LLMs) represent a signifi-
cant milestone in artificial intelligence (AI), designed
to understand and generate human-like text with
remarkable accuracy. Built using advanced deep learn-
ing architectures, particularly transformerbased frame-
works, these models leverage massive datasets that
span diverse domains of human knowledge, including
books, articles, and websites. Their capabilities have
revolutionized natural language processing (NLP) tasks
such as machine translation, summarization, and more
sophisticated applications like code generation, creative
writing, and conversational AI.

At the core of LLMs lies the transformer architecture,
introduced by Vaswani et al. [15], which introduced
a self-attention mechanism that efficiently models
long-range dependencies in sequential data. The self-
attention mechanism is mathematically expressed as:

Attention(Q,K, V ) = softmax

QKT√
dk

V
Here, Q, K and V represent the query, key, and value

matrices, while dK is the dimensionality of the keys.
This mechanism allows LLMs to dynamically focus on
relevant parts of the input sequence, capturing context
effectively across large texts.

LLMs operate on the principle of pretraining and
fine-tuning. In the pretraining phase, the model is
optimized to minimize a loss function over a vast corpus
of unstructured data. Typically, this involves a masked
language modeling objective, such as:

LMLM = −
N∑
i=1

log P (xi | x<i)

where xi represents the current token and x<i
denotes the sequence of preceding tokens. Fine-tuning
adapts this pretrained model to specific downstream
tasks, refining its parameters to optimize task-specific
objectives, often using supervised learning.

The emergence of models like GPT, BERT, and GPT-3
reflects iterative advancements in both architecture and
training methodologies, made possible by increased
computational resources. For instance, GPT-3, a 175-
billion parameter model, exemplifies the scalability of
LLMs and their ability to generalize across diverse tasks
without explicit retraining.

Despite their versatility, LLMs pose significant
challenges. Ethical concerns include biases in training
data, risks of misinformation, and the environmental
costs associated with training large-scale models,
which can be quantified by the computational energy
required, E ∝ np · ny · nt where np is the number of
parameters, ny the size of the dataset, and np the
number of training iterations. Addressing these issues
is a key focus in ongoing research.

Nonetheless, LLMs remain at the forefront of
AI innovation, driving transformative advancements
across industries while inspiring further exploration
into optimizing their efficiency, fairness, and applica-
bility.

2.2. Qwen LLM models
The Qwen large language models (LLMs), developed
by Alibaba Cloud, represent a significant advancement
in the field of artificial intelligence. These transformer-
based models, initially introduced with the Qwen1.8B
and later scaled to the Qwen2 and Qwen2.5 series, have
been optimized for various applications, including gen-
eral purpose natural language understanding, multilin-
gual processing, and domain specific tasks like coding
and mathematical reasoning [16]. Qwen models lever-
age stateof-the-art innovations in transformer architec-
tures, such as Rotary Positional Embeddings (RoPE) and
Grouped Query Attention (GQA), to enhance perfor-
mance and scalability. The Qwen2.5 series offers models
with parameters ranging from 3 billion to 72 billion,
enabling fine-tuning and instruction tuning for task-
specific applications. Notably, the Qwen2.5-72B model
achieves state of-the-art results in reasoning and mul-
tilingual understanding, comparable to leading models
like GPT-4 and Llama2.
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Example of URscript

def move_joint():

local Waypoint_1_p= p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

local Waypoint_1_q= [-1.6, -1.72, -2.2, -0.8, 1.59, -0.03] # radian

local Waypoint_2_p= p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.27]

local Waypoint_2_q= [-0.92, -1.26, -1.88, -1.73, 1.16, 0.88] #radian

while (True):

movej(get_inverse_kin(Waypoint_1_p, qnear=Waypoint_1_q ), a=1.39, v=1.04)

movej(get_inverse_kin(Waypoint_2_p, qnear=Waypoint_2_q), a=0.78, v=0.87)

end

end

Pretraining for Qwen models involves processing
trillions of tokens from diverse multilingual datasets,
with particular emphasis on English and Chinese.
Post-training employs techniques such as Supervised
Fine-Tuning (SFT) and Reinforcement Learning with
Human Feedback (RLHF) to refine model alignment
and improve response quality. These methods ensure
that Qwen models not only deliver accurate responses
but also demonstrate creativity and adherence to user
instructions. In addition to their generalpurpose capa-
bilities, specialized variants like Qwen2.5 Coder and
Qwen2.5-Math are tailored for technical domains.
Qwen2.5-Coder excels in programming tasks, such as
debugging and code generation, while Qwen2.5-Math
enhances mathematical reasoning using advanced tech-
niques like Chain-of-Thought and Proof-of-Theorem
reasoning.[16] [17]

2.3. Fine-tuning LLM models
Fine-tuning large language models (LLMs) is a process
of adapting pre-trained models to specific tasks or
domains by updating their parameters using a task-
specific dataset. The core idea is to adjust the model’s
weights W to minimize a loss function Ltask , calculated
as:

Ltask =
1
N

N∑
i=1

ℓ
(
f (xi ;W ), yi

)
where xi represents the input data, yi is the target
output, and ℓ is a loss function, such as cross-entropy.
The updated weights W ′ are obtained using gradient
descent:

W ′ = W − η∇Ltask
where η is the learning rate. However, fine-tuning all

model parameters can be computationally expensive,
especially for large models with billions of parameters.

To address this, techniques like Low-Rank Adapta-
tion (LoRA) have been developed. LoRA introduces

small, trainable low-rank matrices ∇W into the model,
while keeping the original weights W frozen. For a
weight matrix W , the modified forward pass becomes:

W ′ = W + η∇W

where ∆W = AB, and A ∈ Rd×r and B ∈ Rr×d are low-
rank matrices with r ≪ d. This significantly reduces
the number of trainable parameters to O(r · d), making
fine-tuning more efficient while retaining performance.
Fine-tuning with LoRA thus enables the adaptation
of LLMs to specific tasks with reduced computational
and memory overhead, broadening their applicability
to resource-constrained settings.

