
EAI Endorsed Transactions
on AI and Robotics Research Article

Efficiently Guiding K-Robots Along Pathways with
Minimal Turns
Hamid Hoorfar1,∗, Nedasadat Taheri2, Houman Kosarirad3, Alireza Bagheri4

1Department of Epidemiology and Public Health, University of Maryland, 10 S Pine St., Baltimore, MD 21201,
USA.
2School of Computing, University of Nebraska–Lincoln, 256 Avery Hall, 1144 T, Lincoln, NE, 68588, USA.
3Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, 122 NH,
Lincoln, NE, 68588, USA.
4Department of Computer Engineering, Amirkabir University of Technology, 424 Hafez St., Tehran, Iran.

Abstract

This paper addresses the navigation of a team of k protector robots within pathways, focusing on minimizing
the total number of turns. These robots utilize orthogonal routes known as watchman routes, which prioritize
finding the shortest path while maintaining visibility of all points in the environment from at least one robot
on its designated route. The main objective of this research is to optimize robot navigation by reducing
the overall number of turns. The primary objective of this study is to develop a linear-time algorithm that
efficiently processes and determines routes for k robots within a specified area. By minimizing the number
of turns, this algorithm aims to enhance the navigation capabilities of watchman robots, enabling them to
effectively traverse complex environments. This research employs techniques derived from computational
geometry to investigate the navigation of protector robots. The focus is on developing an algorithm that can
efficiently process and determine the optimal routes for the robots, considering factors such as visibility and
shortest path length. The algorithm is designed to minimize the number of turns while ensuring efficient
coverage of the environment. The main results of this paper include the development of a linear-time
algorithm for determining routes for a team of k protector robots. The algorithm efficiently processes the input
data and produces separate routes for each robot. By minimizing the number of turns, the algorithm improves
the overall navigation efficiency of the robots. The results demonstrate the effectiveness of the algorithm in
optimizing robot paths and reducing the complexity of navigation in real-world scenarios. In conclusion, this
research contributes to the field of robotic systems by addressing the navigation challenges faced by a team of
protector robots. The introduced linear-time algorithm optimizes the routes for k robots, aiming to minimize
the total number of turns. The outcomes of this study have significant implications for the advancement
of watchman robots, enhancing their coverage and surveillance capabilities in real-world applications. The
algorithm’s efficiency and effectiveness in minimizing turns open new opportunities for developing efficient
navigation strategies in complex environments.
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1. Introduction
In recent years, algorithms have gained paramount
significance, expanding their influence and becoming
ingrained in various aspects of our lives [1, 2]. They

∗Corresponding author. Email: hhoorfar@som.umaryland.edu

shape our daily routines and significantly impact
decision-making processes [3, 4], system control [5],
artificial intelligence [6, 7], sampling methods [8, 9],
motion planning, robot navigation [10, 11], graph
theory[16–19], social networks [13, 14], big data [15]
and especially robotics [20–24]. Robot navigation is
a prime example of how algorithms have become
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indispensable components of our modern existence.
This paper focuses specifically on the intricacies and
significance of robot navigation. Orthogonal watchman
robot navigation plays a crucial role in various
applications, including surveillance, monitoring, and
security systems. Efficiently traversing a group of robots
within a given environment is essential to ensure
comprehensive coverage and effective monitoring. One
robot alone cannot efficiently achieve this task. One key
aspect of optimizing robot navigation is minimizing the
number of turns or bends in the robot’s path. Reducing
turns not only improves movement efficiency but also
minimizes the time required to complete tasks. This
paper addresses the challenge of minimizing turns in
orthogonal watchman robot navigation for a team of k
robots. The goal is to develop effective strategies and
propose practical solutions that significantly reduce
the number of bends in the robots’ trajectories while
maintaining complete visibility of the environment.
By minimizing turns, the objective is to improve the
overall effectiveness, scope, and monitoring capacities
of watchman robots. The Watchman Route Problem is
an optimization problem in computational geometry
that involves finding the shortest route for a watchman
or robot to guard an entire area, given only the layout
of the area. The problem is typically defined using a
simple polygon to represent the area, and the objective
is to find the shortest closed curve such that all points
within the polygon and on its boundary are visible to
at least one point on the curve. There are two different
variants of this problem: the fixed variant, where the
watchman passes through a specified boundary point,
and the float variant, where there is no predetermined
starting point for the watchman.

