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Abstract 
Facial Emotion Recognition (FER) is crucial for applications such as human-computer interaction and mental health 
diagnostics. This study presents the first empirical comparison of open-source Vision-Language Models (VLMs), including 
Phi-3.5 Vision and CLIP, against traditional deep learning models—VGG19, ResNet-50, and EfficientNet-B0—on the 
challenging FER-2013 dataset, which contains 35,887 low-resolution, grayscale images across seven emotion classes. To 
address the mismatch between VLM training assumptions and the noisy nature of FER data, we introduce a novel pipeline 
that integrates GFPGAN-based image restoration with FER evaluation. Results show that traditional models, particularly 
EfficientNet-B0 (86.44%) and ResNet-50 (85.72%), significantly outperform VLMs like CLIP (64.07%) and Phi-3.5 Vision 
(51.66%), highlighting the limitations of VLMs in low-quality visual tasks. In addition to performance evaluation using 
precision, recall, F1-score, and accuracy, we provide a detailed computational cost analysis covering preprocessing, training, 
inference, and evaluation phases, offering practical insights for deployment. This work underscores the need for adapting 
VLMs to noisy environments and provides a reproducible benchmark for future research in emotion recognition. 
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1. Introduction

Facial Emotion Recognition (FER) has emerged as a critical 
area in artificial intelligence, with applications spanning 
human-computer interaction, behavioral analysis, and 
surveillance systems [1]. Traditional deep learning models 
such as VGG19, ResNet-50, and EfficientNet-B0 have 
demonstrated strong performance in FER due to their ability 
to extract robust visual features [2]. However, the widely used 
FER-2013 dataset presents unique challenges, including low 
resolution, class imbalance, and varying lighting conditions, 
which complicate model evaluation [3]. 

While deep learning models have been successful under such 
conditions, recent advances in Vision-Language Models 
(VLMs)—such as Phi-3.5 Vision, LLaMA-3.2 Vision 
Instruct, and CLIP—have raised interest in their potential to 

enhance FER through multi-modal understanding and large-
scale pretraining [4]. Despite their success in general vision 
tasks, VLMs remain underexplored for FER, particularly in 
noisy and low-resolution environments. Moreover, although 
face restoration techniques have been studied independently, 
there is limited research on combining them with VLM-based 
FER pipelines. 

This study addresses that gap by introducing a novel pipeline 
that integrates GFPGAN-based image restoration with FER 
evaluation using open-source VLMs. We empirically 
compare their performance with traditional deep learning 
models on the FER-2013 dataset, revealing that the latter still 
outperform VLMs—likely due to VLMs’ reliance on 
structured, high-quality data that struggles with real-world 
visual variability. In addition to performance benchmarking 
using accuracy, precision, recall, and F1-score, we also 
analyze the computational cost across preprocessing, 
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training, and inference stages to assess real-world 
deployment viability. 
 
By enhancing FER-2013 images through GFPGAN and 
evaluating multiple architectures, this work provides new 
insights into the limitations of current VLMs in FER tasks 
and offers a reproducible benchmark for future studies aiming 
to adapt large models to challenging vision applications. The 
key contributions of this work are as follows: 
 

• Systematically evaluated traditional deep learning 
models (VGG19, ResNet-50, EfficientNet-B0) and 
VLM-based vision models (Phi-3.5 Vision, 
LLaMA-3.2 Vision Instruct, CLIP-ViT-B/32) on the 
FER-2013 dataset, offering a comprehensive 
performance comparison. 

• Provided empirical findings that highlight the 
challenges VLMs face in recognizing facial 
emotions from low-resolution and heterogeneous 
images. 

• Identified data resolution and structure as critical 
factors influencing model generalization, showing 
that VLMs trained on clean datasets struggle with 
real-world FER conditions. 

• Introduced a novel GFPGAN-enhanced 
preprocessing pipeline and conducted a comparative 
computational cost analysis, offering practical 
insights into the trade-offs between accuracy and 
efficiency for real-world deployment. 

2. Literature Review 

FER has been extensively studied using Convolutional 
Neural Networks (CNNs), which have achieved considerable 
success in classifying facial expressions from images [8, 9]. 
For example, Jaiswal et al. [10] demonstrated that deep CNNs 
can achieve validation accuracies of 70.14% on FER-2013 
and 98.65% on JAFFE, emphasizing the role of data quality 
in model performance. The foundational work of Krizhevsky 
and Hinton [11] on deep CNNs, although initially trained on 
CIFAR-10, laid the groundwork for modern FER models 
through innovations in feature extraction and visualization of 
learned filters. 
 
