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Abstract

This paper presents a comparative study between the Particle Swarm Optimization (PSO) algorithm and
the Beetle Antennae Search (BAS) algorithm for optimizing image transformations, with a focus on their
performance in handling noisy and non-noisy images. Our experiments reveal that BAS consistently achieves
better results in terms of pixel change when compared to PSO. The algorithms were evaluated based on
their ability to minimize the objective function, which measures the error between the transformed reference
image and the target image. Our results demonstrate that both BAS and PSO can effectively optimize image
transformations, but BAS consistently outperformed PSO in terms of convergence speed and final objective
value. Additional experiments with varying objective functions further validated the robustness and efficiency
of BAS in achieving accurate image alignment.
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1. Introduction
Image transformation is crucial in various applica-
tions such as image registration, computer vision,
and pattern recognition [1]. In recent years, nature-
inspired metaheuristic optimization has been increas-
ingly applied to image alignment problems [2]. Among
these methods, Particle Swarm Optimization (PSO) is
a widely used algorithm inspired by social behavior
in flocks; it is known for its simplicity and effective-
ness [3]. PSO has been applied in many fields, includ-
ing image processing and registration [4]. The Beetle
Antennae Search (BAS) algorithm, on the other hand,
is a more recently proposed optimizer that imitates
the foraging behavior of beetles [5]. While both PSO
and BAS have shown promise in optimization tasks,
their comparative performance in image transforma-
tion—especially under noisy conditions—has not been
thoroughly investigated.

The Beetle Antennae Search (BAS) algorithm has
demonstrated remarkable versatility and adaptability

∗Corresponding author. Email: anikdwivedi8055@kgpian.iitkgp.ac.in

across a broad spectrum of optimization challenges
beyond image transformation. Initially inspired by the
foraging behavior of beetles, BAS has been extended
and hybridized to solve complex, real-world problems
with promising results. For example, it has been applied
to portfolio selection under cardinality constraints,
showcasing its effectiveness in financial optimization
tasks [6]. In the domain of multi-agent systems and
smart environments, BAS has facilitated cooperative
planning among robotic agents [7]. Its robustness
has also been validated in high-stakes domains such
as fraud detection in publicly traded firms [8],
smart surgical control under remote center of motion
(RCM) constraints [9], and the trajectory planning
of both soft and bipedal robotic systems [10–12].
These diverse applications highlight BAS’s strength in
handling nonlinear, high-dimensional, and constrained
problems, reinforcing its potential as a powerful
alternative to more traditional optimizers like PSO.

In this work, we perform a comparative study of PSO
and BAS for the task of aligning a reference image to
a target image. We consider both non-noisy and noisy
scenarios to evaluate the robustness of each method.
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The transformation parameters include 2D translation
$(X,Y)$, scaling, and rotation. We define an objective
function based on pixel intensity differences between
the transformed reference image and the target image,
and we apply both algorithms to minimize this error
metric.

Our experiments show that BAS consistently outper-
forms PSO in terms of convergence speed and final
alignment accuracy. Specifically, BAS achieves lower
objective values (i.e., better pixel alignment) than PSO
across all scenarios. Extended experiments with mod-
ified objective functions further confirm the efficiency
and robustness of BAS in achieving accurate image
alignment.

The remainder of this paper is organized as follows.
Section 2 reviews related work on evolutionary and
swarm-based image registration methods. Section 3
formulates the object recognition (image alignment)
problem and defines the evaluation metrics. Sections
4 and 5 introduce the PSO and BAS algorithms,
respectively. Section 6 describes our fine-tuning of BAS
parameters. Section 7 details the experimental setup.
Section 8 presents visual results and comparisons.
Section 9 provides tabular results on parameter values.
Section 10 explores experiments with varied objective
functions. Finally, Section 11 concludes the paper.

2. Related Work

Metaheuristic optimization algorithms have been
extensively applied to image registration and
transformation. For example, Cocianu et al. [2] review
evolutionary image registration methods, noting that
swarm intelligence algorithms are effective for such
tasks. PSO, introduced by Kennedy and Eberhart [3],
is one of the most popular swarm algorithms and has
been employed in many image processing tasks due
to its efficiency [4]. Variants of PSO (e.g., adaptive
or inertia-weight strategies) have been proposed to
improve convergence, but these remain complementary
to the standard PSO framework [13].