2.4. URScript: Flexible Robotic Programming
Language
URScript is a high-level scripting language specifically
developed by Universal Robots to program and control
its robotic arms. It provides functionality beyond the
graphical PolyScope interface, allowing users to write
customized scripts for intricate control over robot
movements, logical operations, and system interactions.
Through URScript, developers can integrate external
equipment, implement socket communications, and
control robots in real time. [18]

URScript’s design makes it accessible for diverse
user expertise levels, enabling its adoption in complex
industrial tasks and academic experiments alike. Key
features of URScript include:

• Multi-threading: Manage simultaneous tasks,
crucial for real-time robotic operations.

• Conditional Logic and Loops: Facilitate advanced
automation scenarios.

• Integration Capabilities: Support for external
devices and communication protocols.
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3. Methodology
3.1. Data collection

Figure 2. URSim GUI

To develop a high-quality dataset, we leverage
URSim as a simulation platform to generate control
programs written in URScript. This approach ensures
that the produced code is syntactically correct, logically
coherent, and adheres to predefined safety standards.
As illustrated in Figure 2, URSim provides a graphical
user interface (GUI) that allows users to create robot
control programs using a block-based programming
environment. The left panel of the GUI contains
a set of predefined commands, such as movement,
waypoints, and control logic, which can be sequentially
arranged in the central programming workspace. Once
a program is structured, it can be saved to generate a
URScript file containing the corresponding commands
in script format. After collecting URScript code
snippets, we construct a set of seed tasks by deriving
structured instructions from these snippets, following
the methodology of the Alpaca dataset. [14] These
seed tasks consist of both concise task descriptions
and detailed explanations of the associated challenges,
facilitating a comprehensive assessment of the model’s
fine-tuning effectiveness. To further expand the dataset,
we employ the prompts provided in Appendix A,
generating additional task samples while maintaining
consistency and diversity. This structured approach
ensures the dataset’s robustness and applicability to
real-world robotic control scenarios.

3.2. Fine-tune model by Unsloth
The Qwen model was chosen for this research due to
its outstanding performance and extensive support for
diverse applications, making it a suitable candidate
for URScript code generation tasks. As a state-of-the-
art language model, Qwen demonstrates strong capa-
bilities in understanding and generating complex text

structures, including programming languages, thanks
to its advanced transformer architecture and large-
scale pretraining. Furthermore, the availability of mul-
tiple parameter sizes, such as 3B and 7B, allows for
a balance between computational efficiency and per-
formance, enabling scalability based on resource con-
straints. Qwen’s robust community support, frequent
updates, and seamless integration with frameworks like
Hugging Face Transformers ensure that it remains a
versatile and reliable tool for fine-tuning in specialized
domains. These factors collectively position Qwen as an
optimal choice for enhancing the logical accuracy and
contextual relevance required for generating URScript
code. To enhance the capabilities of the Qwen-3B and
Qwen-7B models for generating URScript code, we
employed the Unsloth framework, a lightweight yet
powerful finetuning approach designed for domain-
specific applications. Unsloth facilitates efficient adap-
tation of large-scale language models by integrating
optimized training workflows, flexible configuration
options, and robust evaluation techniques. This section
outlines the process of fine-tuning the Qwen models,
leveraging Unsloth to maximize model performance
and computational efficiency.

The decision to use the Qwen-3B and Qwen-
7B models for this research was driven by the
computational resources available, specifically the T4
GPU provided by Google Colab. These models strike
a practical balance between performance and resource
demands, making them well-suited for fine-tuning and
experimentation within the constraints of a single-GPU
environment. The T4 GPU, with its 16 GB of VRAM,
is capable of handling the memory requirements
of the 3B model efficiently and supports the 7B
model with optimized batching and mixed-precision
training techniques. This setup ensures that the
research can be conducted without requiring expensive
highperformance hardware, while still leveraging state-
of-the-art models to achieve meaningful results in
URScript code generation tasks.

Figure 3. Deploying URscript code into UR3

5
EAI Endorsed Transactions 

on AI and Robotics 
| Volume 4 | 2025 |



Tien Dat Le and Minhhuy Le

(a) UR3 robotic system setup (b) Pick-and-place operation sequence

Figure 4. Physical setup of the system

4. Experimental results
Evaluating the fine-tuning effectiveness of large lan-
guage models (LLMs) in a narrow domain like con-
trolling robots with URScript is challenging due to the
specificity of the tasks. This research focuses on devel-
oping evaluation parameters for the fine tuning process
and optimizing the workflows for pre-defined tasks.
The goal is to enhance the adaptability and precision
of LLMs in this specialized application.

4.1. Experimental setup

61%

21%
11%

7%

No error
Use ‘for‘ keyword
Use ‘try-catch‘

Other errors

Figure 5. Error Distribution in URScript Generated by Qwen7B-
Coder

The deployment of URScript code to the UR3
robotic system is facilitated through a networked
communication framework, as illustrated in Figure 3.
The process begins with the development of control
scripts in URScript on a laptop, where a Python-
based interface utilizing the socket library is employed

to establish a communication channel. The URScript
program is then transmitted over a local network via
a router, which assigns an IP address to the UR3 robot
through Dynamic Host Configuration Protocol (DHCP).
Once connected, the UR3 robot receives and executes
the transmitted script, enabling remote deployment
and execution of control commands. This architecture
ensures a flexible and efficient method for real-time
programming and control of the robotic system.

Figure 4a illustrates the physical setup of the system,
which consists of multiple interconnected components
to facilitate automated robotic control. The primary
element is the UR3 robotic arm (1), which is responsible
for executing programmed tasks with high precision.
The system is equipped with an HMI touchscreen
interface (2), enabling real-time monitoring and user
interaction for system control. Network communication
is established through the Ethernet port (3), ensuring
seamless data transmission between the control unit
and external systems. Additionally, the system handles
workpieces (4), which are manipulated during the
automated process. This integrated setup enables
efficient execution of URScript-based control programs,
ensuring reliable operation in real-world applications.