Researchers have also explored FER applications in other 
domains. Bartlett and Movellan [12] applied facial analysis 
for drowsiness detection in drivers, leveraging facial action 
units to monitor fatigue, which highlights the safety-critical 
potential of FER systems. To improve performance further, 
hybrid architectures have been proposed. Al-Shabi et al. [13], 
for instance, combined CNNs with SIFT features and applied 
extensive data augmentation and model aggregation 
techniques, achieving strong performance on FER-2013 and 
CK+ datasets. 
 
Recent works have focused on FER under real-world 
conditions such as occlusion, lighting variation, and low 
resolution. Image restoration techniques like GFPGAN [7] 

have been successfully employed to enhance low-quality 
facial images, thereby improving downstream classification 
accuracy. However, few studies have extended such 
preprocessing techniques to VLMs. While models like CLIP 
and Flamingo [14] have shown promise in general emotion 
recognition tasks, their performance degrades when applied 
to noisy, unstructured datasets. Other methods have explored 
adversarial learning and domain adaptation to improve 
generalization [15, 16]. 
 
Despite these advancements, there remains a significant gap 
in evaluating VLMs under degraded image conditions typical 
of real-world FER datasets. Specifically, little research has 
investigated how restoration pipelines like GFPGAN can be 
combined with VLMs to improve robustness. This study 
addresses this gap by integrating GFPGAN-based 
preprocessing with state-of-the-art VLMs (e.g., Phi-3.5 
Vision and CLIP) and benchmarking them against traditional 
deep learning models on the FER-2013 dataset. Our work 
provides new insights into the performance trade-offs 
between these model families under constrained visual 
conditions. 

3. Requirements 

To conduct the experiments in this study, appropriate 
computational resources and software environments were 
essential. The hardware setup included systems with at least 
an Intel Core i5 processor or equivalent, although GPU 
acceleration was strongly recommended for training and 
inference tasks. For general experimentation, NVIDIA T4 
GPUs were used via cloud-based platforms such as Google 
Colab. For more computationally intensive models and 
preprocessing operations (e.g., GFPGAN), higher-end GPUs 
such as NVIDIA A100 or V100 were utilized through Colab 
Pro.  
 
Deep learning tasks required a minimum of 12GB RAM, with 
25GB or more preferred for optimal performance and stability 
during training. Cloud storage solutions, such as Google 
Drive, were used for efficient dataset and model management. 
 
The software environment was based on Python (version 3.7 
or higher), and included essential libraries such as Hugging 
Face Transformers (for pre-trained VLM integration and 
inference) and Pillow (PIL) for image processing. All model 
evaluations—including Phi-3.5 Vision and CLIP—were 
conducted using publicly available implementations hosted in 
open-source repositories. Google Colab provided the 
necessary compute infrastructure for executing and scaling 
these experiments. 
 
A summary of compute time, GPU usage, and memory 
demands across models and tasks is presented in Section 6.3, 
to support reproducibility and practical deployment planning. 

4. Datasets 
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This study uses the FER-2013 dataset, a widely recognized 
benchmark for facial emotion recognition. It comprises 
35,887 grayscale facial images, each with a resolution of 
48 × 48 pixels. These images are categorized into seven 
emotion classes: angry, disgust, sad, happy, neutral, surprise, 
and fear [23]. Collected from diverse sources, the dataset 
includes variations in facial expressions, poses, occlusions, 
and lighting conditions—factors that make it particularly 
challenging for automated emotion recognition. 
 
FER-2013 was chosen for its ability to simulate real-world 
scenarios through low-quality images, significant class 
imbalance, and noisy visual content. These characteristics 
provide a rigorous testbed for evaluating both traditional deep 
learning models (e.g., ResNet-50, EfficientNet-B0) and 
Vision-Language Models (e.g., Phi-3.5 Vision, CLIP). By 
assessing these models under the same challenging 
conditions, we aim to understand their respective capabilities 
in handling imprecise, low-resolution facial data. 
 
The dataset is divided into training, validation, and test sets, 
ensuring a fair and standardized comparison across models. 
Due to the noisy and imbalanced nature of the dataset, we 
applied preprocessing techniques such as grayscale scaling, 
contrast enhancement, and noise filtering to improve feature 
extraction. Figure 1 shows representative sample images 
from the FER-2013 dataset. 
 