1.1. Background
Previous research has investigated various algorithms
to address the Watchman Route Problem. Chin and
Ntafos [25] developed an algorithm with a time
complexity of O(n4) for the fixed variant, while
Xuehou Tan [26] introduced an incremental solution
with a time complexity of O(n3) that constructs
the shortest route. For the float variant, Tan [27]
and later Sagheer [28] contributed a solution with
a worst-case time complexity of O(n5). Tan also
proposed a linear-time 2-approximation algorithm for
the fixed watchman route. In practical applications,
watchmen are often implemented as robots, which
have motion restrictions due to their structural
limitations. Orthogonal robots, capable of movement
in two perpendicular directions, offer cost-effective
solutions and are commonly employed. Consequently,
minimizing the number of bends in the route
becomes crucial, as additional bends lead to increased
costs. In the orthogonal variant of the Watchman

Route Navigation, the area under consideration is an
orthogonal polygon, and the shortest route must consist
of an orthogonal polygonal curve with the fewest
possible bends. Extensive research has been conducted
in the field of guarding and securing orthogonal
polygons [12, 29–33], considering the prevalence of
real-world scenarios that can be effectively represented
using orthogonal polygonal environments [34–38].
These research efforts have significantly contributed
to the development of more efficient solutions for
such applications. This paper proposes a linear-time
algorithm to solve the float watchman route problem
for pathways in collaboration with a k-member team
of robots. Our algorithm achieves an exact linear-time
solution and addresses the challenge of minimizing
turns in orthogonal watchman robot navigation by
presenting tailored strategies and solutions for the
Watchman Route Problem. Through the reduction of
bends, the goal is to optimize the efficiency and
coverage capabilities of k watchman robots in real-
world scenarios.

1.2. Motivation
The motivation behind the problem of navigating a
team of k robots in orthogonal pathways with minimal
turns is rooted in practical applications that require
efficient and effective robot navigation. By utilizing
multiple robots, the coverage and surveillance capabil-
ities can be significantly enhanced compared to using
a single robot. The involvement of k robots allows for
comprehensive monitoring of the environment, ensur-
ing that all critical areas are adequately observed. Min-
imizing the number of turns in the robots’ paths is cru-
cial for several reasons. Firstly, reducing turns improves
the overall efficiency of the robots’ movement, enabling
them to navigate through pathways more swiftly and
effectively. This efficiency is particularly important in
time-sensitive tasks where rapid response and comple-
tion are desired. Secondly, minimizing turns helps to
optimize the utilization of resources and energy. Each
turn or bend in a robot’s trajectory requires additional
time, energy, and potentially introduces mechanical
wear and tear. By reducing the number of turns, the
robots can conserve their resources, leading to pro-
longed operation times and decreased maintenance
requirements. Thirdly, minimizing turns in the robots’
paths enhances their maneuverability and flexibility.
In complex environments with narrow pathways or
obstacles, excessive turns can limit the robots’ ability
to navigate smoothly. By reducing turns, the robots can
navigate more efficiently, maneuvering around obsta-
cles and reaching their destinations more effectively. By
employing a team of k robots, the problem of minimiz-
ing turns in their paths becomes even more relevant.
Each robot’s trajectory must be optimized to minimize
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turns while ensuring comprehensive coverage of the
environment. Coordinating the paths of multiple robots
introduces additional complexity and challenges, such
as avoiding collisions and optimizing their routes col-
lectively. Therefore, the use of k robots in orthogo-
nal pathways necessitates addressing the problem of
minimizing turns. By developing strategies, algorithms,
and solutions specifically tailored for k robot navi-
gation, researchers and practitioners can unlock the
potential for more efficient, flexible, and collaborative
robot systems, contributing to advancements in various
domains, including surveillance, monitoring, security
systems, and other real-world applications.

