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Abstract 

Recognizing Indian Sign Language (ISL) gestures effectively is crucial for improving communication accessibility for the deaf 
community. This study introduces an innovative approach that integrates a Sequential Long Short-Term Memory (LSTM) model with 
MediaPipe Holistic for accurate and real-time gesture recognition. This work outlines a straightforward approach to recognizing Indian 
Sign Language (ISL) gestures effectively. The process is divided into three steps: Extracting features from data, cleaning, labeling, and 
identifying gestures using MediaPipe Holistic. The system tracks landmarks on the face, hands, and body across video frames, capturing 
essential details such as temporal and spatial features for interpreting gestures. Firstly, data cleaning and labeling are done by 
eliminating unclear, fuzzy images and null entries. Then, the processed data is passed into a Sequential LSTM model, which has two 
LSTM layers and a dense output layer. The proposed approach improves the model’s performance by integrating techniques such as 
early stopping and categorical cross-entropy. The model is trained and tested using a customized ISL dataset that included 11 distinct 
gestures, and it achieved a high accuracy rate of 96.97%. The framework emphasizes the model's robustness across diverse lighting 
conditions and real-world scenarios, ensuring its applicability in sectors such as healthcare, education, and public service. By enhancing 
communication for ISL users, it effectively addresses existing gaps and improves accessibility in these domains. 
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1. Introduction

Sign language recognition using AI techniques is an 
emerging field that aims to make communication more 
accessible for people who can’t hear. Sign language plays a 
vital role as a primary mode of communication for many 
deaf individuals, and detecting gestures in sign language 
accurately and in real-time can drastically improve how well 
they are able to interact with others. By incorporating body 
movements, gestures using hands, and expressions on the 
face, sign language effectively communicates meaning 
through visual means. Traditional methods for interpreting 
sign language rely on human interpreters, which can be 
expensive, time-consuming, and not always available. 

Roughly 430 million people worldwide need rehabilitation 
therapies to correct their hearing loss, which is more than 
5% of the world population [1]. By 2050, the number of 
individuals suffering from debilitating hearing loss is 
projected to surpass 700 million or one in every ten of the 
world's population [1]. Hearing loss causes deaf and hard-
of-hearing persons a variety of challenges in their everyday 
life. The communication gap is one main difficulty as these 
people may find it difficult to grasp speech, especially in 
loud background noise settings or when the speaker is not 
immediately facing them. This might complicate interaction 
with others, especially in professional and social contexts. 
Other common challenges include - Employment 
discrimination: Deaf and hard-of-hearing individuals may 
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face discrimination in the workplace, particularly in jobs 
that require good hearing skills, resulting in limited career 
opportunities,  Educational challenges: assessing education 
is hard particularly if they attend schools that do not provide 
specialized resources or accommodations, Access to 
information: these specially-abled individuals may struggle 
to access information conveyed through auditory means, 
such as television, radio, and phone calls and, Social 
isolation: Communication barriers can lead to social 
isolation and a sense of disconnection from the larger 
community. Deaf-mute individuals face significant obstacles 
in receiving adequate healthcare due to a lack of social 
interaction and communication [2]. 
    Despite popular belief, deaf people who communicate 
through sign language may not possess the same level of 
reading and comprehension skills as those who 
communicate verbally, primarily as a result of grammatical 
and structural variations in sentences [3]. However, it is a 
reality that the people for whom sign language is their main 
means to communicate typically learn their native language 
as a secondary language, leading to potential challenges in 
reading and writing fluency. This can be exemplified by the 
translation of the sentence in English "I don't understand" 
into sign language, where it is represented as "I understand 
no". The primary use of sign language can make it 
challenging for individuals to read and write in other 
languages, as other words may be seen as noise [4]. The 
upward trend in deaf students enrolling in colleges and 
universities over the course of the last two decades has led 
to a communication challenge, affecting both teacher-
student interactions and peer-to-peer communication [5], 
[6]. Even though some countries have taken steps to address 
the needs of deaf students by investing in and adapting their 
institutions and staff [7], there is still considerable work to 
be done to ensure that deaf students have a fluid learning 
experience comparable to that of non-deaf students. The 
complexity of sign language poses a challenge for hearing 
individuals to comprehend, underscoring the vital role of 
human interpreters during emergency scenarios. However, 
this interpreting service has its limitations, as there are only 
around 300 certified interpreters in India [8], making it 
difficult to provide interpretation services in educational 
settings, training courses, and urgent circumstances. In 
recent years, online interpretation services have become 
popular, but they are heavily reliant on the strength of 
internet connections on both the end of the signer and the 
human interpreter. Furthermore, the availability of human 
interpreters also affects the effectiveness of this service. 
Therefore, an automatic hand sign language recognition 
system that does not rely on special equipment is necessary 
to ensure equal communication opportunities between the 
deaf and hearing communities.  
Although conventional computer vision-based algorithms 
have shortcomings in accuracy and robustness, action 
recognition systems have demonstrated promise in spotting 
complicated and dynamic movements.  Action recognition is 
important and beneficial for sign language recognition as it 
helps the hearing-impaired population to communicate more 
easily.  The main goal of the proposed method is to apply a 

