
EAI Endorsed Transactions  
on AI and Robotics Research Article 

1  

FDD-YOLO: A Lightweight Multi-scale Prohibited Items 
Detection Model 
Zilong Xue1, Bo Wang1,*, Yuanwei Xie1, Zhibin Li2,3,*, Xiaozheng Fan1 , Chenyoukang Lin1 , Peiyang Wei2,3, Linlin Chen2,3, 
Xun Deng2,3, Jianhong Gan2,3  

1 Department School of Software, Xinjiang University, Urumqi 830091, China; 
2 School of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China 
3 Dazhou Key Laboratory of Government Data Security, Sichuan University of Arts and Science, Dazhou, Sichuan 635000, 
China 

Abstract 

X-ray security inspection faces challenges such as severe occlusion, scale variation, and complex background when detecting 
prohibited items, requiring real-time and accurate detection. Although the YOLO series of models has high inference
efficiency, they suffer from problems such as feature redundancy, insufficient fine-grained feature extraction, and limited
adaptability to overlapping objects. To overcome these limitations, we propose FDD-YOLO and design three novel modules:
(1) The Frequency Domain Decomposition Network (FDDN) in the backbone network enhances the edges of metal objects
and the contours of liquid containers by decomposing high-frequency and low-frequency features while reducing
computational redundancy; (2) The Deformable Elastic Fusion Pyramid (DEFP) in the neck network adopts dynamic channel 
allocation and multi-scale deformable convolution to handle the geometric changes of folded and overlapping objects; (3)
The lightweight Dual-channel Convolution (DualConv) improves multi-scale feature capture through grouping and point-
by-point convolution, thereby reducing the number of parameters while improving the accuracy of small object detection.
Tests on the SIXray, HIXray, and private GIX datasets show that FDD-YOLO achieves 2.6%, 3.2%, and 8.6% higher mAP
than YOLOv11n, respectively, achieving accuracies of 94.8%, 84%, and 71.8%, respectively. This framework also reduces
the number of parameters by 30.6% and the number of FLOPs by 26.9%, achieving an optimal balance between accuracy
and efficiency, setting a new technical benchmark for real-time security inspections.
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1. Introduction

Public safety relies on efficient baggage checks in key
locations like airports and subways. X-ray imaging non-
invasively reveals internal object structures and has become 
a core security tool worldwide [1]. However, manual 
inspection is prone to inefficiency and missed detection due 
to subjective bias [2], leading to congestion and risks to 
public security. 

 1Corresponding author. Email:  LiZhibin111@outlook.com  

A promising new paradigm for automated X-ray security 
inspection has been made possible by the revolutionary 
advancements in deep learning, particularly the remarkable 
success of convolutional neural networks (CNNs) in general 
object detection [3]. Researchers have attempted to apply 
sophisticated algorithms such as Faster R-CNN [4], YOLO 
[5], and SSD to the challenge of X-ray contraband detection 
due to their exceptional performance in natural picture 
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identification [6]. However, X-ray images have unique 
intrinsic properties, which make this direct transfer face 
significant obstacles, resulting in model performance far from 
meeting practical requirements [7]. The severe overlap and 
occlusion of items in luggage result in blurred contours and 
unclear boundaries of target objects, making it difficult to 
separate them, as well as high class differences and inter-class 
similarities. The same type of contraband (such as knives 
made of different materials) may show completely different 
textures and shapes, while everyday items with similar 
appearances (such as laptops and explosive blocks) may have 
similar grayscale distributions under X-rays [8]. Contraband 
also has extremely multi-scale characteristics. The size range 
of the objects to be inspected is extremely large, from tiny 
lighters to large laptops, requiring the model to have strong 
multi-scale perception capabilities. 

Existing research addresses these challenges through two 
main approaches. One involves designing specialized 
network architectures, such as feature pyramid networks 
(FPN) and their variants, to improve multi-scale feature 
fusion [9]. For instance, Wang M et al. proposed a weight-
guided dual-direction-fusion feature pyramid network 
(WDFPN) to handle scale variations in crowded scenes [10], 
while others introduced attention mechanisms to highlight 
suspicious regions [11]. The second approach utilizes 
physical priors in X-ray imaging, such as employing dual-
energy data to distinguish organic and inorganic materials 
based on atomic number [12].  

Although the aforementioned studies have made progress 
in the singular application of frequency-domain analysis or 
deformable convolutions, limitations persist. Firstly, most 
frequency-domain methods are computationally complex and 
lack co-design with lightweight network architectures, 
making them difficult to deploy on edge devices. Secondly, 
existing deformable convolution modules often operate in 
isolation, lacking a dynamic and elastic fusion mechanism 
with multi-scale feature pyramids at both channel and spatial 
dimensions. More importantly, few works can 
simultaneously and cooperatively address the dual challenges 
in X-ray images: the loss of high-frequency (detailed 
textures) and low-frequency (structural contours) 
information, and the geometric variations caused by 
occlusion and deformation. 