For fine-tuning, we used the LoRA technique
and 4-bit quantization model for less memory. For
LoRA, we tried some parameter recommended by
the original paper when set the lora_alpha to 16,
set dropout to 0. With rank of this algorithm, we
choose 16, and learning rate we set it to 2e-4, this
learning rate is commonly used for f inetuning LLM
and enables stable and incremental updates to the
model’s parameters throughout the training process.
For optimizer, admw_8bit (AdamW optimizer that
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employs 8-bit precision) is selected for fine-tune,
combine with weight decay is 0.01. The fine-tuning
experiments were conducted on Google Colab T4 GPU
with consistent settings across all datasets.

4.2. Results with high quality test-cases
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Figure 6. Comparison of Executable Code and Errors Across
Models

To assess the reasoning capabilities and the effec-
tiveness of URScript code generation of the fine-tuned
model, we carefully selected five test cases with human-
crafted prompts. These prompts, which are presented
in Appendix B, were designed to evaluate the model’s
ability to understand and respond accurately to com-
plex coding tasks. We systematically collected and ana-
lyzed responses from three categories of models: the
Qwen2.5-7B-coder model without fine-tuning, the fine-
tuned versions of the Qwen2.5-7B-coder, Qwen2.5-7B,
Qwen2.5-3B-Coder, Qwen2.5-3B and the GPT-4 Turbo
model. This comparative evaluation allows us to exam-
ine the impact of fine-tuning on performance and to
identify differences in reasoning and code generation
capabilities across the models.

The results, as shown in Table 1, highlight notable
performance differences across the models. Qwen2.5-
7B displayed the good performance, passing three test
cases without errors. Qwen2.5-3B and Qwen2.5-Coder-
7B (fine-tuned) followed closely, passing four out of five
test cases, but each model failed one test case, indicat-
ing minor gaps in logical comprehension. Qwen2.5-3B-
Coder demonstrated consistent performance, success-
fully handling all five test cases. In contrast, Qwen2.5-
Coder-7B (without fine-tuning) and GPT4-Turbo strug-
gled the most, failing multiple test cases and showing

inconsistent outputs. These results suggest that model
fine-tuning significantly enhances logical accuracy and
generalization. Future steps could involve curating
higher-quality datasets and employing advanced meth-
ods to further improve model performance.

Figure 4b illustrates the Pick-and-Place operation
sequence executed using the URScript generated by the
fine-tuned Qwen2.5-Coder-7B model. This sequence
includes object detection, positioning, grasping, and
placing the object at the target location. The successful
execution demonstrates that fine-tuning improves the
model’s ability to generate accurate and reliable robot
control scripts.

4.3. Results with test-dataset
To assess the effectiveness of fine-tuned large language
models (LLMs) in generating more generalized
URScript code, we evaluated four models—Qwen-
3B, Qwen-3B-Coder, Qwen-7B, and Qwen-7B-
Coder—using a dataset constructed with Gemini
following the Alpaca methodology (as described
in Section 3). This dataset contains 100 samples,
each consisting of a generation prompt and the
corresponding URScript code output. Human
evaluation was conducted to verify the executability of
the generated code. The results, presented in Figures
5 and 6, illustrate the error distribution and the
proportion of executable code across the models

Figure 5 presents an analysis of errors in URScript
generation using Qwen-7B-Coder. The majority of the
generated scripts (61%) were error-free, while the
remaining errors were classified into two common
categories: incorrect usage of the ‘for‘ keyword (21%)
and improper handling of ‘try-catch‘ blocks (7%), with
other syntax or logical errors accounting for 11%.

Figure 6 compares the performance of all Qwen2.5
model variants and GPT-4 Turbo in terms of executable
code and errors. The Qwen2.5-7B-Coder base model,
which is not fine-tuned, exhibited the highest error rate,
emphasizing the role of specialized training in enhanc-
ing code executability. Additionally, the four fine-tuned
Qwen2.5 models (3B, 3B-Coder, 7B, and 7B-Coder)
demonstrated comparable performance, indicating that
fine-tuning helps narrow the performance gap across
model sizes. In contrast, GPT-4 Turbo, despite not being
fine-tuned for programming tasks, produced the lowest
percentage of executable code among the models com-
pared, suggesting that even advanced general-purpose
models may underperform specialized fine-tuned mod-
els in URScript generation tasks.

5. Conclusion
This research demonstrated the potential of fine-tuning
large language models (LLMs) for generating URScript
code to enhance automation in robotics. By constructing

7

EAI Endorsed Transactions 
on AI and Robotics 
| Volume 4 | 2025 |



Tien Dat Le and Minhhuy Le

Test case
1

Test case
2

Test case
3

Test case
4

Test case
5

Qwen2.5-Coder-7B (without fine-tune) ✗ ✗ ✗ ✗ ✗

Qwen2.5-3B ✓ ✓ ✓ ✗ ✓

Qwen2.5-Coder-3B ✓ ✓ ✓ ✓ ✓

Qwen2.5-7B ✓ ✓ ✗ ✓ ✗

Qwen2.5-Coder-7B ✓ ✓ ✓ ✗ ✓

GPT4-Turbo ✗ ✗ ✓ ✗ ✓

Table 1. Error analysis of URScript generation across different Qwen model variants.

a custom dataset of 20,000 synthetic samples derived
from validated human-created examples, we improved
the model’s ability to generate accurate, executable
robotic control scripts. Using the Unsloth framework,
we fine-tuned multiple Qwen2.5 models and evaluated
their performance across critical robotic tasks, includ-
ing motion planning, object manipulation, and adaptive
decision-making.

Our experimental results highlighted the effective-
ness of fine-tuned models, with the Qwen2.5-Coder
variants showing the highest success rate in generating
executable URScript code. Comparisons with general-
purpose models, such as GPT-4 Turbo, underscored the
advantage of domain-specific fine-tuning in improving
both logical coherence and execution reliability. Despite
these advancements, challenges remain in ensuring
robustness in complex scenarios, particularly in error
handling and safety compliance.