vision-based tool to recognize words using dynamic and 
static gesture in ISL (Indian sign language).  The present 
study looks at how to use Long Short-Term Memory 
(LSTM) networks with the Mediapipe Holistic pipeline to 
detect and comprehend sign language gestures in real time.  
In legal environments, education, and healthcare, where 
precise and real-time interpretation of sign language is vital, 
this may be quite useful.  By increasing communication 
accessibility and offering greater access to information and 
services, sign language recognition employing action 
recognition can overall improve the quality of life for the 
hearing-impaired population. 
The contributions of the proposed work are as follows: 
Dataset Creation: A novel dataset is developed, 
encompassing Indian Sign Language gestures, both dynamic 
and static, meticulously annotated with various 
classifications.  
Pre-processing: The data undergoes pre-processing, 
organized into sequences and labels, and divided into 
training and testing sets. The proposed sequential LSTM 
model is subsequently trained using the Adam optimizer and 
categorical cross-entropy loss, incorporating early stopping. 
Model Design and Training: The proposed LSTM-based 
model captures temporal dependencies in hand movements 
through two LSTM layers and fully connected layers 
utilizing 'SELU' activation. It is trained with the Adam 
optimizer and categorical cross-entropy loss, employing 
early stopping. 
Integration of MediaPipe Holistic: Incorporate MediaPipe 
Holistic to identify and monitor hand landmarks, which 
function as inputs for precise gesture detection.   
Experimental Evaluation: The performance of the LSTM-
based model is assessed using categorical accuracy.  
Training is done on a subset of the dataset, and evaluation is 
performed on unexplored data. 
Results and Analysis: In-depth detailed analysis is done 
considering strengths, limitations, and potential applications 
of Indian Sign Language recognition. 

2. Background and Related work 

Traditional sign language recognition (SLR) systems have 
been based on image processing techniques, such as 
template matching or edge detection. These methods are 
often computationally expensive and are not always 
effective at capturing the nuances of sign language gestures. 
In recent years, machine learning algorithms for improving 
the efficiency and accuracy of SLR systems have been 
created. The success of transformer-based models in 
modeling sequential data underscores their potential for 
capturing temporal dependencies, a principle we adapt for 
temporal gesture modeling in LSTM networks to address the 
dynamic nature of sign language. One such approach is the 
implementation of LSTM networks. When processing 
sequential data, like sign language gestures, LSTM neural 
networks are especially effective. They have the capacity to 
capture long-term relationships between inputs and 
outcomes, making them particularly effective at recognizing 
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complex patterns in sign language. Mediapipe Holistic is a 
pipeline developed by Google that uses machine learning to 
perform full-body pose estimation, hand tracking, and face 
detection in real time. By combining the capabilities of 
LSTMs and Mediapipe Holistic, it is feasible to create a 
real-time SLR system that is capable of accurate detection 
and interpreting gestures of sign language. Automating sign 
language recognition involves keeping track of body parts 
like the face and hands, extracting pertinent features, and 
applying computer vision and machine learning to recognize 
movement patterns matching certain signs. For training and 
validation, the system's accuracy is dependent on a sizable 
collection of annotated datasets, in our case its sign 
language videos. The paper presents an economical and real-
time approach for recognizing Indian sign language that is 
independent of the signer. Whether they include one hand or 
both hands, the system successfully recognizes static and 
dynamic gestures. 
Two artificial intelligence methods that have shown great 
promise in precisely identifying sign language gestures in 
real time are deep learning and computer vision.  Using 
these techniques, machine learning algorithms are trained on 
large datasets made up of sign language videos, therefore 
enabling them to identify the patterns and differences 
defining sign language gestures.  Artificial intelligence-
driven sign language recognition holds significant promise 
for use in many sectors, including education, legal 
environments, and healthcare.  For example, AI-based SLR 
systems can provide real-time captioning for online lectures 
or meetings, so allowing deaf and hard-of-hearing people to 
fully engage in these events.  In healthcare environments, 
systems of artificial intelligence-based sign language 
recognition can facilitate communication between doctors 
and patients who are deaf or hard of hearing. 
A variety of technologies, including vision-based and glove-
based approaches, are used in gesture recognition systems to 
record gestures made with the hands. By employing sensors 
embedded in the glove, hand movements are detected and 
the associated data is transmitted to a computer, achieving 
high accuracy in gesture recognition in the data glove-based 
method [9]. However, this approach is expensive and 
inconvenient. The Deora and Bajaj [10] suggest a glove-
based instrumentation strategy that recognizes ISL alphabets 
and numbers but only focuses on static gestures. For 
seamless hand segmentation, the implementation of this 
technique necessitates the wearer to put on a glove that is 
colored blue and red, and the recognition process attains a 
recognition rate of 94% utilizing PCA. Signs, where both 
hands overlap, cannot be recognized by this method.  
The use of vision-based techniques offers enhanced user 
convenience, and these methods can be mainly segmented 
into two primary categories: 3D hand model-based 
approaches and appearance-based approaches. The 3D hand 
model-based technique [11], [12] employs 3D data of body 
parts to extract crucial parameters such as joint angles and 
palm position. Although this method requires a considerable 
amount of storage space to handle multiple features, it offers 
improved accuracy and faster computational speed. Several 
techniques advocate using depth cameras to capture data, as 