Beetle Antennae Search (BAS) is a newer single-
solution search algorithm inspired by beetle behav-
ior [5]. Since its inception, numerous improvements and
hybrid variants of BAS have been developed. Yousif and
Saka [14] proposed an enhanced BAS (eBAS) that uses
a population of beetles to avoid local optima. Chen
et al. [15] provide a survey of BAS-related algorithms
and applications. Yin et al. [16] introduced an ABSAS-
CS-GSA variant, which integrates adaptive step-size
control and sine-based position updates to improve
coverage optimization. Other works hybridize BAS with
algorithms like Particle Swarm Optimization or Genetic
Algorithms. For instance, Khan et al. [17] combined
BAS with the Adam optimizer (BAS-ADAM) for faster

convergence, and Fan et al. [? ] integrated a BAS-
inspired search strategy into Grey Wolf Optimization.
These studies highlight the flexibility and efficiency
of BAS, but direct comparisons against PSO in image
alignment contexts are still lacking. Our work aims to
address this gap by directly comparing PSO and BAS
on a standard image transformation task.

3. The Object Recognition Problem
The object recognition problem involves identifying
a reference object (pattern) within a target landscape
image. The goal is to find the planar coordinates,
rotation angle, and scale factor that optimally align the
reference object with the target image. This solution
is represented as a four-tuple (x, y, s, θ), where x and
y denote the planar coordinates of the center of the
reference image relative to the target landscape, s is the
scale factor, and θ is the rotation angle with respect to
the coordinate system.

Since the object can appear at any location within the
landscape, the search space of all possible combinations
of (x, y, s, θ) is large. Consequently, this problem can be
framed as an optimization problem, where the objective
is to find the values of (x, y, s, θ) that maximize the
similarity between the reference and target images.

In this study, the search space is constrained by
setting limits on the ranges of the variables. Specifically,
we restrict the column and row coordinates to (0 ≤
x < n) and (0 ≤ y < m), respectively. The scale factor
is bounded by (0.5 ≤ s ≤ 2.0), and the rotation angle
is constrained to (−π ≤ θ ≤ π). To evaluate potential
solutions, a measure of similarity between the reference
image (RI) and the target landscape image (LI) must be
defined. Various similarity measures, such as mutual
information and the sum of squared differences (SSD)
between pixel intensities, have been proposed in the
literature.

EvalSol =
ErrorMax − ErrorSol

ErrorMax
(1)

ErrorMax = 2nbits × (m × n − Pinv) (2)

ErrorSol =
n−1∑
i=0

m−1∑
j=0

|RI(i, j) − LI(i, j)| (3)

However, mutual information is computationally
expensive, and SSD may yield high similarity values
even when the images are not well-aligned. Therefore,
we adopt the absolute sum of differences (ASD) between
pixel intensities as the similarity measure in this
work. This measure, denoted as “Error,” quantifies
the difference between corresponding pixels in the
reference and landscape images. The evaluation of
a candidate solution is computed using the above
equations.
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In these equations, n and m represent the dimensions
(width and height) of the reference image, and nbits
is the number of bits used to represent pixel intensity
levels. The term Pinv accounts for pixels in the reference
image that do not overlap with the landscape image
(this occurs when the reference image is near the
borders of the landscape). The variable ErrorSol is
the sum of the absolute differences in pixel intensities
between the reference and landscape images for a given
solution.

The pixel coordinates (I, J) in the landscape image
corresponding to the reference image can be obtained
using the following transformation equations:

I = y + s × (ddX × sin(−θ) + ddY × cos(θ)) (4)

J = x + s × (ddX × cos(−θ) + ddY × sin(θ)) (5)

Here ddX = j − WidthRI
2 and ddY = i − HeightRI

2 , with
x, y, s, and θ being the candidate solution parameters
under evaluation.