Deploying the generated scripts on a UR3 robotic
arm validated the real-world applicability of our
approach, though further refinement is needed to
improve adaptability in dynamic environments. Future
work will focus on expanding the dataset with more
diverse robotic tasks, enhancing safety verification
mechanisms, and exploring reinforcement learning
techniques to further optimize fine-tuned LLMs
for industrial automation. This study reinforces the
transformative role of LLMs in robotic programming
and paves the way for more accessible, AI-driven
automation solutions.
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F. Appendix A
This appendix provides the prompts used with Gemini to generate a large dataset from seed tasks derived from
URScript, following the Alpaca dataset method. These prompts ensure consistency, diversity, and relevance, guiding
Gemini to expand task descriptions while maintaining the original structure and context of URScript-based robotic
control.

The prompt was adapted from the Alpaca GitHub repository to better suit the problem addressed in this
study.

Human prompt:

You are asked to come up with a set of 20 diverse URScript programming task instructions.

These task instructions will be evaluated based on their ability to test the capabilities

of a GPT model in generating URScript code for robotics tasks.

Here are the requirements:

1. Ensure diversity in the verbs used for each instruction to maximize variation.

2. Use a variety of linguistic styles, combining questions with imperative instructions.

3. Cover diverse types of programming tasks, such as open-ended code generation,

optimization, debugging, refactoring, and creating examples.

4. Focus exclusively on tasks related to URScript, ensuring they are realistic and align

with common robotics applications (e.g., motion planning, sensor integration, error

handling, etc.).

5. Avoid asking for non-URScript outputs or tasks that require external multimedia

creation or execution (e.g., visuals, audio, or real-world actions).

6. Instructions should be in English and at least 1-2 sentences long.

7. Provide appropriate input data where necessary. Inputs should contain realistic and

specific examples relevant to the instruction but should not exceed 100 words. When no

input context is needed, use "<noinput>".

8. Ensure outputs demonstrate correct and practical URScript implementations.

9. Use ’###’ to separate tasks clearly.

List of 20 tasks:

G. Appendix B
This appendix presents the responses generated by the four fine-tuned models (Qwen-3B, Qwen-3B-Coder, Qwen-
7B, Qwen-7B-Coder) alongside GPT-4 for five test cases. These test cases were designed to evaluate model
performance in generating accurate, executable, and logically coherent URScript code. The responses provide
insights into the strengths and limitations of each model in handling robotic control tasks.

Test case 1: Move though 2 waypoints

Human prompt:

"Write a URScript function that moves a UR robot linearly in tool-space between

two waypoints.

Waypoint 1:

Tool position: [1, 1, 1, 1, 1, 1]

Joint acceleration: 1.39 rad/s²
Joint speed: 1.04 rad/s

Waypoint 2:
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Figure G.1. Move though 2 waypoints

Tool position: [-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

Joint acceleration: 0.78 rad/s²
Joint speed: 0.87 rad/s

The function should execute the motion using active TCP. Please provide the complete

URScript code."

Qwen2.5-Coder-7B without fine-tuning Response:

def move_linear_tool_space():

# Set the tool position for Waypoint 1

tool_position_1 = [1, 1, 1, 1, 1, 1]

# Set the joint acceleration for Waypoint 1

joint_acceleration_1 = 1.39

# Set the joint speed for Waypoint 1

joint_speed_1 = 1.04

# Set the tool position for Waypoint 2

tool_position_2 = [-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

# Set the joint acceleration for Waypoint 2

joint_acceleration_2 = 0.78

# Set the joint speed for Waypoint 2

joint_speed_2 = 0.87

# Move the robot linearly in tool-space from Waypoint 1 to Waypoint 2

move_l(tool_position_1, tool_position_2,

joint_acceleration_1, joint_speed_1,
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joint_acceleration_2, joint_speed_2, active_tcp=True

)

GPT-4 Turbo Response:

def move_linear_between_waypoints():

# Waypoint 1: Tool position and motion parameters

waypoint_1 = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

acc_1 = 1.39 # Joint acceleration (rad/s²)
speed_1 = 1.04 # Joint speed (rad/s)

# Waypoint 2: Tool position and motion parameters

waypoint_2 = [-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

acc_2 = 0.78 # Joint acceleration (rad/s²)
speed_2 = 0.87 # Joint speed (rad/s)

# Move to Waypoint 1

movel(pose_trans(get_actual_tcp_pose(), waypoint_1), a=acc_1, v=speed_1)

# Move to Waypoint 2

movel(pose_trans(get_actual_tcp_pose(), waypoint_2), a=acc_2, v=speed_2)

move_linear_between_waypoints()

Qwen2.5-3B-Coder Response:

‘‘‘URscript

def move_linear_waypoints():

local waypoint1 = p[1, 1, 1, 1, 1, 1]

local waypoint2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

movel(waypoint1, a=1.39, v=1.04, r=0.02)

movel(waypoint2, a=0.78, v=0.87, r=0.02)

end

‘‘‘

Qwen2.5-3B Response:

‘‘‘URscript

def move_between_waypoints():

local waypoint_1 = p[1, 1, 1, 1, 1, 1]

local waypoint_2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

movej(get_actual_joint_positions(), a=1.39, v=1.04)

movel(waypoint_1, a=0.78, v=0.87)

movel(waypoint_2, a=0.78, v=0.87)

end

‘‘‘

Qwen2.5-7B-Coder Response:

‘‘‘URscript

def move_linear_toolspace():

local waypoint1 = p[1, 1, 1, 1, 1, 1]

local waypoint2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]
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movej(get_inverse_kin(waypoint1, qnear=get_joint_positions()), a=1.39, v=1.04)

movel(waypoint2, a=0.78, v=0.87)

end

‘‘‘

Qwen2.5-7B Response:

‘‘‘URscript

def move_linear_tool_space():

local waypoint_1_pose = p[1, 1, 1, 1, 1, 1]

local waypoint_1_joint_acc = 1.39

local waypoint_1_joint_speed = 1.04

local waypoint_2_pose = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_2_joint_acc = 0.78

local waypoint_2_joint_speed = 0.87

movel(waypoint_1_pose, a=waypoint_1_joint_acc, v=waypoint_1_joint_speed, r=0.02)

movel(waypoint_2_pose, a=waypoint_2_joint_acc, v=waypoint_2_joint_speed, r=0.02)

end

‘‘‘

Figure G.2. Move through series of waypoints
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Test case 2: Move through series of waypoints

Human prompt:

Write a URScript function to move a UR robot linearly in tool-space between

three waypoints.