2. Preliminaries

In the field of robot navigation, the use of geometric
objects, particularly polygons, has proven to be highly
beneficial for modeling the surrounding environment.
Among polygons, orthogonal ones offer a simplified 2D
representation that greatly aids in the development of
navigation algorithms, particularly in urban settings.
By leveraging the concept of Minkowski summation,
which eliminates the influence of dimensionality,
robots can be treated as points or other geometric
objects, regardless of their dimensional properties. This
paper focuses on an environment characterized by an
orthogonal path polygon denoted as P . An orthogonal
polygon is referred to as a "path polygon" when the
dual graph of its vertical decomposition (specifically,
not the general decomposition) forms a path. The
process of extending the vertical edges connected to the
reflex vertices of P leads to the decomposition of the
polygon into rectangles. This decomposition, known as
the vertical decomposition, results in n−2

2 rectangles,
where n represents the number of vertices. Let’s denote
this set of rectangles as R = R1, R2, ..., Rm, ordered from
left to right based on the x-coordinate of their left edges
when P is horizontal.

The upper and lower horizontal edges of Ri are
denoted as ui and li respectively. Additionally, U =
u1, u2, ..., um and L = l1, l2, ..., lm represent lists of upper
and lower horizontal edges respectively, where 1 ≤ i ≤
m = n−2

2 .
For a horizontal line segment s, x(s) represents the x-

coordinate of the left vertex of s, while y(s) denotes the
y-coordinate of the line segment. Notably, for all 1 ≤ i ≤
m − 1, it holds true that y(ui) = y(ui+1) or y(li) = y(li+1).

Expanding on this observation, e(ui) is defined as the
edge of P that contains ui , and e(li) as the edge that
contains li .

To arrange these edges in a left-to-right manner, two
sets are introduced:

EU = {e(ui)|1 ≤ i ≤ m} (1)

EL = {e(li)|1 ≤ i ≤ m} (2)

. Within the list of horizontal edges E of P , an edge
ej is classified as a local maximum if y(ej ) ≥ y(ej−1) and
y(ej ) ≥ y(ej+1). Similarly, an edge ek is considered a local
minimum if y(ek) ≤ y(ek−1) and y(ek) ≤ y(ek+1). The edge
e(um) (or e(lm)) is designated as a local maximum if
um (or lm) represents a local maximum. Likewise, un
(or ln) is termed a local minimum if e(un) (or e(ln)) is
a local minimum. Among the set R, R1 is specifically
identified as a local maximum if u1 and l1 represent a
local maximum and a local minimum, respectively. The
concept of weak visibility is introduced for two axis-
parallel segments, l and k, which are considered weakly
visible if an axis-parallel line segment can be drawn
from a point on l to a point on k without intersecting the
boundary of P . Covering an ortho-convex polygon P can
be achieved by passing through a point located within
its kernel. The kernel refers to a region that allows for
a comprehensive view of the entire shape. An ortho-
convex polygon is defined as a polygon that maintains
vertical and horizontal monotonicity, ensuring that its
edges follow a consistent ascending or descending order
along both axes.