The evaluation function, EvalSol, approaches its
maximum value of 1 as the error ErrorSol tends
to 0, meaning that a higher similarity between
the reference and landscape images results in a
better evaluation score. Consequently, an optimization
algorithm such as Particle Swarm Optimization (PSO)
can be employed to maximize EvalSol, thereby
minimizing the pixel intensity difference between the
reference and landscape images.

The previously defined evaluation is suited for
grayscale images; however, the same principle can be
extended to color images. In such cases, the matching
error is computed for each independent channel of
the RGB color space. The corresponding equations for
evaluating a solution in color images are as follows:

EvalSol =
3 × ErrorMax − ErrorChannelSol

ErrorMax

(6)

ErrorChannelSol =
3∑

ch=1

n−1∑
i=0

m−1∑
j=0

|RI(i, j, ch) − LI(i, j, ch)|

(7)

In the case of color images, the range of the
evaluation function expands to [0, 3], as there are
three independent channels (R, G, B). However, this
increased range does not significantly impact the
object recognition process. By considering each color
channel separately (denoted by ch in Equation 7), the
search can be accelerated if the landscape image is
preprocessed to identify large color discrepancies. This
preprocessing step can significantly reduce the search
space, thereby minimizing the computational cost of
object recognition.

3.1. Particle Swarm Optimization (PSO)
Particle Swarm Optimization (PSO) is a heuristic
technique belonging to swarm intelligence. Like genetic
algorithms, genetic programming, evolution strategies,
and ant colony optimization, PSO is an evolutionary
computation method. Introduced by Kennedy and
Eberhart in 1995 [3], PSO draws inspiration from
social behaviors in nature, such as bird flocking,
bee swarming, and fish schooling. The main idea
is to simulate a simplified social system where
individuals (particles) adjust their positions to maintain
an average distance from their neighbors. The behavior
of one particle affects the group and vice versa.
Computationally, the swarm consists of particles
representing potential solutions, which "fly" over the
solution space seeking the optimal solution.

Initially, particles’ positions and velocities in the
search space are randomly initialized, ensuring that any
point can be reached. Each particle has limited memory
to store its current position, its best position found so
far (pbest), and the best position found by its neighbors
(lbest) or the entire swarm (gbest), depending on the
implementation. The pbest represents the particle’s
individual knowledge (cognitive component), while
the gbest or lbest represents the group’s collective
knowledge (social component). At each time step, a
particle’s movement is influenced by both its cognitive
and social components. The particle’s velocity is
updated based on the weighted influence of pbest and
gbest, as shown in ((8)):

Velt+1
i = w · Velti + c1 · r1 · (pbestti − x

t
i ) + c2 · r2 · (gbestti − x

t
i )

(8)
In Equation (8), Velti denotes the velocity of particle

i at iteration t, and xti represents the current position
of the particle in the solution space. The variables
pbestti and gbestt are the best positions found so
far by particle i and the entire swarm, respectively.
The constants c1 and c2 are user-defined acceleration
coefficients that control the influence of cognitive and
social components, respectively. The variables r1 and
r2 are randomly generated values in the range [0, 1],
and w is the inertia weight that influences the particle’s
tendency to continue in its current direction.

With the updated velocity, a particle’s position in the
search space is updated using ((9)):

xt+1
i = xti + Velt+1

i (9)

In Equation (9), the new position xt+1
i is calculated

by adding the updated velocity to the current position.
The swarm evolves by iteratively updating both the
velocities and positions of particles based on their
individual and collective experiences.
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The acceleration constants c1 and c2 directly
influence the step size in the search space. High
c1 values promote local search, causing particle
clusters, while high c2 values lead to clustering at
a local maximum, which can stagnate the search. As
with other evolutionary methods, choosing optimal
control parameter values is challenging and problem-
dependent.

The standard PSO algorithm can be summarized as
follows:

1. Initialize the swarm of particles with random
values for each component of the solution vector.

2. Evaluate the fitness of the solution represented by
each particle.

3. If a particle’s current solution is better than its
pbest, update pbest. If the current solution is
better than gbest, update gbest.