proposed by Suarez and Murphy [13] and Kapuscinski et al. 
[14]. Popular depth cameras for capturing images include 
Kinect, ASUS Xtion, and others, with Kinect being the most 
widely used [14], [15]. The depth-based SLR system 
presented by Kim et al. [16] employed SVM as the classifier 
and utilized hand direction, length of the finger, and radius 
of palm as features. These features are used to construct a 
decision tree for recognizing hand gestures. Because of the 
constraints of glove-based methods, many research works 
have shifted their focus toward appearance-based 
approaches such as Discrete Wavelet Transform and Hidden 
Markov Model [17], Artificial Neural Networks [18], [19], 
Fingertip-based Gesture Recognition [20], [21], Scale 
Invariant Feature Transform [22], etc. Real-time 
performance and faster processing time are key advantages 
of the appearance-based approach, attributable to the 
incorporation of 2-D image features.  
Islam and Akhter [23] targeted ASL alphabet recognition by 
introducing a novel technique that demonstrates promising 
results. PCA-based features, an orientation-based hash code, 
and a Gabor filter are employed in this approach to represent 
different ASL alphabets. The classification of the extracted 
features is performed by the artificial neural network 
(ANN). They used their own dataset of 24 static gestures to 
test the performance in this article. Aly et al. [24] present a 
technique for ASL fingerspelling recognition which 
employs a depth sensor in the research they conducted. 
Effective feature extraction and learning from depth images 
are achieved through the adoption of the Principle 
Component Analysis network (PCANet). The classification 
task is accomplished using a linear support vector machine 
(SVM) of the 24 static ASL gestures. Tao et al. [25] 
proposed method utilizes a convolutional neural network 
(CNN) with inference fusion and multiview augmentation 
for SLR. The acquisition of depth images for the gestures 
involved the use of a Microsoft Kinect camera. It was 
recommended use augmented data as a training strategy for 
the CNN model. Although this technique achieves 
commendable recognition accuracy, it demands substantial 
computational resources. 
Numerous researchers in the literature have also embraced 
contact-based approaches for gesture recognition. Kim and 
Chong [26] introduced a method for identifying ASL with a 
wearable device. In this study, twenty-eight ASL words 
were obtained using 6 inertial measuring units (IMU), and 
classification was done using the LSTM algorithm. In order 
to facilitate ISL translation, Abraham et al. [27] designed a 
real-time system for hand gesture recognition 
utilizing sensors. The data from the sensor has been 
analyzed in this research to extract hand orientation and 
finger movements, which are subsequently transmitted 
wirelessly to a processing device. The classification task is 
accomplished using an LSTM network. Performance of the 
model is evaluated using a dataset made up of 26 often used 
ISL gestures. Gupta and Kumar [28] proposed a new sensor-
based approach to ISL identification. Signers had IMUs and 
electromyograms attached to both their forearms to collect 
information on the signs. Using a multi-label classification 
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approach that considers the lexical attributes of signs, this 
system achieved an error rate of just 2.73%.  
Kaur et al. [29] especially examined the influence of 
orthogonal moment-based local features to understand their 
significance in ISL categorization. The study found that 
these features were user-independent in terms of rotation, 
scaling, and translation and offered good accuracy for the 
recognition of the ISL dataset. Kumar and Kumar [30] in 
their work generate the ISL database of 26 alphabets by 
using one sample from every one of the 12 different signers. 
The recognition of signs was carried out using a traditional 
machine learning technique, which involved utilizing HOG 
features and training the model using the extreme learning 
machine method. Xiao et al. [31] has an RNN-based gesture 
recognition technique for effective Chinese sign language 
translation. Using the signer's skeleton sequence, the 
approach enabled communication bi-directionally. Standard 
RGB-depth images containing a range of static gestures 
were used to conduct the performance assessment of this 
approach. Lianyu Hu et al. [32] presented CorrNet, a model 
intended for continuous sign language recognition (CSLR) 
which captures movements of the body over a series of 
frames. CorrNet improves spatial-temporal reasoning by 
emphasizing hand and facial motions, resulting in superior 
accuracy on extensive datasets like PHOENIX14 and CSL. 
Zhao et al. [33] proposed a Motion-Aware Masked 
Autoencoder with Semantic Alignment (MASA) to enhance 
sign language detection. MASA employs self-supervised 
learning to extract dynamic motion cues and global semantic 
information. 
Transformer-based designs have shown much more promise 
in SLR lately. For example, Hu et al. [34] suggested a 
transformer-based model for continuous sign language 
recognition that produced state-of-the-art outcomes on large-
scale datasets such as PHOENIX14 and CSL. Saproo and 
Aggarwal [35] suggested a transformer-based method for 
Indian Sign Language (ISL) recognition, hence attaining 
92% accuracy. Using pre-trained models—VGG16, 
EfficientNet, and MobileNet—they classified the latent 
embeddings extracted from frame-by-frame video 
processing using a Transformer network. Recent 
advancements in deep learning highlight the transformative 
potential of sequential models for accessibility; building on 
this foundation, our work aims to democratize 
communication for the deaf community through scalable, 
real-time sign language recognition using LSTMs and 
MediaPipe Holistic. 
Additionally, self-supervised learning has drawn interest 
because to its ability to enhance model performance by 
using vast quantities of unlabeled data. Zhao et al. [33] 
proposed a self-supervised learning strategy for sign 
language recognition that employs a motion-aware masked 
autoencoder with semantic alignment. This technique 
emphasizes the potential of self-supervised learning to 
improve the resilience and accuracy of SLR models. 
Sandoval-Castaneda et al. [36] explored various self-
supervised transformer methods for isolated sign language 
recognition on the WLASL2000 dataset, finding MaskFeat 

to achieve superior performance with a top-1 accuracy of 
79.02%. 
Building on these advances, we provide a Sequential LSTM 
model for real-time gesture recognition that works with 
MediaPipe Holistic. Our method employs LSTM networks 
to capture temporal dependencies in sign language gestures, 
in contrast to transformer-based models. Our model also 
uses MediaPipe Holistic for precise feature extraction, 
guaranteeing strong performance in a variety of real-world 
settings and lighting conditions. Our suggested model is 
successful in recognising Indian Sign Language (ISL) 
gestures, as evidenced by its high accuracy rate of 96.97%. 
Table 1 shows the comparison of various techniques for 
gesture recognition. 
 

Table 1. A brief comparison of the various recognition 
methods for hand gestures 

 

Author 
and Year 

 
Data 

acquisition 
method 

 

Dataset utilized Classifiers and 
Features 

Aly et al. 
[24] (2019) 

Kinect 
Sensor 

24 static gestures 
of ASL 

Principle component 
analysis network 

(PCANet) and SVM 
Tao et al. 