3. Balanced sub-polygon identification algorithm
Our objective is to determine k orthogonal routes with
the least number of bends in total while ensuring
that every point within P remains visible along one
of these k routes. Put simply, the routes should
provide unobstructed visibility of both the interior and
boundary of P . An orthogonal polygon is considered x-
monotone if it lacks any dent edges in the directions
perpendicular to the y-axis. A balanced polygon, a
subtype of x-monotone orthogonal polygons, can be
traversed using an orthogonal route represented by
a horizontal line segment. It possesses a distinctive
horizontal line segment called the "align" segment,
which connects the leftmost and rightmost vertical
edges without intersecting any other edges. It is
important to note that multiple align-segments can
exist within a balanced polygon. Additionally, each
balanced polygon contains an orthogonal corridor
that extends from the leftmost to the rightmost
edge, encompassing the align-segment. Ortho-convex
polygons also fall under the category of balanced
polygons. Conversely, an orthogonal polygon that fails
to meet the criteria of a balanced polygon is referred
to as an "unbalanced" polygon. This paper presents
an algorithm for decomposing x-monotone orthogonal
polygons into balanced sub-polygons, relying on the
identification of corridors within the polygon. Let ϵ
denote the leftmost vertical edge of polygon P . The
algorithm for identifying balanced sub-polygons within
polygon P begins by starting at the leftmost vertical
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edge, ϵ. From ϵ, a light beam is projected perpendicular
to ϵ while remaining collinear with the X-axis. The
rectilinear path of the light beam intersects a subset
of rectangles, denoted as R, obtained from the vertical
decomposition of P . This subset, referred to as Rρ,
collectively forms a sub-polygon ρ, representing the
first balanced part of the polygon. Within sub-polygon
ρ, each rectangle Ri has upper and lower horizontal
edges denoted as ui and li respectively. It can be
established that:

min
ui∈P

(y(ui)) ≥ max
lj∈P

(y(lj )) (3)

The existence of a horizontal line segment σ connecting
the leftmost and rightmost vertical edges of sub-
polygon ρ implies that σ is an integral part of the
balanced structure of ρ. By utilizing the align-segment
technique, it becomes possible to determine an optimal
orthogonal route for a balanced x-monotone polygon
that minimizes its length.

3.1. Decomposing Polygon P into Balanced
Sub-polygons
To decompose polygon P into multiple balanced x-
monotone polygons, Subsequently, sub-polygon ρ is
eliminated from P , and the aforementioned steps are
reiterated. By iterating through this process, A linear-
time algorithm for decomposing P into balanced sub-
polygons is obtained as described in the Algorithm
1. In Algorithm 1, when the condition in line 3 is
satisfied, it indicates the presence of a balanced sub-
polygon ρ. The next step involves the removal of ρ
from polygon P and the iterative application of the
algorithm to the remaining portion of P , referred to as
P − ρ. The rectangles belonging to ρ are removed from
the set R, resulting in an updated set R = R − Rρ. The
elements in R are initially ordered and labeled from left
to right. Upon removing ρ, the remaining elements are
relabeled, commencing from 1. The same actions are
performed on the sets U and L. The number of iterations
in this process is equal to the size of R at the beginning,
ensuring a linear time complexity for decomposing
P into balanced polygons. Each balanced polygon ρ
has an align line-segment σ connecting its leftmost
and rightmost edges. This align-segment provides a
comprehensive view of ρ from at least one point on σ ,
making ρ weakly visible from σ . Hence, σ emerges as
a viable candidate for the orthogonal watchman route
problem within ρ. When P is decomposed into balanced
sub-polygons ρ1, ρ2, . . . , ρk with corresponding align
line segments σ1, σ2, . . . , σk , it becomes possible to
connect these align line segments using k − 1 vertical
line segments. These vertical line segments establish a
connection between the right endpoint of σi and the left
endpoint of σi+1 for each i ranging from 1 to k − 1. This

resulting orthogonal path, denoted as Π, represents the
primary solution for the orthogonal floating watchman
route problem in P .

Algorithm 1 Decomposition P into the balanced sub-
polygons
Require: an x-monotone polygon with n vertices.
Ensure: a list of balanced sub-polygon.
(1) Set j = 0, minu = u1 and maxl = l1.
while there is rectangle Ri belongs to R do

if ui > maxl or li < minu then
remove R1, ... , Ri−1 from R .
Pj = R1, ... , Ri−1.
j = j + 1 .
refresh the index of R starting with 1.
go to 1.

end
Compute minu =min(minu , ui) and maxl =
max(maxl , li).

end
return last = number of sub-polygons.