4. Compute the new velocity of particles using ((8)).

5. Compute the new positions of particles using
((9)).

6. If a stopping criterion is met, stop; otherwise,
return to step 2. The stopping criterion can be a
maximum number of iterations or a solution of
satisfactory quality.

To enhance PSO performance, diversification meth-
ods can be applied. When the swarm converges to
a region in the search space, further improvements
become difficult due to a lack of solution diversity,
evident when gbest stagnates over several iterations.
A common strategy to address this is the "explosion"
method, where the swarm is reset, retaining the previ-
ous gbest. This technique is effective for complex prob-
lems, helping PSO achieve better solutions compared to
a PSO without explosions.

Overall, PSO is straightforward to implement and
does not require extensive computational resources.
The most computationally intensive part is evaluating
candidate solutions (particles).

3.2. Beetle Antennae Search (BAS)
Beetle Antennae Search (BAS) is a relatively recent bio-
inspired optimization algorithm developed by Jiang
and Li (2018) and further explored by Zhang et al.
(2021). Unlike many swarm-based algorithms, BAS
mimics the behavior of a single beetle, specifically the
longhorn beetle. In nature, beetles use their antennae
to detect the smell of potential food sources or mates
and move towards them. BAS models this foraging
behavior by representing a beetle as a solution in a
multi-dimensional search space.

The algorithm begins by randomly initializing the
beetle’s position and a direction in the search space.
Based on this position and a random direction, two
new solutions (left and right positions) are calculated,
representing the positions of the beetle’s antennae.
The beetle then moves a certain step size towards the
solution with the better fitness among the left and
right positions. This process repeats until the optimal
solution is found or a maximum number of iterations is
reached.

BAS and its improved versions have been applied to
various fields, including ship collision avoidance (Xie
et al. 2019) and path planning for mobile robots (Wu
et al. 2020; Zhou et al. 2021). BAS offers advantages
such as simplicity and fewer parameters because it
uses only one beetle. The time complexity of BAS is
O(K ·N ), where K is the problem dimension and N
is the maximum number of iterations. In contrast, the
time complexity of SMA is O(K + N · P · (1 + log P +
K)), where P is the number of slime mold cells.

Due to its simplicity, BAS requires less running
time and is easy to combine with other swarm-based
algorithms as a global or local search strategy. For
example, Lin et al. (2018) combined BAS with PSO to
create a new algorithm leveraging the global search
capability of PSO and the local search capability of
BAS. Fan et al. (2021) proposed an improved GWO
algorithm (BGWO) where the alpha wolf uses a BAS-
like sensing ability to better lead the pack to the
optimal solution. Shao et al. (2018) used BAS as an
additional strategy after the global search phase of
FPA, improving the algorithm’s convergence rate. Zhao
et al. (2020) combined BAS with GA to form BGA,
demonstrating better performance than other hybrid
algorithms. Zhou et al. (2019) integrated BAS with
SA, allowing multiple searches at each temperature
with step size proportional to the current temperature,
enhancing both global and local search capabilities.
Similar integrations with ACO and ABC resulted in the
BCO and MABC algorithms (Zhang et al. 2020a, b),
respectively.

BAS Algorithm Overview. The BAS algorithm is an
optimization technique inspired by the foraging
behavior of beetles, using their antennae to detect and
locate food. The BAS algorithm simulates this behavior
to search for optimal solutions in a given search space.

Random Direction Initialization: The beetle’s
searching behavior starts with a random direction
vector, normalized to have a unit length, represented
as:

b⃗ =
rnd(k, 1)
∥rnd(k, 1)∥

(10)
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where rnd(·) denotes a random function and k
represents the dimensions of the position.

Antennal Search Mechanism: The algorithm evalu-
ates positions on both sides (right-hand side xr and left-
hand side xl) of the current position xt :

xr = xt + dt b⃗, xl = xt − dt b⃗ (11)

Here, d is the sensing length of the antennae, which
should initially be large and then decrease gradually.

Odor Detection and Position Update: The beetle
decides its next move based on the fitness values f (xr )
and f (xl). The next position xt+1 is updated as follows:

xt+1 = xt + δt b⃗ · sign(f (xr ) − f (xl)) (12)

where δ is the step size, and sign(·) represents the sign
function.