[25] (2018) 
Kinect 
Sensor 

24 static gestures 
of ASL CNN 

Chong & 
Kim 
[26] 

(2020) 

Contact 
based 

28 static gestures 
of ASL 

Long short-term 
memory (LSTM) 

Abraham 
[27] (2019) 

Contact 
based 

26 gestures of 
ISL LSTM 

Gupta & 
Kumar 

[28] 
(2020) 

Contact 
based 

100 isolated 
signs of ISL 

Multi-label 
classification (MLC) 

Kaur et al. 
[29] (2017) 

Vision-
based, using 

RGB 
pictures 

26 signs of ISL 
Jochen- 

Triesch’s dataset 
of ASL 

Dual-Hahn and 
Krawtchouk 

moments using four 
distinct classifiers 

Kumar & 
Kumar 

[30] 
(2021) 

Vision-
based, using 

RGB 
pictures 

26 signs of ISL (HOG), Extreme 
learning machine 

Xiao [31] 
(2020) 

Vision-
based, using 

RGB 
pictures 

Chinese Sign 
Language 

Recurrent Neural 
Network (RNN) 

Lianyu Hu 
et al. [32] 

(2023) 

Vision-
based, using 

RGB 
pictures 

 

German Sign 
Language- 6841 

sentences, 
vocabulary of 
1295 signs; 

German Sign 
Language- 8247 

sentences, 
vocabulary of 
1085 signs; 

Chinese Sign 
Language- 20654 

sentences, 10 
signers; 

Chinese Sign 
Language- 25000 

videos, 
vocabulary of 
178 signs, 100 

ResNet18 (2D CNN), 
1D CNN, BiLSTM 
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sentences; 

Zhao et al. 
[33] (2024) 

Vision-
based, using 

RGB 
pictures 

 

American Sign 
Language – 2000 

words, 100 
signers; 

American Sign 
Language – 

vocabulary size 
of 1000; 

Chinese Sign 
Language- 

vocabulary size 
of 1067; 

Chinese Sign 
Language- 500 

words, 50 signers 

Transformer encoder, 
Graph Convolutional 

Network (GCN), 
motion-aware 

masked autoencoder 
(MA) and semantic 

alignment (SA) 
module 

Saproo and 
Aggarwal 

[35] (2024) 

Vision-
based INCLUDE Transformer-based 

Sandoval-
Castaneda 
et al.[36] 
(2023) 

Vision-
based WLASL2000 

Transformer based 
approaches to self-
supervised learning 

3. Materials and Methods 

The proposed approach for accurately recognizing sign 
motions and converting them into readable text involves 
following key steps: Data pre-processing and Feature 
extraction, Cleaning and Labeling, and Gesture recognition. 
The MediaPipe framework is used for data pre-processing 
and feature extraction. From input frames 
sequence collected by a web camera, the MediaPipe 
framework employs built-in data augmentation techniques 
to extract key points and landmarks as features from the 
face, body, and hands. After the initial stage of extracting 
key points, the second stage focuses on saving these key 
points in a file. Subsequently, null entries are identified and 
removed from the data, and the process proceeds with data 
labeling. The translated sign gestures are displayed as text 
on the screen in the third step, where our proposed 
Sequential LSTM model is utilized to train and classify the 
cleaned and labeled gestures for ISL recognition.  

3.1. Standard LSTM 

For the majority of computer vision problems, it is 
important to account for temporal dependencies between 
inputs and effectively model short-term as well as long-term 
sequences. Such sequential data may be effectively managed 
and processed by recurrent neural networks (RNNs). Unlike 
conventional neural networks, RNNs target on manipulating 
learning contextual relationships in and between sequential 
data using state neurons. Due to a number of restrictions and 
the vanishing and exploding gradient challenges, training 
RNNs is a challenging process. The Long Short-Term 
Memory (LSTM) [37] is popular in the deep learning field 
thanks to its efficient modeling and sequential data 
processing. LSTM [37] addressed the problem of vanishing 
gradients which is frequently seen in traditional RNNs. 
LSTM are one of the most popular neural nets that capture 
and maintain information over prolonged sequences 

compared to simple RNNs, due to its memory cells. The 
flow of information into, out of and inside the memory cell 
of LSTM is controlled by using gating mechanisms 
including input gate, forget gate, and output gate. The 
LSTM, owing to its selective manage knows how to keep 
and retrieve records successfully, is especially optimal for 
sequences with long-time period dependencies [38]. In 
addition, LSTM is crucial to training very deep neural 
networks (many layers) because of being able to deal with 
the vanishing gradient problem. By preserving gradients 
across extensive sequences, LSTM demonstrates its ability 
to proficiently propagate error signals and capture 
dependencies that extend over numerous time steps. This 
exceptional feature has cemented LSTM's stance as a 
sought-after choice for various applications, such as NLP, 
time series analysis, and speech recognition [39]. Within the 
LSTM architecture, memory blocks play a crucial role in 
retaining the prior network states’ memory and facilitating 
the hidden states to adaptively update by selectively 
incorporating or disregarding past information. The input 
gate (i), output gate (o), and forget gate (f) are the three 
multiplicative components that make up these blocks, 
together with a memory cell that is connected to itself. The 
following update occurs in the LSTM when it receives an 
input: 

        it = σ(Wxixt + Whiht−1 + bi)                    (1) 

       ft = σ(Wxf xt + Whf ht−1 + bf )                 (2) 

        ot = σ(Wxoxt + Whoht−1 + bo)       (3) 
         
        gt = tanh(Wxcxt + Whcht−1 + bc)      (4) 

 
        ct = ft ʘ ct−1 + it ʘ gt       (5) 
 
        ht = ot ʘ tanh(ct)         (6) 
 
where W stands for the matrix representing the connection 
weights between two units, and the outputs of the input gate, 
forget gate, cell, output gate, and block at time t are 
respectively represented by it,  ft, ct, ot, and ht respectively. 
ʘ denotes element-wise multiplication. 

 
δ(x) = 1

1+ 𝑒𝑒−𝑥𝑥
     (7) 

 
tanh(x) =  𝑒𝑒

𝑥𝑥− 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+ 𝑒𝑒−𝑥𝑥
     (8) 

 
In Eq. (7) real-valued inputs are condensed to the [0, 1] 
range through sigmoid nonlinearity. Eq. (8) represents the 
hyperbolic tangent activation function (tanh).  