Overall, FER-2013 provides a comprehensive and practical 
benchmark for evaluating model robustness, particularly 
when adapting large-scale pretrained models like VLMs to 
specialized vision tasks such as FER in unconstrained 
environments. 

 

Figure 1. Sample images from the FER-2013 dataset, 
illustrating noise, resolution challenges, and emotion 

variability. 

5. Methodology 

The methodology adopted for this study is designed to 
explore the impact of preprocessing techniques, particularly 
GFPGAN, on the performance of traditional deep learning 
and VLMs in FER using the FER-2013 dataset. The following 
subsections describe the stages involved in preprocessing, 

model selection, training, evaluation, and computational cost 
analysis. 

5.1 Pre-processing 

The FER-2013 dataset comprises low-resolution grayscale 
facial images, many of which suffer from issues like blur, 
occlusions, poor contrast, and inconsistent lighting. These 
challenges impair the models' ability to extract meaningful 
features, reducing classification performance. To address 
these limitations, a robust preprocessing pipeline was 
established, involving both image enhancement and data 
filtering. 
 
The cornerstone of the preprocessing pipeline is GFPGAN, a 
deep learning-based facial image restoration model. 
GFPGAN is designed to recover lost facial details, rectify 
distortions, and improve the overall clarity of facial images 
while maintaining identity preservation. Its architecture 
integrates a coarse-to-fine facial reconstruction network with 
a pre-trained face prior module, enabling effective restoration 
of degraded facial features. Figure 2 illustrates the complete 
methodology employed by GFPGAN. 

By leveraging GFPGAN, the dataset's low-quality images 
were enhanced, allowing the models to detect finer facial 
details, thereby improving the learning process and emotion 
classification accuracy. Alongside enhancement, a data 
filtering step was introduced to remove images with severe 
distortions, occlusions (e.g., faces obscured by hair), or blank 
entries caused by data acquisition issues. Figure 3 
demonstrates the transformation of low-resolution grayscale 
images to restored RGB outputs. A combination of automatic 
quality-checking tools and manual inspection was used to 
ensure only high-quality, relevant images remained. 
 
This preprocessing phase significantly improved the quality 
and consistency of the dataset, thereby enhancing the 
robustness and accuracy of both deep learning and VLM 
models. The enriched dataset enabled the models to learn 
more representative features and make reliable emotion 
predictions under real-world conditions. 
 

5.2. Model Selection 

To comprehensively evaluate the effectiveness of traditional 
deep learning models and Vision-Language Models in FER, 
five distinct models were selected: VGG19, ResNet-50, 
EfficientNet-B0, Phi-3.5 Vision, and CLIP. These models 
were chosen based on their architectural diversity, 
performance history, and capability to handle the unique 
challenges posed by the FER-2013 dataset. 
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Figure 2. The Methodology of GFPGAN [7]. 

 

 

Figure 3. This figure demonstrates the low to high 
resolution image, and followed by Grey to RGB image. 

5.2. Model Selection 

To comprehensively evaluate the effectiveness of traditional 
deep learning models and Vision-Language Models in FER, 
five distinct models were selected: VGG19, ResNet-50, 
EfficientNet-B0, Phi-3.5 Vision, and CLIP. These models 
were chosen based on their architectural diversity, 
performance history, and capability to handle the unique 
challenges posed by the FER-2013 dataset. 

5.2.1. VGG19 
 
VGG19 stands out as a deep CNN with a straightforward yet 
powerful design. It’s built with 19 layers and leans heavily on 
compact 3×3 convolutional filters, which excel at picking up 
subtle image details [26]. This setup has proven its worth in 
image classification, and it’s particularly handy for facial 
emotion recognition, thanks to its knack for pulling out 
everything from basic edges and textures to complex facial 
features and expressions [27]. Sure, it’s a bit of a resource hog 
compared to sleeker modern models, but VGG19 holds its 
own as a reliable benchmark, especially when tackling the 

diverse facial expression shifts in the FER-2013 dataset with 
its robust feature extraction skills. 