Step Size and Sensing Length Update: The step size
δ and sensing length d are iteratively updated to control
convergence speed and search precision:

dt = 0.95dt−1 + 0.01, δt = 0.95δt−1 (13)

4. Fine-Tuning the BAS Algorithm
In this study, the BAS algorithm was fine-tuned
by carefully adjusting its parameters to optimize
performance for image transformation tasks. The key
parameters fine-tuned include:

Initial Sensing Length (d): The initial sensing length
was set to cover a broad search area, allowing the
algorithm to avoid local minima early in the search
process. This length was gradually decreased to enable
the algorithm to focus on fine details as it approached
potential optimal solutions.

Step Size (δ): The step size was initially set to a
high value to facilitate faster exploration of the search
space. This enabled the algorithm to cover more ground
quickly and identify promising regions. Over time,
the step size was reduced to allow for more precise
convergence towards the optimal solution, ensuring
finer adjustments and higher accuracy.

Update Rules: The decay rates for both d and
δ were carefully adjusted to balance exploration
and exploitation. By fine-tuning the decay rates,
the algorithm was able to quickly find a good
approximation of the optimal solution and then refine
it through more detailed searches. This balance ensures
that the algorithm does not get stuck in suboptimal

regions and can efficiently converge to a high-quality
solution.

dt = αdt−1 + (1 − α)dmin, δt = βδt−1 (14)

where α and β are decay rate factors, and dmin is the
minimum sensing length. The specific values for α and
β were determined experimentally to achieve the best
performance in the image transformation tasks.

By systematically fine-tuning these parameters, the
BAS algorithm’s efficiency and effectiveness in image
transformation tasks were significantly enhanced. This
fine-tuning process allowed for a more adaptive
and responsive search strategy, capable of navigating
complex solution spaces with greater precision.

5. Experimental Setup
We implemented both the Particle Swarm Optimization
(PSO) and Beetle Antennae Search (BAS) algorithms to
optimize the transformation parameters. The reference
and target images were processed under three scenarios:

1. Non-noisy images

2. Noisy reference and target images

3. Non-noisy reference image with noisy target
image

5.1. Reference and Target Images
The reference image (initial state) and the target
image (desired state) were used for evaluating the
performance of the algorithms. The images were
subjected to noise to simulate real-world conditions and
test the robustness of the optimization algorithms.

6. Observations and Visual Comparison

Figure 2. Comparison between (iii) BAS Transformed Non-Noisy
with Noise Considerations (iv) Target Image (v) PSO Transformed
Non-Noisy with Noise Considerations (vi) BAS Transformed Non-
Noisy Reference (vii) BAS Transformed Noisy Reference (viii)
PSO Transformed Noisy Reference (ix) PSO Transformed Non-
Noisy Reference
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(i)

(ii)

Figure 1. Comparison between (i) the reference image, which
contains the object to be identified, and (ii) the target image,
representing the landscape where the object is to be located.
Both images have dimensions of 340x340 pixels.

6.1. PSO Transformed Images
• PSO Transformed Non-Noisy Reference: Shows

a fairly accurate transformation of the target
image, but with noticeable yellow noise at the
center.

• PSO Transformed Noisy Reference: Similar
transformation to the non-noisy reference but
with more prominent noise.

• PSO Transformed Non-Noisy with Noise Con-
siderations: Displays the target silhouette with
additional noise, indicating the PSO algorithm’s
struggle with noise considerations.

6.2. BAS Transformed Images
• BAS Transformed Non-Noisy Reference: Shows

a clear transformation with a well-defined
silhouette.

• BAS Transformed Noisy Reference: Similar to
the non-noisy reference but includes noise,
demonstrating better noise handling than PSO.

• BAS Transformed Non-Noisy with Noise Con-
siderations: Exhibits a clear silhouette with slight
noise, indicating effective handling of noise.