3.2. MediaPipe 

MediaPipe developed by Google, is an open-source 
framework designed to facilitate the development of 
applications related to perceptual computing. With its hybrid 
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platform, MediaPipe constructs pipelines specifically 
designed for the processing of perceptual data, 
encompassing images, videos, and audio. It provides pre-
built machine learning models and processing modules for 
tasks like pose estimation, face detection, and hand tracking. 
Real-time hand tracking and gesture detection are 
accomplished by this extensive approach utilizing ML. It 
ensures precise detection of sign gestures, resulting in 
advanced finger and hand tracking solutions. Our approach 
involved the utilization of the MediaPipe Holistic pipeline, 
which enables successful landmarks extraction from hands, 
body pose, and face. A representation of dataset collection is 
shown in Figure 1. 

 
 

Figure 1. Representation of image dataset collection 
process 

 
MediaPipe holistic pose landmarks. Leveraging the 
capabilities of the BlazePose detector, the MediaPipe 
Holistic framework extracts around 33 3D landmarks that 
encompass x, y, and z coordinates, enabling accurate body 
pose estimation from the provided image or video as input. 
Moreover, the framework efficiently identifies the regions of 
interest (ROI) associated with the detected pose, facilitating 
targeted analysis and robust localization of key pose regions. 
The input to the framework involves ROI-cropped frames, 
which enable the successive detection of poses through the 
utilization of pose landmarks and division masks within the 
defined region of interest. It is therefore well-suited for SLR 
applications since it identifies and locates a larger number of 
key points accurately. 
MediaPipe holistic hand landmarks. To ensure accurate 
estimation within a single frame of approximately 21 3D 
hand landmarks, which involve x, y, and z coordinates, this 
framework incorporates two models: the hand keypoint 
localization model and the palm detection model. The Blaze 
Palm single-shot detector is initially utilized to efficiently 
detect palms and fists, focusing on the essential rigid parts 
instead of irrelevant objects in the input image. The palm 
detection output is then utilized for hand keypoint 
localization, resulting in three outputs: 21 knuckle points on 
the hand in two or three dimensions, the likelihood of hand 
presence in the input image is determined using a hand flag, 
and a left and right-hand binary classification. 

MediaPipe holistic face landmarks. It presents a cutting-
edge approach for real-time face geometry estimation, 
enabling the calculation of 468 3D face landmarks by 
leveraging just a single input camera, negating the reliance 
on additional depth sensors. Two deep neural network 
models are used in this advanced system: a detector for 
identifying face locations throughout the entirety of the 
image and based on the identified locations, a 3D face 
landmark model is utilized to predict the surface geometry. 
Coordinate prediction accuracy can be given priority in the 
network by accurate face cropping and reduction of data 
augmentation operations like rotation, scaling, and 
translation. 
The proposed model and the general framework of proposed 
SLR system is shown in Figure 2 and Figure 3. 
 

 
 

Figure 2. Block representation of proposed sequential LSTM 
model 

 
Stage 1: For our data preprocessing and feature extraction 
approach, we employed the MediaPipe Holistic framework 
as a multistage pipeline. The hands, face, and pose 
components are managed by individual models within this 
framework. It employs an image resolution specific to each 
component's region to guarantee optimal performance. 
MediaPipe Holistic uses integrated data augmentation 
techniques to extract features from keypoints and landmarks 
in the image or video frames, which are then saved for 
further processing.  
We utilized BlazePose's pose detector to estimate the human 
pose and landmark model. The entire list of 540+ landmarks 
was generated after the integration of all the landmarks.  
Stage 2: Once stage 1 is completed, the per-frame 
landmarks (21 x 3 + 21 x 3 + 33 x 4 + 468 x 3 = 1662) 
extracted as features are flattened, concatenated, and stored 
in a file for identification as well as the elimination of any 
null elements within the data. In order to prevent null entries 
in the dataset resulting from failed feature detection, data 
cleaning is a crucial step. When working with blurry 
pictures, this is especially crucial because it might result in 
bias and decreased prediction accuracy during training.  
The acquired data is processed for the subsequent stage, 
which involves the process of assigning labels to each class 
and their respective frame sequences are stored, facilitating 
training, testing, and validation. 
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Figure 3. Gesture recognition system of proposed sequential 

LSTM model 
 

Stage 3: After the completion of the cleaning and labeling 
process in stage 2, the data is transferred to stage 3. A 32-
unit LSTM layer forms the initial layer of the model, 
accepting input sequences of 30 timesteps and 1662 
features. SELU serves as the activation function for the 
LSTM layer. By setting the return sequences parameter to 
True, the component returns sequences instead of the last 
output, and the shape of the input data is specified by the 
input shape parameter. The second LSTM layer, which has 
also 32 units, returns only the final output of the sequence as 
the return sequence parameter is set to False. One dense 
layer with the SELU activation function is appended to the 
model. This dense layer has 32 units. 
The last dense layer implements a softmax activation 
function and contains units equal to the total of the classes 
(actions) involved in the classification task. With a learning 
rate of 0.001, the Adam optimizer [40] is used to build the 
model. The utilization of the categorical cross-entropy loss 
function allows for handling the multiple classes in the 
classification problem. During training, the outcomes of the 
model is assessed using accuracy as the metric, and 
callbacks are implemented to perform certain actions at 
specific points.  
To modify the optimizer's learning rate, a learning rate 
scheduler is implemented, while early stopping is used to 
halt training if the accuracy of the model on the validation 
set does not show improvement after a certain 
predetermined number of epochs, with the goal to optimize 
the process of training. The use of Tensor Board 
notifications facilitates the documentation of the training 
process and enables the display of results in Tensor Board.  

3.3. Hyperparameter Tuning 

To enhance model performance, we carefully adjusted key 
hyperparameters through systematic testing and manual 
refinements. The final selection of hyperparameters, 
including LSTM units, learning rate, batch size, optimizer, 
activation function, and dropout rate, epochs is summarized 
in Table 2. We tried different amounts of LSTM units (16, 
32, and 128) and discovered that 32 was the best choice for 

balancing the ability to understand time-related patterns and 
not using too much computing power. The learning rate was 
tested at 0.0001, 0.0005, and 0.001, with 0.0001 yielding the 
most stable training, preventing both slow convergence and 
instability. We explored batch sizes of 16, 32, and 64, 
ultimately selecting 32 due to its stable learning process and 
memory efficiency. We chose the Adam optimizer after 
comparing it with Stochastic Gradient Descent (SGD) and  
Root Mean Square Propagation (RMSprop), as it facilitated 
faster and more consistent convergence. 