3.2. Adjusting the Route for Minimum Orthogonal
Path
However, some unnecessary portions can be trimmed
from the beginning and end of Π to obtain the shortest
possible orthogonal route. The watchman can ignore
these trimmed parts and begin guarding from the
leftmost point of the kernel of P1 intersecting σ1 to
the rightmost point of the kernel of Plast intersecting
σlast . In order to obtain the shortest orthogonal route
while preserving the structure and properties of Π,
Algorithm 2 is introduced. This algorithm operates in
linear time and effectively trims Π. This algorithm
focuses on removing unnecessary portions from Π to
optimize the route length.

In most scenarios, the algorithm operates in con-
stant time. However, in the worst-case scenario, its
complexity reaches O(n). Nevertheless, the resulting
route requires further adjustments to achieve the min-
imum possible orthogonal path. These modifications
primarily focus on optimizing the lengths of the vertical
line segments that connect consecutive align segments.
Let Σ = {σ1, σ2, ..., σk} represent the align segments, and
y(σi) denote the y-coordinate of σi for each i between 1
and k. Each sub-polygon Pi has its align segment, and
within the corridor of Pi , there can be multiple horizon-
tal line segments that could serve as its align segment.
However, certain align segments are more advantageous
than others, as they contribute to a shorter overall
route. To determine the favorable align segments, the
y-coordinate of an align segment is evaluated in rela-
tion to two parameters of the balanced sub-polygon Pi .
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Algorithm 2 Trimming path π to the shortest
orthogonal route
Require: an orthogonal path polygon π.
Ensure: the shortest route in π.
Set j = 0, minu = u1 and maxl = l1.
while there is rectangle Ri belongs to R, from i = 1 to m
do

if ui is a local maximum or li is a local minimum then
remove R1, ... , Ri from R .
go to 1.

end
end
(1) while there is rectangle Ri belongs to R , from i = m
down to 1 do

if ui is a local maximum or li is a local minimum then
remove R1, ... , Ri from R .
go to 2.

end
end
(2) return π = π ∩ R .

These parameters are denoted as follows:

Mi = min
uj∈RPi

y(uj ) (4)

and
mi = max

lj∈RPi

y(lj ) (5)

3.3. Optimizing the Vertical Line Segments for
Consecutive Align Segments
Considering each i from 1 to k, the following conditions
are taken into consideration: Mi < mi+1 or mi > Mi+1.
In cases where Mi−1 < Mi < Mi+1 or Mi−1 > Mi > Mi+1,
the selection of y(σi) (whether it equals Mi or mi)
does not impact the total length of the vertical line
segments connecting consecutive align segments σi−1
σi , and σi σi+1. The length remains constant in such
instances. In the scenario where Mi−1 < Mi > Mi+1 or
Mi−1 > Mi < Mi+1, the total length of the orthogonal
route varies. In the former case, the align segment
with y(σi) = mi is chosen, while in the latter case, the
align segment with y(σi) = Mi is selected. This selection
minimizes the route length by reducing the total length
of vi−1 and vi . Here, vi−1 represents the vertical line
segment connecting the right endpoint of σi−1 to the
left endpoint of σi , and vi denotes the vertical line
segment connecting the right endpoint of σi to the left
endpoint of σi+1. For the initial balanced sub-polygon, if
M1 < M2, the align segment with y(σ1) = M1 is chosen.
Conversely, if M1 > M2, the align segment with y(σ1) =
m1 is selected. Similarly, for the last sub-polygon Pk ,
if Mk < Mk−1, the align segment with y(σk) = Mk is

chosen. Conversely, if Mk > Mk−1, the align segment
with y(σk) = mk is selected. These choices effectively
lead to a shorter route by minimizing the total length
of the vertical line segments vi−1 and vi . Through
optimizing the selection of align segments, an improved
route can be achieved. For visual reference, please refer
to 1. We introduce Algorithm 3, a linear-time algorithm
designed to select the most suitable align segments
for each balanced sub-polygon, with the objective of
obtaining the shortest orthogonal route possible. The
pseudo code for this algorithm is Algorithm 3.