7. Transformation Parameters Comparison Table
and Objective Function Variation

In addition to the standard experimental setup, we
conducted an extended experiment to evaluate the
performance of Particle Swarm Optimization (PSO)
and Beetle Antennae Search (BAS) algorithms under
a modified objective function. The purpose of this
variation was to measure the robustness and efficiency
of the algorithms in optimizing image transformations
when faced with a different objective function.
7.1. Experimental Setup

• Images: The experiments used a reference image
and a target image, both loaded in grayscale
format. The reference image was transformed in
terms of position, scale, and rotation to align with
the target image.

• Objective Function: The modified objective
function was defined as the sum of squared
differences between the pixel values of the
transformed reference image and the target
image. This objective function aims to minimize
the error.

Parameter PSO Non-
Noisy

PSO Noisy PSO Non-
Noisy with
Noise

X 169.74 170.24 104.30

Y 109.93 111.98 293.03

Scale 0.1001 0.1150 0.1110

Rotation -157.60 -109.08 -116.29
Table 1. Comparison of transformation parameters found by PSO
in each scenario.
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Parameter BAS Non-
Noisy

BAS Noisy BAS Non-
Noisy with
Noise

X 40.86 202.89 255.14

Y 230.04 42.17 240.42

Scale -0.0011 0.0075 0.0220

Rotation -132.79 159.61 -2.68
Table 2. Comparison of transformation parameters found by BAS
in each scenario.

Scenario PSO Change BAS Change

Non-Noisy 1,063,184 877,406

Noisy 1,120,800 878,838

Non-Noisy with Noise 1,107,929 883,806
Table 3. Pixel-change objective values for PSO vs. BAS under
each scenario. Lower is better.

7.2. Results and Images

Figure 3. Objective Function Plot

The experiments were conducted in multiple trials, and
the results were saved as comparative plots and images.
Each trial produced the following visual results:

• Target Image: Displayed as the baseline for
comparison.

• Objective Function Plot: A graph showing the
objective function values over iterations for
both PSO and BAS. This plot illustrated the
convergence behavior and performance of each
algorithm during the optimization process.

Figure 4. PSO Transformed Image

Figure 5. BAS Transformed Image
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• PSO Transformed Image: The image obtained
after applying the transformation parameters
optimized by PSO. This image showed how
effectively PSO could align the reference image
with the target image.

• BAS Transformed Image: The image obtained
after applying the transformation parameters
optimized by BAS. This image demonstrated the
efficiency of BAS in achieving accurate image
alignment.

7.3. Explanation of the Images and Plot
The visual results and plot provided insights into the
performance differences between PSO and BAS:

• PSO Transformed Image: The PSO algorithm
struggled to optimize the transformation param-
eters effectively. The transformed image often
exhibited limited accuracy in aligning with the
target image, particularly in terms of scale and
rotation.

• BAS Transformed Image: BAS consistently pro-
duced transformed images that closely aligned
with the target image. The scale and rota-
tion parameters were more accurately optimized,
resulting in a higher quality transformation.

• Objective Function Plot: The plot revealed that
BAS converged more rapidly and consistently
achieved lower objective function values com-
pared to PSO. This indicated that BAS was more
efficient in minimizing the error and optimizing
the transformation parameters.

8. Discussion and Conclusion
The results indicate that the BAS algorithm outperforms
the PSO algorithm in all scenarios, demonstrating
lower pixel-change values. This suggests that BAS is
more effective in minimizing the error between the
transformed reference image and the target image.
The fine-tuning of BAS parameters contributed to its
superior performance, highlighting the importance of
parameter adaptation in swarm-based optimization.

From the visual results, BAS produces clearer
alignments with fewer noise artifacts compared to PSO.
Even under noise, BAS achieves a better silhouette
match to the target image. The convergence plots
confirm that BAS reaches lower objective values more
rapidly than PSO, indicating higher robustness and
efficiency.

In conclusion, our comparative analysis of BAS
and PSO in both standard and extended experiments
reveals that BAS is a superior optimizer for image

transformation tasks. The findings emphasize the
importance of selecting an appropriate optimization
algorithm based on problem characteristics.Future
work can explore BAS in other image processing
applications, leveraging its robustness and efficiency to
achieve high-quality results.
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