Table 2. Final Hyperparameter Selection 
 

Hyperparameter Final choice Justification 
LSTM Units 32 Balanced accuracy 

and efficiency 
Learning Rate 0.0001 Ensured smooth 

convergence and 
stability 

Batch Size 32 Stable learning 
and memory 

efficiency 
Optimizer Adam Faster and more 

stable 
convergence 

Activation 
Function 

SELU (LSTM, 
Dense), Softmax 

(Output) 

Improved stability 
and classification 

Dropout Rate None Early stopping 
effectively 
prevented 
overfitting 

Epochs 2000 (Early 
Stopping: Patience 

10) 

Prevented 
overtraining and 

reduced 
computation 

We preferred SELU over ReLU for activation functions 
because of its ability to self-normalize, which ensures 
smoother training. While dropout values of 0.2, 0.3, and 0.5 
were tested to mitigate overfitting, dropouts were ultimately 
excluded since early stopping effectively prevented 
overtraining. The early stopping mechanism tracked 
categorical accuracy and halted training after 10 consecutive 
epochs without any improvement. Although training was 
initially set for up to 2000 epochs, the model typically 
converged much earlier due to early stopping. These 
optimizations collectively improved the model’s ability to 
generalize while maintaining efficient training and 
computational feasibility. 

4. Results and Discussion 

4.1. Dataset Description.  

Total 60 videos for each sign gesture were assembled to 
create a real-time dataset employing a web camera, where 
each video consists of 30 frames and maintains a consistent 
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size of 640×480 pixels. A variety of the lighting 
environment and camera angles were used during the 
recording process. The dataset encompasses 11 distinct sign 
gestures, which are comprehensively detailed in Table 3, 
and Figure 4 and Figure 5. Collected data is partitioned in 
the ratio of 90:10 to create corresponding training and 
testing datasets. Hence, 180 images out of the total 1800 
images acquired for each sign gesture, were allocated to the 
training set using the train-test split technique. Moreover, 
the shuffle parameter, set to True, ensures that the data 
undergoes random shuffling before the split. This eliminates 
any systematic order from the resulting training and testing 
sets, ensuring that there are no biases in subsequent analysis. 
The class distribution of the original dataset is preserved in 
both the training and testing sets due to the Stratify 
parameter, which permits stratified sampling. The splitting 
process is stratified based on the labels by passing the labels 
variable as the argument to stratify, maintaining 
representative proportions of various classes in the final 
subsets. These parameter selections improve the model's 
generalizability and dependability by guaranteeing that the 
training and testing sets include a varied representation of 
the underlying data, which is essential for the precise 
assessment and validation of the model's performance.   

 
Table 3. A compilation of 11 sign movements, each 

accompanied by its respective label in Indian Sign Language 
 

Labels Sign Gestures 
0 Accident 
1 Allergy 
2 Doctor 
3 hello 
4 help 
5 Love 
6 Money 
7 Pain 
8 Police 
9 Thank you 

10 wait 

To ensure the model does not rely on specific persons for 
recognition, our dataset was designed to be signer-
independent. This was also validated during testing since the 
model's generalizability was evidenced by its accurate 
classification of motions from unfamiliar signers. 
 
4.2. Experimental settings.  

The simulation was performed on a system Intel Core i5 
processor with a clock speed of 2.50 GHz and 8 GB of 
RAM. The operating system was 64-bit Windows 10 Pro, 
and the simulation was conducted utilizing Python version 
3.7. A web camera capable of capturing RGB images with a 
resolution of 720 pixels/30 fps was employed to capture the 
input image for the simulation. The model was constructed 

using the Keras Sequential API. It consisted of a sequence 
of layers designed to process sequential data.  
The model architecture consisted of four layers, including 
two LSTM (Long Short-Term Memory) layers and two 
dense layers. The initial LSTM layer was set up to return 
sequences and had 32 hidden units. It utilized the Scaled 
Exponential Linear Unit (SELU) activation function and 
accepted input sequences of landmark key points (1662) 
extracted from video frames. Every video contained a 
sequence of 30 frames, resulting in an input shape of (30, 
1662). The second LSTM layer, also with 32 hidden units, 
returned a single output sequence. This layer also utilized 
the SELU activation function.  

 
Figure 4. ISL dataset featuring Static motions 

 

 
Figure 5. Dataset of dynamic gestures in ISL 

A dense layer was added after the LSTM layers, comprising 
32 units and utilizing SELU activation. With the number of 
units matching the number of actions in the dataset, a dense 
layer employing the softmax activation function was utilized 
as the output layer. With a learning rate of 10−4 for the 
Adam optimizer, models were trained. The model's loss 
function of choice was categorical cross-entropy, and its 
performance was measured using categorical accuracy.  
To monitor the training progress and apply early stopping, 
an early stopping callback was defined, which monitored the 
categorical accuracy metric and allowed a patience of 10 
epochs before stopping if no improvement was observed. 
The training process was carried out for a maximum of 2000 
epochs, and the model was trained using the fit() function on 
the training dataset. Additionally, TensorBoard was utilized 
as a callback to visualize and monitor the process of 
training. The class scores were determined using the 
Softmax activation function. For the model, 32 and 32 
hidden units per layer were set respectively. Table 4 shows 
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the model has a total of 226,699 parameters, all of which are 
trainable. 
 