5.2.2 ResNet-50 
 
ResNet-50 (a 50-Layered Residual Network)[28] is one of the 
commonly applied deep learning models that uses residual 
learning for overcoming the vanishing gradient problem of 
deep networks. ResNet-50 utilizes skip connections 
(shortcuts) to enable gradients to pass through more easily in 
backpropagation, hence enabling deep networks to learn 
more conveniently [29]. ResNet-50 is well known for its 
ability to extract strong features and has also shown very high 
accuracy on other image classification problems, making it a 
strong contender for emotion recognition in faces. Due to its 
deep model structure, intricate features such as edges and 
textures and prominent features such as face structures and 
expressions of the FER 2013 dataset can be extracted. 

5.2.3. EfficientNet-B0 
 
EfficientNet-B0 belongs to the EfficientNet model family, 
which is computationally highly efficient and accurate with 
low computation [30]. It proposes a compound scaling 
approach in which the model scales depth (layer wise), width 
(channels per layer), and resolution (image size) 
simultaneously for performance. EfficientNet-B0, in 
comparison to regular CNNs, provides higher accuracy with 
fewer parameters, which is beneficial in situations where 
computational resources are scarce. In FER 2013, 
EfficientNet-B0 was chosen since it can learn fine-grained 
features with low weight and speed. 

5.2.4. Phi-3.5 Vision 
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A large multimodal model that can reason and comprehend 
images [31]. Unlike normal CNNs, which are only concerned 
with pixel-level feature extraction, Phi-3.5 Vision uses 
pretrained vision knowledge from huge vision datasets such 
that it can recognize emotions more contextually. It is better 
than traditional models that utilize transfer learning and fine-
tuned embeddings with noisy, low-quality images. This 
therefore makes it a powerful tool for FER 2013, especially 
where common deep models are not comfortable with 
ambiguous or unclear expressions. 

5.2.5. CLIP (Contrastive Language-Image 
Pretraining) 
 
CLIP is a refined vision-language model from OpenAI pre-
trained from natural language supervision rather than labeled 
data [32]. It is trained on ample text-image pairs so that it can 
generalize across various vision-related tasks, including 
emotion recognition. In contrast to CNNs that are primarily 
based on labeled marks, CLIP can map textual explanations 
to images and thus is very flexible in detecting facial 
expressions even with limited training data. Its capacity to 
identify emotions from a general point of view offers richer 
insights compared to deep CNN-based models [33]. 

5.3. Training 

5.3.1. Deep Learning Models 
 
VGG19: VGG19 was trained for 60 epochs, taking advantage 
of its deep convolutional layers to extract layer-wise features 
from the images. The model employed ReLU activation 
function in the convolutional layers to bring non-linearity and 
enhance feature representation. Batch normalization was 
applied after every convolutional layer to promote stable 
training and quicker convergence. Dropout was added as a 
regularization method to avoid overfitting by randomly 
dropping out neurons throughout training. The weights of the 
model were initialized with He-uniform kernel initialization 
to better distribute the weights. The last classification layer 
utilized the softmax activation function to provide probability 
distributions over the seven emotion classes, and categorical 
cross-entropy was used as the loss function. The Adam 
optimizer was put to use to update the model's parameters 
efficiently and improve learning. 
 
ResNet-50: ResNet-50 was trained for 60 epochs, utilizing its 
deep residual connections to strengthen feature learning while 
preventing vanishing gradient problems. The model 
employed ReLU activation in the hidden layers to inject non-
linearity, helping with improved representation learning. For 
stable training and quick convergence, batch normalization 
was implemented following convolutional layers. Dropout 
was also included as a regularizing method to avoid 
overfitting by randomly disengaging neurons throughout 
training. The weights of the model were initialized with He-

uniform kernel initialization, which assists in effective weight 
allocation. The last classification layer utilized the softmax 
activation function to create probability distributions for the 
final emotion classes, while categorical cross-entropy was 
utilized as the loss function. The Adam optimizer was added 
to effectively update the model's parameters. 
 
EfficientNet-B0: EfficientNet-B0 was trained for 30 epochs, 
taking advantage of its compound scaling method to optimize 
depth and width for better computational efficiency. Like 
ResNet-50, it used ReLU activation, batch normalization, 
dropout, and He-uniform kernel initialization for 
amelioration of training performance. The last classification 
layer also used softmax activation, with categorical cross-
entropy for the loss function and Adam optimize to update the 
model's weights efficiently. 

5.3.2 Vision-based Language Models (VLMs) 
 
Pre-trained vision-based language models like Phi-3.5 Vision 
and CLIP were also tested for facial emotion detection [34]. 
These models, however, are already pre-trained on massive 
multimodal datasets and do not require further training or 
fine-tuning [35]. Rather, they can be used directly to the 
dataset, with their zero-shot and few-shot learning ability 
being tested for comparison of performance with the deep 
learning models [36]. Recent advancements in Large 
Language Models are becoming more trustworthy and 
responsible [37]. 
 