Waypoint 1:

Tool position: [1, 1, 1, 1, 1, 1]

Joint acceleration: 1.39 rad/s²
Joint speed: 1.04 rad/s

Waypoint 2:

Tool position: [-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

Joint acceleration: 0.78 rad/s²
Joint speed: 0.87 rad/s

Waypoint 3:

Tool position: [-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

Joint acceleration: 0.78 rad/s²
Joint speed: 0.87 rad/s

Waypoint 4:

Tool position: [0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

Joint acceleration: 0.9 rad/s²
Joint speed: 0.8 rad/s

Waypoint 5:

Tool position: [0, 0, 0, 0, 0, 0]

Joint acceleration: 1.0 rad/s²
Joint speed: 0.9 rad/s

The function should execute the motion using active TCP. Please provide the complete

URScript code.

Qwen2.5-Coder-7B without fine-tuning Response:

def move_linear_tool_space():

# Set active TCP

set_active_tool(""tool0"")

# Waypoint 1

move_l([1, 1, 1, 1, 1, 1], acc=1.39, vel=1.04)

# Waypoint 2

move_l([-0.008, -0.26, 0.28, -0.27, -2.71, 0.217], acc=0.78, vel=0.87)

# Waypoint 3

move_l([-0.008, -0.26, 0.28, -0.27, -2.71, 0.217], acc=0.78, vel=0.87)

# Waypoint 4

move_l([0.3, -0.4, 0.2, 0.1, -1.5, 0.5], acc=0.9, vel=0.8)

# Waypoint 5

move_l([0, 0, 0, 0, 0, 0], acc=1.0, vel=0.9)
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GPT-4 Turbo Response:

"def move_through_waypoints():

# Ensure the TCP is active

set_tcp(p[0, 0, 0, 0, 0, 0])

# Waypoint 1

pose1 = p[1, 1, 1, 1, 1, 1]

speed1 = 1.04

accel1 = 1.39

movel(pose1, a=accel1, v=speed1)

# Waypoint 2

pose2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

speed2 = 0.87

accel2 = 0.78

movel(pose2, a=accel2, v=speed2)

# Waypoint 3 (Same as Waypoint 2)

movel(pose2, a=accel2, v=speed2)

# Waypoint 4

pose4 = p[0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

speed4 = 0.8

accel4 = 0.9

movel(pose4, a=accel4, v=speed4)

# Waypoint 5

pose5 = p[0, 0, 0, 0, 0, 0]

speed5 = 0.9

accel5 = 1.0

movel(pose5, a=accel5, v=speed5)

popup(""Motion between waypoints completed"")

# Call the function

move_through_waypoints()"

Qwen2.5-3B-Coder Response:

‘‘‘URscript

def move_through_waypoints():

local waypoint_1 = p[1, 1, 1, 1, 1, 1]

local waypoint_2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_3 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_4 = p[0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

local waypoint_5 = p[0, 0, 0, 0, 0, 0]

movej(waypoint_1, a=1.39, v=1.04)

movel(waypoint_2, a=0.78, v=0.87)

movel(waypoint_3, a=0.78, v=0.87)

movel(waypoint_4, a=0.9, v=0.8)

movel(waypoint_5, a=1.0, v=0.9)

end

‘‘‘
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Qwen2.5-3B Response:

‘‘‘URscript

def move_through_waypoints():

local waypoint_1 = p[1, 1, 1, 1, 1, 1]

local waypoint_2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_3 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_4 = p[0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

local waypoint_5 = p[0, 0, 0, 0, 0, 0]

movej(waypoint_1, a=1.39, v=1.04)

movej(waypoint_2, a=0.78, v=0.87)

movej(waypoint_3, a=0.78, v=0.87)

movej(waypoint_4, a=0.9, v=0.8)

movej(waypoint_5, a=1.0, v=0.9)

end

‘‘‘

Qwen2.5-7B-Coder Response:

‘‘‘URscript

def move_through_waypoints():

local waypoint_1 = p[1, 1, 1, 1, 1, 1]

local waypoint_2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_3 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_4 = p[0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

local waypoint_5 = p[0, 0, 0, 0, 0, 0]

movej(waypoint_1, a=1.39, v=1.04)

movel(waypoint_2, a=0.78, v=0.87)

movel(waypoint_3, a=0.78, v=0.87)

movel(waypoint_4, a=0.9, v=0.8)

movel(waypoint_5, a=1.0, v=0.9)

end

‘‘‘

Qwen2.5-7B Response:

‘‘‘URscript

def move_through_waypoints():

local waypoint_1 = p[1, 1, 1, 1, 1, 1]

local waypoint_2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_3 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_4 = p[0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

local waypoint_5 = p[0, 0, 0, 0, 0, 0]

local acc_1 = 1.39

local vel_1 = 1.04

local acc_2 = 0.78

local vel_2 = 0.87

local acc_3 = 0.9

local vel_3 = 0.8

local acc_4 = 1.0
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local vel_4 = 0.9

movel(waypoint_1, a=acc_1, v=vel_1)

movel(waypoint_2, a=acc_2, v=vel_2)

movel(waypoint_3, a=acc_2, v=vel_2)

movel(waypoint_4, a=acc_3, v=vel_3)

movel(waypoint_5, a=acc_4, v=vel_4)

end

‘‘‘

Figure G.3. Pick and place operations

Test case 3: Pick and place operations

Human prompt:

Write a URScript function to move a UR robot linearly in tool-space between

two waypoints.