Table 4. Summary of our proposed Sequential LSTM Model 

Layer (type) Output Shape Param # 
lstm_32 (LSTM) (None, 30, 32) 216,960 
lstm_33 (LSTM) (None, 32) 8,320 
dense_30 (Dense) (None, 32) 1,056 
dense_31 (Dense) (None, 11) 363 
Total params: 226,699 
Trainable params: 226,699 
Non-trainable params: 0 

 
4.3. Evaluation metrics  
 
To evaluate the performance of proposed Sequential LSTM 
model, we used the mean absolute error (MAE), mean squar
ed error (MSE), and coefficient of determination (R^2) valu
es displayed in Table 5. 
MAE is the average of the absolute differences between the 
actual and predicted values of the dataset. It can be achieved 
by employing the subsequent formula. 
 

MAE = 1
𝑁𝑁

 ∑ |𝑦𝑦𝑖𝑖 −  𝑦𝑦� | 𝑁𝑁
𝑖𝑖=1     (9) 

 
The MSE formula is used to calculate the average of the 
squared difference between the dataset's predicted values 
and actual values: 
 

MSE = 1
𝑁𝑁

 ∑ (𝑦𝑦𝑖𝑖 −  𝑦𝑦�)2  𝑁𝑁
𝑖𝑖=1     (10) 

  
The 𝑅𝑅2 score ranges from 0.0 to 1.0, with 0.0 representing 
the least favorable fit and 1.0 denoting the most ideal fit, and 
evaluates the model's fit to the given dataset. It can be 
calculated utilizing the specified formula: 
 
𝑅𝑅2 = 1 - ∑(𝑦𝑦𝑖𝑖− 𝑦𝑦�)2  

∑(𝑦𝑦𝑖𝑖− 𝑦𝑦�)2  
     (11) 

 
where the mean value of y is denoted by 𝑦𝑦�  and the predicted 
value is represented by 𝑦𝑦�. Eqs. (9), (10), and (11) were used 
to calculate errors. 
 

Table 5. MAE, MSE, and 𝑅𝑅2 of proposed LSTM model 
 

MAE 0.0303 
MSE 0.0303 
𝑅𝑅2 0.9969 

 

Table 6. Classification result of each label of 11 ISL gesture 

ISL 
Gesture 

Precision Recall F1 score Support 

Accident 1.00 1.00 1.00 6 
Allergy 1.00 1.00 1.00 6 

Doctor 1.00 1.00 1.00 6 
Hello 1.00 1.00 1.00 6 
Help 0.86 1.00 0.92 6 
Love 1.00 0.83 0.91 6 

Money 0.86 1.00 0.92 6 
Pain 1.00 0.83 0.91 6 

Police 1.00 1.00 1.00 6 
Thank You 1.00 1.00 1.00 6 

Wait 1.00 1.00 1.00 6 
 
4.4. Quantitative analysis 

The evaluation of the predictive performance of each sign 
gesture involved the use of classification metrics, including 
precision, recall, and F1-score and computed using TP, FP, 
TN, and FN values.  
Accuracy = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁) 

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁)
                                                 (12) 

 
Precision = TP 

(TP + FP )
                                   (13) 

 
Recall = TP  

(TP + FN)
                          (14) 

 
F1 Score = 2 * (Precision ∗ Recall)

(Precision+ Recall) 
       (15) 

 

 
Figure 6. Evaluation metrics for each label in the 11 

gestures ISL dataset 
 
The classification report in Table 6 is obtained using the 
calculations provided in Eqs. (12), (13), (14), and (15). 
Figure 6 showcases the evaluation of each label of the 11 
gestures dataset in Indian Sign Language in terms of 
mentioned evaluation metrics. From a thorough evaluation 
of classification metrics, it was evident that our Sequential 
LSTM model achieved remarkable precision, recall, and F1-
score values, approaching 1 in most cases. While two 
instances of precision and recall as well as four instances of 
the F1-score, displayed minor deviations, they still 
maintained a favourable proximity to the ideal value. These 
results provide compelling evidence of the model's ability to 
adeptly learn from the entirety of the training data. When 
considering the  𝑅𝑅2 value, our proposed Sequential model 
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attains a high score of 0.99. This score, close to 1, indicates 
a notable fit of the model. Insights into the training accuracy 
and loss of our model during the classification of 11 
individual Indian sign gestures from the dataset can be 
obtained by referring to Figure 7. From the insights obtained 
from Figure 7, it can be inferred that the model we propose 
performs exceptionally well, showcasing a smooth and fast 
training process, which efficiently learns from the data. 
Consequently, our proposed model excels in performance, 
minimizing the loss to a significant extent.  

 
Figure 7. Progress of training accuracy and loss over 101 

epochs, utilizing an early stopping callback 
 
It can be concluded from Figure 8 that the LSTM MediaPipe 
architecture shows excellent performance in ISL gesture 
recognition, with high accuracy, precision, recall, F1 score, 
and low errors. Our proposed SLR model performed 
exceptionally well with an accuracy of 96.97%. When 
analyzing Table 6, the metrics selected to assess our model’s 
performance on all of the 11 dynamic gestures of ISL, the 
results show exceptionally good performance. The live 
stream of our webcam's real-time Indian sign language 
detection during testing is displayed in Figure 9. 

 
 

Figure 8. Performance metrics of the proposed LSTM model  

 

 

 

 

 

 
Figure 9.  Live feed from a webcam and detection results 
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4.5. Comparison of proposed approach with   
      the existing approaches 
In our experiments, we implemented and evaluated several 
models on our custom dataset of 11 gestures to discover the 
most effective method for sign language recognition. We 
compared our proposed approach with Basic Recurrent 
Neural Networks (RNNs), Convolutional Neural Networks 
(CNNs), Support Vector Machines (SVM), k-Nearest 
Neighbors (k-NN), and Basic LSTM without optimizations. 
Our proposed method produced the highest level of 
accuracy (96.97%), precision (97.4%), recall (96.97%), and 
F1-score (96.95%), as determined by the results gathered. 
This superior performance is mostly attributable to the 
model's capacity to capture temporal and spatial 
relationships in gesture sequences, which is further 
improved by the use of early stopping techniques and SELU 
activation.  
 