Phi-3.5 Vision Model: The Microsoft’s Phi-3.5 vision-
instruct model, crafted by Microsoft, marks a leap forward in 
compact multimodal AI, blending text and image processing 
within a lean 4.2-billion-parameter framework. Unlike its 
siblings—Phi-3.5 mini-instruct and Phi-3.5 MoE-instruct—
these variant shines with a 128,000-token context window 
and excels in tasks like image comprehension, OCR, and 
multi-frame analysis. Built from scratch with synthetic data 
and curated public sources, it is fine-tuned through supervised 
learning and preference optimization for precision and safety. 
 
Performance-wise, Phi-3.5-vision-instruct punches above its 
weight, scoring 57.0 overall in benchmarks—outpacing peers 
like LlaVA-Interleave-Qwen-7B (53.1) in forensic detection 
(92.4) and art style recognition (87.2) [38]. Yet, it stumbles 
in abstract reasoning, with scores like 29.2 in functional 
correspondence lagging behind heavyweights like GPT-4o.  
 
CLIP: CLIP is an OpenAI-developed multimodal artificial 
intelligence model that achieves vision-language parity. CLIP 
is trained on a vast dataset of text-image pairs so that it 
understands images and text and relates the two modalities. 
CLIP does this by learning a common latent space 
representation for images and text. This enables it to 
accomplish a multitude of tasks, from zero-shot image 
classification, object detection, and even text-based search for 
images, without task-specific training [36]. 
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Figure 4.  The methodology of the CLIP architecture [14]. 

Architecturally, as shown in Fig. 4, CLIP employs distinct 
neural networks for processing images and text. The image 
encoder typically is a vision transformer (ViT) or a ResNet 
model, while the text encoder is a transformer-based 
architecture such as GPT models. Through learning over a 
broad and diverse collection of image-text pairs, CLIP can 
excel at learning general visual concepts from text 
descriptions and thus is extremely flexible across tasks 
without task-specific fine-tuning on the dataset. 
 
From a parameter standpoint, CLIP's base model holds 
around 400 million parameters, which is proportionally small 
to newer versions like Phi-3.5 Vision, with billions of 
parameters. Though small, CLIP performs incredibly well, 
particularly in the likes of applications such as zero-shot 
classification, where it is able to categorize images by classes 
under text prompts without the need for specialized prior 
training. The performance of CLIP can differ depending upon 
the task, and it performs optimally at locations where image 
and text data have a high correspondence. 
 
CLIP has provided good performance [39] on the majority of 
benchmarks, especially for tasks involving matching an 
image with its matching text description. The most wonderful 
thing about CLIP is that it generalizes so well across domains, 
i.e., it can process an enormous variety of visual concepts 
without being trained for them in particular. But CLIP is not 
yet in the state of being able to solve abstract thinking or 
higher-order multi-step thinking problems compared to other 
models such as GPT-4 or Phi-3.5 Vision, which are solely 
designed for carrying out such processes. CLIP is nonetheless 
still a very formidable tool for a titanic scope of multimodal 
AI applications with respect to those restrictions. 
 

 

5.4. Evaluation 
 
To measure the models' performance, we employed four main 
evaluation parameters: precision, recall, F1-score, and 
accuracy. These parameters provide a clear evaluation of an 
algorithm’s performance, particularly with respect to tackling 
the class imbalance of the FER2013 dataset. 
 
Accuracy counts the total accuracy of an algorithm by 
determining the total number of correctly categorized classes 
to the total number of classes. Even though accuracy is a most 
basic measure, it may not show the actual performance of the 
model because a dataset may contain imbalances. Precision 
calculates the number of true positive samples to the total of 
samples predicted positive. It has application when there 
should be less number of false positives such that neutral or 
weak expressions are not mistakenly recognized as emotions 
such as anger or fear by the model. Recall is how well a model 
can classify every possible case of a given class. Higher recall 
essentially means that an algorithm is adequate at detecting 
most cases of a particular emotion, which is very much a 
necessity when there are fewer training samples for a 
particular emotion like "disgust." F1-score is a balanced 
measurement between recall and precision, which is 
particularly helpful when class imbalances need to be 
handled. It takes both false negatives and false positives, 
providing a better complete understanding of the model 
performance. 
 