Algorithm 3 Align Selection
Require: a set of available aligns.
Ensure: a set of appropriate aligns.
while there is sub-polygon P1 do

if M1 < M2 then
set y(σ1) = M1.

else
set y(σ1) = m1.

end
end
while sub-polygon Pi i belongs to P , from i = 1 to m do

if Mi−1 < Mi and Mi > Mi+1 then
set y(σi) = mi .

else
set y(σi) = Mi .

end
end
while there is sub-polygon Pm do

if Mm < Mm−1 then
set y(σm) = Mm .

else
set y(σm) = mm .

end
end

3.4. Time Complexity
We have introduced an algorithm that effectively dis-
covers the shortest orthogonal path while minimizing
the number of bends. The algorithm is structured into
three distinct sections, each of which has been accom-
panied by comprehensive explanations. To attain the
desired outcome, it is crucial to execute all three sec-
tions sequentially. Now, let’s delve into the algorithm’s
complexity. In the worst-case scenario, our algorithm
exhibits a time complexity of O(n). This indicates that
the running time of the algorithm increases linearly
with the number of edges present in the polygon. The
efficient time complexity of the algorithm has been
accomplished by meticulously designing it to process
each section in a linear fashion. As a result, the overall
time complexity of the complete algorithm remains
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linear as well. This linear time complexity is considered
optimal since, at the very least, examining every vertex
of the polygon is necessary to compute an orthogonal
route. Thus, our algorithm is highly optimized, and it is
unlikely that a better time complexity can be attained.
Moreover, the space complexity of the algorithm is O(n),
indicating that the amount of memory required by the
algorithm also grows linearly with the size of the input.

4. Partitioning the Single Optimal Route into k
Separate Routes for k Robots
In the previous section, an algorithm was discussed
to determine a single optimal orthogonal route
encompassing all the routes for k robots. The current
objective is to partition this single route into k separate
routes, allowing each robot to utilize a designated
portion of the pathway. The aim is to minimize the total
number of bends on these individual routes.

Let R represent the single route obtained from the
previous section, which consists of t turns. For a
balanced distribution of turns among the k robots, each
route should ideally have an average of |t/k| turns.
In R, the vertical segments of the route pass through
rectangles that serve as connectivity points along the
path. Given the presence of k robots, certain rectangles
are no longer necessary for connecting the paths of the
robots. Once an adjacent robot on its respective route
reaches such a rectangle, the mission of covering that
specific rectangle is achieved, even without intersecting
the vertical line passing through it. Consequently, these
rectangles can be disregarded in subsequent routes.

Additionally, Algorithm 2, introduced earlier, can be
employed to trim the path of the neighboring robot
and reduce its route length. This step contributes to the
overall efficiency and optimization of each robot’s route.
By partitioning the single optimal route into k separate
routes, each robot is assigned a specific section of the
pathway. This approach minimizes the total number
of bends and ensures that the entire route is covered
collectively by the k robots. Through this strategy, a
certain number of turns can be disregarded, resulting
in the total number of turns in all robot routes being
equal to or less than t.

This process involves decomposing the single route,
eliminating unnecessary rectangles, and employing
trimming techniques to optimize the routes for each
individual robot. See Algorithm 4

The algorithm aims to partition the single optimal
route R into k separate routes, each designated for
a robot. It begins by initializing an empty list called
robot-routes to store the separate routes. The average
number of turns per route is calculated to ensure an
approximately equal distribution of turns among the
robots. Next, the algorithm iteratively selects vertical
line-segments from the leftmost end of the route R and

Figure 1. Partitioning the Single Optimal Route into k = 3
Separate Routes.

divides it into separate routes. Each route, denoted as
Ri , is optimized using trimming techniques (Algorithm
2) to reduce its length and eliminate unnecessary
portions. The optimized routes, Ri , are added to the
robot-routes list, and the corresponding processed route
is removed from R. This process continues until all
parts of the original route R have been partitioned
and optimized. Finally, the algorithm returns the robot-
routes list, which contains k separate routes. Each route
is tailored for a robot, ensuring minimized bends and
optimized length. Note: The reference to Algorithm 2
pertains to the trimming algorithm mentioned earlier.
Algorithm 2 focuses on removing unnecessary portions
from the route while preserving its overall structure
and properties.
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Algorithm 4 finding k routes for k robots with the
optimal total number of turns.
Require: Route R (with t turns), Number of robots k.
Ensure: k separate routes for the robots.
Initialize an empty list denoted as robot-routes.
Calculate the average number of turns per route, a =
avg-turns-per-route, by integer dividing t by k.
while R is not empty do