Table 7. Evaluation Metrics for Different Models 
Methodology Accuracy Precision F1-Score Recall 

SVM 78% 83.0% 82.7% 81.2% 

k-NN 75.0% 76.5% 77.2% 76.8% 

Basic RNN 82.5% 83.0% 85.2% 84.5% 

CNN 93.5% 92.40% 91.5% 92.8% 

Basic LSTM 92.5% 93.0% 93.7% 93.2% 

Proposed 96.97% 97.4% 96.95% 96.97% 
 
In contrast, the vanishing gradient problem caused Basic 
RNN to struggle with long-term dependencies, leading to an 
accuracy of 82.5%. CNN, while adept at capturing spatial 
features, lacked the ability to represent temporal 
dependencies, resulting in an accuracy of 93.5.0%. Complex 
patterns in sequential data were harder to identify using 
traditional machine learning techniques like SVMs and k-
NN, which had accuracy rates of 78.0% and 75.0%, 
respectively. Basic LSTM without optimizations 
outperformed these techniques but fell short of our proposed 
model, obtaining an accuracy of 92.5%.  
A detailed comparison of the evaluation metrics for each 
model is provided in Table 7. Taking everything into 
account, our suggested Sequential LSTM model with 
MediaPipe Holistic showed robustness and excellent 
performance, so qualifying it as the perfect choice for sign 
language recognition uses.   
Impact of Environmental conditions on Model 
Performance: Tests showed that the rec recognition 
accuracy is somewhat affected by partial occlusion and 
lighting changes. In low light, the model outperforms 
existing techniques in obtaining necessary features. We used 
various levels of occlusion and evaluated their impact on 
accuracy. In minor occlusions, when just a little piece of the 
hand was blocked, accuracy dropped by 5–10%. On the 
other hand, major occlusions completely hid vital 
landmarks, which caused an identification accuracy drop of 

at least 10%. These results highlight the need for adaptive 
pre-processing methods like dynamic contrast modifications 
and occlusion-aware models. The dataset may be 
augmented to include a wider range of lighting settings and 
occlusion situations to improve robustness and guarantee 
consistent performance in real uses. 

4.6. Discussion on Limitations.  

Operating independently of individual signers, our model 
efficiently identifies 11 isolated gestures. Still, actual 
implementation presents several challenges.   
Computational Constraints: A system with an Intel Core i5 
CPU and 8GB RAM ran the model through training and 
testing. Although the design is simple, real-time inference 
on edge devices or mobile platforms may need more 
optimization, such as quantization or pruning, to reduce the 
computational cost. Training on larger datasets also requires 
notable processing power, which might be enhanced using 
the best training techniques. 
Dataset Limitations: Dataset Constraints: The dataset was 
collected under a range of lighting settings to guarantee 
adaptability to different illumination levels.  Real-world 
scenarios might impact recognition accuracy as signers 
could gesture in chaotic environments or with backdrop 
distractions. Increasing the dataset to include a broad 
spectrum of gestures and environments will help to further 
generalize and strengthen the model.  
Despite these limitations, our approach remains very 
scalable. Future advances in dataset expansion and model 
optimization will help to further increase the system's 
flexibility hence making it more appropriate for practical 
uses. 

5. Future Work 

SLR can be expanded in the future by including several 
modalities like vision, depth, and audio, therefore aiming to 
raise the preciseness and dependability of SLR models. 
Furthermore, the use of larger and more varied sign 
language video datasets can significantly improve the 
competency and adaptability of the models. Moreover, the 
future offers opportunities to look into SLR applications in 
other fields like education, healthcare, and assistive 
technology. Furthermore, it is vital to consider the cultural 
and geographical variations in sign languages as these might 
increase the relevance and efficacy of SLR systems even 
more. 
Multilingual Adaptability and Scalability: 
The lightweight design of our methodology facilitates real-
time recognition of sign language. It must, however, 
incorporate many sign languages and an expanded 
vocabulary to enhance its adaptability. Transfer learning 
enhances scalability by allowing the model to swiftly adapt 
to new signals with minimum training. Furthermore, 
hierarchical classification might enhance the organization 
and recognition of gestures. Moreover, dynamic feature 
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extraction may improve flexibility with diverse signing 
styles and gestures. 
Transformer-based models, domain adaptability, and 
training on several datasets for multilingual recognition help 
the system to understand sign languages from several 
linguistic origins. Future modifications to increase the 
applicability and inclusiveness of the model will focus on 
these components. 

6. Conclusion 

This paper presents a Sequential LSTM model for Indian 
Sign Language (ISL) identification. Designed with fewer 
layers and neurons, the model uses the SELU activation 
function to increase accuracy.  Additionally, by eliminating 
irrelevant information from the dataset, the model 
effectively focuses on essential features, thereby improving 
overall performance. The proposed approach enhances the 
processing capacity, learning efficiency, and predictive 
accuracy of conventional LSTM networks through a cost-
effective implementation. 
Experimental results demonstrate that the Sequential LSTM 
model achieves remarkably low MAE and MSE values, 
along with high R-squared scores, confirming its superior 

performance. Especially, the Sequential LSTM MediaPipe 
model's capacity to grasp temporal dependencies in time 
series data produced an amazing prediction accuracy of 
96.97% along with faster convergence. 
However, the study is constrained by the dataset size. Future 
studies will aim to increase the dataset with a more 
comprehensive vocabulary to enable the prediction of 
continuous sign language sentences. Aiming to improve 
both learning efficiency and recognition accuracy, this 
improvement pushes the creation of strong ISL recognition 
systems forward. Our suggested method efficiently 
identifies isolated gestures; real-world sign language runs 
continuously without obvious interruptions. This makes it 
difficult to know where one sign finishes and the next starts. 
Future developments might thus concentrate on more 
intelligent techniques for segmentation and advanced 
models like transformers to better grasp the context. 
Including linguistic cues will also enable the algorithm to 
more naturally comprehend sign sequences, hence 
facilitating more accurate recognition.  These advancements 
will move the system closer to real-time CSLR, making it 
more practical for everyday use.  
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