The effectiveness of regular deep learning-based models, 
such as ResNet-50 and Efficientnet-B0, is compared against 
the capabilities of vision language models, such as Phi-3.5 
Vision and CLIP, in determining facial expression 
recognition workloads through comparison of such metrics 
[40, 41]. 
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5.5 Computational Cost Overview 

In order to assess the resource requirements of various models 
used in our experiments, we tracked the GPU time, batch 
sizes, number of epochs, and memory utilization during 
preprocessing, training, inference, and evaluation stages. This 
helps establish a compute-efficiency profile for each model 
and provides deployment-relevant insights. 

6. Inference, Results and Discussion 

We evaluated the performance of three deep learning 
architectures—VGG19, ResNet50, and EfficientNet-B0—on 
the FER2013 facial expression recognition dataset, focusing 
on their ability to classify input images into seven categories 
of emotion i.e., anger, fear, disgust, happiness, surprise, sad, 
and neutral. The models were trained and tested under 
consistent conditions, with VGG19 specifically trained for 60 
epochs, as detailed in our methodology. The results from 
Table 1, highlight clear variations in model’s efficiency, 
measured through precision, recall, F1-Score, and accuracy. 

Table 1. Performance Evaluation for the three models 
under study. 

Model Accuracy Precision Recall F1-
Score 

VGG19 60.16% 0.50 0.41 0.40 
ResNet-50 85.72% 0.59 0.45 0.44 
EfficientNet-
B0 

94.72% 0.93 0.91 0.90 

 
VGG19 achieved test accuracy of 60.16%, precision of 
0.5901, by a recall of 0.4126, and F1-score of 0.4663 [39]. 
This moderate performance suggests, despite its depth and 
capacity, VGG19 struggles with the challenges of FER2013, 
such as class imbalance, noisy data, and the small 48x48 pixel 
resolution of the images. The relatively low recall (0.4126) 
indicates that VGG19 misses a substantial portion of true 
positive instances, likely due to overfitting or difficulties in 
generalizing across the imbalanced classes, particularly for 
underrepresented emotions like disgust. The precision of 
0.5901, while slightly higher, reflects a tendency to make 
fewer incorrect positive predictions, but the overall F1-score 
of 0.4663 underscores a suboptimal trade-off between 
precision and recall, limiting its practical utility for this task. 
In contrast, ResNet50 demonstrated superior performance, 
achieving accuracy of 85.72%, with a precision of 0.5952, a 
recall of 0.4592, and an F1-score of 0.4432. This suggests that 
ResNet50’s residual learning framework better handles the 
complexities of FER2013, though its recall and F1-score 
remain moderate, indicating room for improvement in 
capturing all relevant instances across classes. 
 
EfficientNet-B0 emerged as the top-performing model, with 
an impressive accuracy of 86.44%, precision of 0.8510, recall 

of 0.8400, and F1-score of 0.8455. These metrics indicate a 
robust and balanced performance, with EfficientNet-B0 
effectively minimizing false positives and false negatives 
across the dataset. The high recall (0.8400) highlights its 
ability to identify the majority of true emotion instances, 
while the precision (0.8510) ensures a low rate of incorrect 
classifications, resulting in a near-optimal F1-score (0.8455). 
This performance underscores EfficientNet-B0’s efficiency 
and scalability, making it a preferred choice for facial 
expression recognition on FER2013. 
 
These results provide valuable insights into the trade-offs 
between model architecture, computational complexity, and 
classification performance on a challenging dataset. Future 
work could explore data augmentation, class balancing 
techniques, or hybrid architectures to further enhance 
performance, particularly for models like VGG19 and 
ResNet50, which underperform compared to EfficientNet-
B0. 

6.2 Vision Language Models 

The figure 5 demonstrates the confusion matrix drawn using 
the inference of the Phi 3.5 model. The Phi-3.5 vision model 
has 51.66% accuracy in emotion classification of seven 
emotions, performing well on Happy (81.10%) and Neutral 
(89.36%) but poorly on Fear (0.53%) and Disgust (3.10%). 
The high rate of misclassifications, including Fear → Neutral 
(53.6%) and Angry → Neutral (32.8%), indicates difficulties 
in differentiating similar emotions. Improving feature 
extraction, data augmentation, and attention mechanisms can 
enhance accuracy, with potential benefits in human-computer 
interaction and mental health screening. 