Waypoint 1:

Tool position: [-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

Waypoint 2:

Tool position: [-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

Joint acceleration and speed: 1.39 rad/s², 1.04 rad/s (Waypoint 1)

and 0.78 rad/s², 0.87 rad/s (Waypoint 2).

Use active TCP for movement.
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Implement a Pick and Place operation by controlling the digital output at

each waypoint.

Provide the complete URScript code.

Qwen2.5-Coder-7B without fine-tuning Response:

def move_linear_tool_space():

# Set the active TCP

set_tcp(active)

# Waypoint 1

waypoint1 = [-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

joint_acc1 = 1.39

joint_speed1 = 1.04

# Move to Waypoint 1

movej(waypoint1, a=joint_acc1, v=joint_speed1)

# Perform Pick operation

set_digital_out(0, True)

# Waypoint 2

waypoint2 = [-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

joint_acc2 = 0.78

joint_speed2 = 0.87

# Move to Waypoint 2

movej(waypoint2, a=joint_acc2, v=joint_speed2)

# Perform Place operation

set_digital_out(0, False)

GPT-4 Turbo Response:

# URScript function to perform linear movement between two waypoints with a

# pick and place operation

def pick_and_place():

# Set active TCP (tool center point) if required

# Use pose_trans() if you need to offset TCP

# Move to Waypoint 1

waypoint1 = p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

speed1 = 1.04

accel1 = 1.39

movel(waypoint1, a=accel1, v=speed1)

# Activate gripper (simulate pick operation)

set_digital_out(0, True) # Set digital output 0 to high (on)

sleep(1.0) # Wait for the pick action to complete

# Move to Waypoint 2

waypoint2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

speed2 = 0.87
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accel2 = 0.78

movel(waypoint2, a=accel2, v=speed2)

# Deactivate gripper (simulate place operation)

set_digital_out(0, False) # Set digital output 0 to low (off)

sleep(1.0) # Wait for the place action to complete

# Return to Waypoint 1

movel(waypoint1, a=accel1, v=speed1)

end

# Execute the function

pick_and_place()"

Qwen2.5-3B-Coder Response:

‘‘‘URscript

def move_linear_pick_place():

local waypoint1 = p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

local waypoint2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local a1 = 1.39

local v1 = 1.04

local a2 = 0.78

local v2 = 0.87

movej(waypoint1, a=a1, v=v1)

movel(waypoint1, a=a1, v=v1)

set_digital_out(0, True)

sleep(0.5)

movej(waypoint2, a=a2, v=v2)

movel(waypoint2, a=a2, v=v2)

set_digital_out(0, False)

sleep(0.5)

end

‘‘‘

Qwen2.5-3B Response:

‘‘‘URscript

def move_between_waypoints():

local waypoint_1_pose = p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

local waypoint_2_pose = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_1_speed = 1.04

local waypoint_1_accel = 1.39

local waypoint_2_speed = 0.87

local waypoint_2_accel = 0.78

local output_pin = 0

movej(get_actual_joint_positions(), a=waypoint_1_accel, v=waypoint_1_speed)

set_digital_out(output_pin, True)

sleep(1)

movej(get_actual_joint_positions(), a=waypoint_2_accel, v=waypoint_2_speed)
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set_digital_out(output_pin, False)

sleep(1)

end

‘‘‘

Qwen2.5-7B-Coder Response:

‘‘‘URscript

def move_linear_toolspace():

local waypoint1_p = p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

local waypoint2_p = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

movej(get_inverse_kin(waypoint1_p, qnear=get_joint_positions()), a=1.39, v=1.04)

set_digital_out(0, True)

sleep(1)

movel(waypoint1_p, a=0.78, v=0.87)

set_digital_out(0, False)

sleep(1)

movel(waypoint2_p, a=0.78, v=0.87)

set_digital_out(0, True)

sleep(1)

movel(waypoint1_p, a=0.78, v=0.87)

set_digital_out(0, False)

end

‘‘‘

Qwen7B Response:

‘‘‘URscript

def pick_and_place():

local waypoint_1_pose = p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

local waypoint_2_pose = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_1_joints = get_inverse_kin(waypoint_1_pose)

local waypoint_2_joints = get_inverse_kin(waypoint_2_pose)

movej(waypoint_1_joints, a=1.39, v=1.04)

set_digital_out(0, True) # Activate digital output

sleep(1) # Wait for pick

movel(waypoint_1_pose, a=0.78, v=0.87)

set_digital_out(0, False) # Deactivate digital output

sleep(1) # Wait for place

movel(waypoint_2_pose, a=0.78, v=0.87)

set_digital_out(0, True) # Activate digital output

sleep(1) # Wait for pick

movej(waypoint_2_joints, a=1.39, v=1.04)

set_digital_out(0, False) # Deactivate digital output

end

‘‘‘
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Figure G.4. Move with safety conditions

Test case 4: Move with safety conditions

Human prompt:

Write a URScript function to move a UR robot linearly in tool-space between

two waypoints.

Waypoint 1:

Tool position: [-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

Waypoint 2:

Tool position: [-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

Waypoint 3:

Tool position: [0.12, -0.15, 0.35, 0.15, 2.9, -0.1]

Joint acceleration and speed: 1.39 rad/s², 1.04 rad/s (Waypoint 1) and

0.78 rad/s², 0.87 rad/s (Waypoint 2).

Use active TCP for movement.

Before executing the motion to each waypoints, ensure safe operation by verifying the tools

positions of next waypoints. If necessary, alert the user and halt execution.

Waypoint 1 not need to check safety

Provide the complete URScript code.