Find the ath vertical line-segment of R from the
leftmost end-point.
Call the part of R before the ath vertical line-
segment as a route R1.
Use Algorithm 2 on R1 to trim the route.
Add R1 to the robot-routes list.
Remove R1 from R.

end
Return the robot-routes list containing k separate routes
for the robots.

4.1. Time complexity
The time complexity of the algorithm 4 can be analyzed
as follows:
Initialization: Initializing an empty list of k routes and
calculating the average number of turns per route can
be done in constant time, O(1).
While loop: The loop iterates until route R is empty.
The number of iterations depends on the size of route R
and the number of robots k. (1) Finding the ath vertical
line-segment of R from the leftmost endpoint can be
done in linear time, O(n), where n is the number of line-
segments in the route R. (2) Calling Algorithm 2 on Ri to
trim the route takes time proportional to the size of Ri .
(3) Adding Ri to the robots-routes list and removing Ri
from R can be done in constant time, O(1). The overall
time complexity of the operations within the while loop
depends on the time complexity of Algorithm 2 .
Return: Returning the robot-routes list containing k
separate routes is a constant-time operation, O(1).

Therefore, the time complexity of the algorithm
primarily relies on the time complexity of Algorithm
2 and the size of the input route R. The overall time
complexity can be approximated as O(n × T ), where n
represents the number of line-segments in the route
R and T denotes the time complexity of Algorithm 2.
Since Algorithm 2 processes each part of R once, its total
time complexity over all parts is O(n). Consequently, if
Algorithm 2 operates in linear time or better, the overall
time complexity of the algorithm can be considered
linear, specifically O(n).

5. Conclusion
In conclusion, this paper explores the navigation of a
team of k protector robots along orthogonal watchman
routes, aiming to minimize the total number of turns.

An algorithm is provided that operates in linear time
and linear space of the input size to find k routes
for k orthogonal robots. This algorithm efficiently pro-
cesses and determines separate routes for each robot,
resulting in significant advancements in optimizing
their navigation within complex environments. The
introduced algorithm successfully partitions a single
optimal route into k separate routes, tailored for each
robot, while considering visibility requirements. By
applying trimming techniques, unnecessary portions
are eliminated, reducing bends and improving effi-
ciency. With its linear time complexity, the algorithm
can be applied in real-time scenarios, enhancing the
overall capabilities of watchman robots. The outcomes
of this research have significant implications for the
field of robotic systems, particularly in the domain of
watchman robots. By reducing the number of turns, the
coverage and surveillance capabilities of these robots
are greatly enhanced, making them highly effective in
real-world applications. The contributions of this paper
advance the development of efficient and versatile
robotic systems, enabling their deployment in various
domains such as security, monitoring, and exploration.
By minimizing the number of turns, the proposed algo-
rithm contributes to the design of more efficient and
effective watchman robots, furthering advancements in
robotic navigation and expanding the scope of their
applications. In summary, the findings presented in
this paper demonstrate the importance of optimizing
navigation by minimizing turns for watchman robots.
The developed algorithm offers a practical solution to
this problem, facilitating the advancement of robotic
systems and paving the way for future research and
development in this field.

Future works in this area could focus on enhancing
the algorithm to handle dynamic environments and
obstacles, allowing the watchman robots to adapt and
navigate in real-time. Additionally, investigating meth-
ods to optimize the routes further while considering
energy consumption and battery life would be valu-
able. Exploring the integration of advanced sensing
and perception technologies could also improve the
overall navigation capabilities and decision-making of
the watchman robots. These avenues of research will
contribute to the continuous advancement of robotic
navigation and its applications in various domains.
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