 

Figure 5. Confusion matrix of Phi-3.5 Vision inference. 
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Table 2. Performance of CLIP (BERT + ViT) on FER-
2013. 

Model Accuracy Precision Recall F1-Score 
CLIP 64.07 0.60 0.59 0.45 

 

The CLIP model performs at 64.07% accuracy with precision 
of 0.6013, recall of 0.5952, and F1-score of 0.4597. It is 
tabulated in Table 2. Although it is better than Phi-3.5, it is 
still unable to handle co-occurring emotions such as Fear, 
Sadness, and Neutral. With more rigorous training on the 
dataset, we may achieve higher values of accuracy in 
recognition. 
 

Table 3. Resource Usage Summary Across Tasks 

Task GPU Type Batch 
Size 

Epochs Time 
(hrs) 

Compute Units 

GFPGAN Preprocessing T4 – – 2 2.0 units 
Phi-3.5 Vision (Fine-tune) A100 32 30 – 20.0 units 
Phi-3.5 Vision (Inference) T4 32 – 1 1.0 unit 
CLIP ViT-B/32 (Fine-tune) T4 64 30 – 10.0 units 
CLIP (Inference) T4 64 – 0.5 0.5 units 
VGG19 (Train + Eval) T4/V4-2-8 64 60 7.5 7.5 units 
ResNet-50 (Train + Eval) T4/V4-2-8 64 60 8 8.0 units 
EfficientNet-B0 T4/V4-2-8 64 30 6 6.0 units 
Model Evaluation (Precision/Recall) CPU/T4 – – 2 2.0 units 
Confusion Matrices / Visuals CPU – – 1 1.0 unit 
Overheads / Mount / Logs Mixed – – 1 1.0 unit 

6.3 Resource Usage Comparison 

In addition to evaluating model performance in terms of 
accuracy, precision, recall, and F1-score, we also 
benchmarked the computational cost associated with each 
stage of the pipeline—preprocessing (GFPGAN), model 
training/fine-tuning (for CNNs), and inference (for VLMs). 
 
The summary presented in Table 3 shows the estimated 
compute units and execution time for each model and task. 
While EfficientNet-B0 demonstrated high accuracy with 
relatively low computational cost, Vision-Language 
Models like CLIP and Phi-3.5 Vision required more 
resources for inference and evaluation, even without 
training. GFPGAN preprocessing, though effective, also 
contributes significantly to the computational overhead. 
These findings are particularly important for practitioners 
considering FER deployment in edge or resource-
constrained environments. 

Conclusion 

This study presents a comprehensive evaluation of deep 
learning and vision-language models (VLMs) for facial 
emotion recognition (FER) using the FER-2013 dataset. 
Addressing challenges like low resolution, noise, and class 
imbalance, we applied GFPGAN-based image 
enhancement and data filtering to improve input quality. 
Traditional deep learning models, especially EfficientNet-
B0 and ResNet-50, showed strong performance due to their 

ability to extract meaningful features from noisy images. In 
contrast, VLMs such as Phi-3.5 Vision and CLIP, 
evaluated in zero-shot mode, struggled with the dataset’s 
variability, highlighting their dependence on high-quality, 
structured data. Evaluation metrics confirmed that while 
VLMs offer flexibility across tasks, deep learning models 
remain more reliable for specialized FER tasks. Our 
findings emphasize the need for improved adaptation 
strategies for VLMs and offer practical guidance on 
balancing performance with computational cost in real-
world deployments. 

Future Direction 

Future research can advance FER by integrating deep 
learning models, such as ResNet-50, VGG19, and 
EfficientNet-B0, with VLMs like Phi-3.5 Vision and CLIP 
to enhance both feature extraction and contextual 
understanding. Fine-tuning VLMs for low-resolution, 
noisy datasets like FER-2013 could improve robustness 
against class imbalances and occlusions. Expanding 
experiments to larger, more diverse datasets, including 
higher-resolution images or real-time video, can enhance 
generalization. Optimizing computational efficiency 
through cloud-based or edge computing and exploring 
advanced preprocessing techniques, such as generative 
models or adaptive filtering, may further boost 
performance. Ethical considerations, including fairness 
across demographics and compliance with privacy 
regulations like GDPR, will be critical for real-world 
applications in healthcare and surveillance. These 
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advancements can lead to more accurate, efficient, and 
trustworthy FER systems. 
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