Qwen2.5-Coder-7B without fine-tuning Response:

def move_linear_tool_space():

# Waypoint 1
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tool_position_1 = [-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

joint_acceleration_1 = 1.39

joint_speed_1 = 1.04

# Waypoint 2

tool_position_2 = [-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

joint_acceleration_2 = 0.78

joint_speed_2 = 0.87

# Waypoint 3

tool_position_3 = [0.12, -0.15, 0.35, 0.15, 2.9, -0.1]

# Check safety for Waypoint 2

if not check_safety(tool_position_2):

print(""Safety check failed for Waypoint 2. Halt execution."")

return

# Move to Waypoint 1

move_l_tool_space(tool_position_1, joint_acceleration_1, joint_speed_1)

# Check safety for Waypoint 3

if not check_safety(tool_position_3):

print(""Safety check failed for Waypoint 3. Halt execution."")

return

# Move to Waypoint 2

move_l_tool_space(tool_position_2, joint_acceleration_2, joint_speed_2)

# Move to Waypoint 3

move_l_tool_space(tool_position_3, joint_acceleration_2, joint_speed_2)

def check_safety(tool_position):

# Implement your safety check logic here

# Return True if safe, False otherwise

pass

def move_l_tool_space(tool_position, joint_acceleration, joint_speed):

# Implement your linear motion in tool-space logic here

pass

GPT-4 Turbo Response:

def move_linear():

# Define waypoints

wp1 = p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

wp2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

wp3 = p[0.12, -0.15, 0.35, 0.15, 2.9, -0.1]

# Define joint acceleration and velocity for waypoints

a1 = 1.39

v1 = 1.04

a2 = 0.78

v2 = 0.87

22

EAI Endorsed Transactions 
on AI and Robotics 
| Volume 4 | 2025 |



Empowering Universal Robot Programming with Fine-Tuned Large Language Models

# Function to check safety (e.g., limit positions, collisions)

def check_safety(target_pose):

# Example safety check: Ensure Z position is within a safe range

if target_pose[2] < 0.1 or target_pose[2] > 0.5:

textmsg(""Unsafe waypoint detected, halting execution."")

halt()

# Move to Waypoint 1 directly

movel(wp1, a=a1, v=v1)

# Check safety before moving to Waypoint 2

check_safety(wp2)

movel(wp2, a=a2, v=v2)

# Check safety before moving to Waypoint 3

check_safety(wp3)

movel(wp3, a=a2, v=v2)

end

Qwen2.5-3B-Coder Response:

‘‘‘URscript

def move_linear_waypoints():

local waypoint_1 = p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

local waypoint_2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_3 = p[0.12, -0.15, 0.35, 0.15, 2.9, -0.1]

# Move to waypoint 1

movel(waypoint_1, a=1.39, v=1.04)

# Move to waypoint 2

if (norm(pose_sub(get_actual_tcp_pose(), waypoint_2)) > 0.01):

popup(""Safety check failed: Waypoint 2 is not reachable"",

""Safety Error"", False, True, True)

halt

end

movel(waypoint_2, a=0.78, v=0.87)

# Move to waypoint 3

if (norm(pose_sub(get_actual_tcp_pose(), waypoint_3)) > 0.01):

popup(""Safety check failed: Waypoint 3 is not reachable"",

""Safety Error"", False, True, True)

halt

end

movel(waypoint_3, a=0.78, v=0.87)

end

‘‘‘

Qwen2.5-3B Response:

‘‘‘URscript

def move_linear_waypoints():

local waypoint_1 = p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]
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local waypoint_2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_3 = p[0.12, -0.15, 0.35, 0.15, 2.9, -0.1]

# Check safety for waypoint 1

if (norm(get_actual_tcp_pose() - waypoint_1) > 0.01):

popup(""Safety check failed for waypoint 1"", ""Error"", False, True, False)

halt

end

# Check safety for waypoint 2

if (norm(get_actual_tcp_pose() - waypoint_2) > 0.01):

popup(""Safety check failed for waypoint 2"", ""Error"", False, True, False)

halt

end

# Move to waypoint 1

movel(waypoint_1, a=1.39, v=1.04)

# Move to waypoint 2

movel(waypoint_2, a=0.78, v=0.87)

# Move to waypoint 3

movel(waypoint_3, a=1.39, v=1.04)

end

‘‘‘

Qwen2.5-7B-Coder Response:

‘‘‘URscript

def move_linear_toolspace():

local waypoint_1_p = p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

local waypoint_2_p = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]

local waypoint_3_p = p[0.12, -0.15, 0.35, 0.15, 2.9, -0.1]

movej(get_inverse_kin(waypoint_1_p, qnear=get_joint_positions()), a=1.39, v=1.04)

movel(waypoint_2_p, a=0.78, v=0.87)

if (not is_safe()):

popup(""Safety check failed at waypoint 2"", ""Safety Error"", False, True, True)

halt

end

movel(waypoint_3_p, a=0.78, v=0.87)

if (not is_safe()):

popup(""Safety check failed at waypoint 3"", ""Safety Error"", False, True, True)

halt

end

end

‘‘‘

Qwen2.5-7B Response:

‘‘‘URscript

def move_linear_tool_space():

local waypoint_1 = p[-0.13, -0.26, 0.14, -0.001, 3.11, 0.03]

local waypoint_2 = p[-0.008, -0.26, 0.28, -0.27, -2.71, 0.217]
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local waypoint_3 = p[0.12, -0.15, 0.35, 0.15, 2.9, -0.1]

# Move to Waypoint 1

movel(waypoint_1, a=1.39, v=1.04)

# Check safety for Waypoint 2

if (norm(waypoint_2 - get_actual_tcp_pose()) > 0.01):

popup(""Safety violation at Waypoint 2"", ""Safety Alert"", False, True, False)

halt

end

# Move to Waypoint 2

movel(waypoint_2, a=0.78, v=0.87)

# Check safety for Waypoint 3

if (norm(waypoint_3 - get_actual_tcp_pose()) > 0.01):

popup(""Safety violation at Waypoint 3"", ""Safety Alert"", False, True, False)

halt

end

# Move to Waypoint 3

movel(waypoint_3, a=0.78, v=0.87)

end

‘‘‘

Figure G.5. Safety thread checking

Test case 5: Safety thread checking

Human prompt:

Write a URScript function to move a UR robot linearly in tool-space to 2 waypoints.
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Waypoint 1:

Tool position: [1, 1, 1, 1, 1, 1]

Joint acceleration: 1.39 rad/s²
Joint speed: 1.04 rad/s

Waypoint 2:

Tool position: [0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

Joint acceleration: 0.9 rad/s²
Joint speed: 0.8 rad/s

Use active TCP for movement.

Implement a thread to monitor the first element of the joint position at waypoint.

If it exceeds 1.0, the program should halt.

Provide the complete URScript code.

Qwen2.5-Coder-7B without fine-tuning Response:

def move_to_waypoints():

# Set the active TCP

set_tcp([0, 0, 0, 0, 0, 0])

# Define the waypoints

waypoint1 = [1, 1, 1, 1, 1, 1]

waypoint2 = [0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

# Define the joint acceleration and speed for each waypoint

joint_acc1 = 1.39

joint_speed1 = 1.04

joint_acc2 = 0.9

joint_speed2 = 0.8

# Move to the first waypoint

movej(waypoint1, a=joint_acc1, v=joint_speed1)

# Monitor the first element of the joint position at the first waypoint

while True:

joint_pos = get_actual_q()

if joint_pos[0] > 1.0:

print(""Joint position exceeded 1.0, halting program."")

break

else:

print(""Joint position is within limits."")

# Move to the second waypoint

movej(waypoint2, a=joint_acc2, v=joint_speed2)

# Monitor the first element of the joint position at the second waypoint

while True:

joint_pos = get_actual_q()

if joint_pos[0] > 1.0:

print(""Joint position exceeded 1.0, halting program."")

break

else:

print(""Joint position is within limits."")
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# Call the function to move to the waypoints

move_to_waypoints()

ChatGPT-4 Turbo Response:

# URScript to move UR robot linearly to 2 waypoints with monitoring

def linear_move():

# Start monitoring joint position

thread monitor_joint():

while True:

current_joint_position = get_actual_joint_positions()

if current_joint_position[0] > 1.0:

popup(""Joint 1 exceeds limit. Halting!"", error=True)

halt()

sync()

end

end

monitor_thread = run monitor_joint()

# Move to Waypoint 1

pose1 = p[1, 1, 1, 1, 1, 1]

movel(pose1, a=1.39, v=1.04)

# Move to Waypoint 2

pose2 = p[0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

movel(pose2, a=0.9, v=0.8)

# Stop monitoring

kill monitor_thread

end

# Execute the function

linear_move()

Qwen2.5-3B-Coder Response:

‘‘‘URscript

def move_between_waypoints():

local waypoint1 = p[1, 1, 1, 1, 1, 1]

local waypoint2 = p[0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

local joint_acceleration = 1.39

local joint_speed = 1.04

local tcp_acceleration = 0.9

local tcp_speed = 0.8

thread monitor_joint():

while True:

local current_joint_positions = get_actual_joint_positions()

if current_joint_positions[0] > 1.0:

halt

end

sync()

end

27

EAI Endorsed Transactions 
on AI and Robotics 
| Volume 4 | 2025 |



Tien Dat Le and Minhhuy Le

end

thread monitor_joint_thread = thread monitor_joint()

movel(waypoint1, a=joint_acceleration, v=joint_speed, t=0, r=waypoint1)

movel(waypoint2, a=tcp_acceleration, v=tcp_speed, t=0, r=waypoint2)

kill monitor_joint_thread

end

‘‘‘

Qwen2.5-3B Response:

‘‘‘URscript

def move_to_waypoints():

local waypoint_1 = p[1, 1, 1, 1, 1, 1]

local waypoint_2 = p[0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

local joint_acceleration_1 = 1.39

local joint_speed_1 = 1.04

local joint_acceleration_2 = 0.9

local joint_speed_2 = 0.8

thread joint_monitor():

while True:

local joint_positions = get_actual_joint_positions()

if joint_positions[0] > 1.0:

halt

end

sleep(0.1)

end

end

thread move_thread():

movel(waypoint_1, a=joint_acceleration_1, v=joint_speed_1)

movel(waypoint_2, a=joint_acceleration_2, v=joint_speed_2)

end

thread start joint_monitor()

thread start move_thread()

end

‘‘‘

Qwen2.5-7B-Coder Response:

‘‘‘URscript

def move_linear_with_monitor():

local waypoint1 = p[1, 1, 1, 1, 1, 1]

local waypoint2 = p[0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

movel(waypoint1, a=1.39, v=1.04)

movel(waypoint2, a=0.9, v=0.8)

thread monitor_thread():

while True:

local current_joint_pos = get_actual_joint_positions()
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if current_joint_pos[0] > 1.0:

halt

end

sync()

end

end

monitor_thread()

end

‘‘‘

Qwen2.5-7B Response:

‘‘‘URscript

def move_with_monitor():

# Waypoint 1

local waypoint_1_pose = p[1, 1, 1, 1, 1, 1]

local waypoint_1_joint_acc = 1.39

local waypoint_1_joint_speed = 1.04

# Waypoint 2

local waypoint_2_pose = p[0.3, -0.4, 0.2, 0.1, -1.5, 0.5]

local waypoint_2_joint_acc = 0.9

local waypoint_2_joint_speed = 0.8

# Move to waypoint 1

movej(get_inverse_kin(waypoint_1_pose, qnear=get_joint_positions()),

a=waypoint_1_joint_acc, v=waypoint_1_joint_speed)

# Monitor joint 1

thread joint_monitor():

while (True):

local joint_positions = get_joint_positions()

if (joint_positions[0] > 1.0):

halt()

end

sync()

end

end

# Move to waypoint 2

movej(get_inverse_kin(waypoint_2_pose, qnear=get_joint_positions()),

a=waypoint_2_joint_acc, v=waypoint_2_joint_speed)

end

‘‘‘
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