This paper presents FDD-YOLO, a novel model for 
contraband detection in X-ray images that employs multi-
feature adaptive enhancement through an efficient multi-
dimensional collaborative framework. The proposed 
approach significantly improves feature extraction and fusion 
capabilities for handling complex X-ray image characteristics, 
with key contributions in the following four aspects. 

The Frequency Domain Decomposition Network (FDDN) 
is designed to decompose the input feature map into high- and 
low-frequency components. The high-frequency path uses a 
fused depthwise separable convolution (DSIB) module with 
a reverse bottleneck design and residual connections to 
enhance local details. The low-frequency path uses a multi-
scale edge enhancement (MSEE) module to sharpen the 
global outline of objects. Finally, the Squeeze and Excitation 
attention mechanism adaptively fuses high- and low-

frequency information, effectively addressing the dual issues 
of blurred details and missing outlines. 

The Deformable Elastic Fusion Pyramid (DEFP) module 
is designed specifically for processing deformable and multi-
scale targets in X-ray images. It adaptively captures target 
features with different geometries through dynamic channel 
allocation and multi-branch deformable convolution, and 
utilizes lightweight attention maps to adaptively fuse forward 
and backward features from the FPN and backbone network, 
thereby significantly improving the flexibility and 
effectiveness of feature fusion. 

To improve model efficiency and accuracy, we replaced 
standard convolutions in Backbone and the neck with our 
DualConv. This module utilizes a parallel structure of Group 
Convolution and Pointwise Convolution to achieve an 
equivalent multi-scale receptive field while significantly 
reducing computation and parameter count. This paves the 
way for model deployment on edge devices and meets the 
real-time requirements of contraband detection. 

In order to further improve the model's ability to detect 
small objects, a self-built dataset called GIXray is also 
constructed in this paper. 

2. Related work

Convolutional neural networks (CNNs) have greatly
enhanced contraband detection accuracy and efficiency, 
leading to broader adoption in recent years. Deep learning-
based methods are mainly divided into two-stage and one-
stage detectors. Two-stage detectors, such as R-CNN and its 
successors (e.g., Fast R-CNN), first generate region proposals 
and then perform classification and regression [13]. These 
models are known for high accuracy and have been 
extensively studied in X-ray security inspection — for 
example, Zhang W et al. improved Faster R-CNN with 
ResNet-50 to detect overlapping items [14], while Sagar et al. 
introduced MSA R-CNN with multi-scale feature extraction 
to mitigate FPN information loss [15]. However, such 
methods suffer from high computational cost, structural 
complexity, and slow inference, making them less suitable for 
real-time applications like embedded scanners and limiting 
their practical use. 

To overcome the limitations of two-stage detectors, 
research has shifted toward efficient single-stage models like 
SSD, YOLO, and DETR, which unify localization and 
classification within a single network to achieve faster 
inference. Improved YOLO variants are particularly 
prominent in X-ray contraband detection. For instance, Zhang 
H et al. enhanced YOLOv7-tiny with a FasterNet backbone, 
a PConv-ELAN neck module, and coordinate attention to 
improve small object detection [16]. Guan F et al. 
incorporated the ADown sampling module and DCNv2 into 
YOLOv8 for efficient feature extraction and higher accuracy, 
along with Fast SPPF_RE for better feature fusion [17]. Zhao 
C et al. introduced a label-aware (LA) method using gradient-
based channel weighting to handle overlapping objects 
robustly [18]. Ding et al. proposed FE-DETR, integrating 
split-attention, CBAM, DCN, and a transformer prediction 
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head to enhance performance in detecting obscured objects 
[19]. Zhou Y et al. developed EI-YOLO using Normalized 
Wasserstein Distance (NWD) for improved bounding box 
regression [20]. 

Current research emphasizes lightweight design for edge 
device deployment. Zhou Y T et al. proposed a Low-
Parameter Feature Aggregation (LPFA) structure that utilizes 
max pooling and NWD loss to enhance feature integration 

and small object detection [21]. Similarly, Jia L et al. 
employed MobileNetV3 as a lightweight backbone and 
combined SIoU loss with coordinate attention to improve 
YOLOv7 performance [22]. 

Despite significant progress, current research still faces 
common challenges: severe deformation in X-ray images due 

Figure 1. The structure of FDD-YOLO 

to angles and occlusions, and a lack of adaptive fusion 
strategies that effectively complement deep/shallow and 
high/low-frequency features while maintaining a lightweight 
design. We propose a Frequency Domain Decomposition 
Network to address these gaps to enhance detailed texture and 
structural information, effectively handling blur and 
occlusion. We employ deformable convolution to adaptively 
capture deformed objects through dynamic receptive fields, 
and introduce adaptive weight maps for improved feature 
fusion. Additionally, DualConv provides multi-scale 
receptive fields with minimal computational cost, facilitating 
lightweight deployment. We aim to achieve an optimal 
balance between speed and accuracy, meeting the stringent 
demands of real-world security inspection applications. 

3. Proposed method

3.1. FDD-YOLO 

The YOLO series is widely recognized in object detection 
for its strong real-time performance, making it highly suitable 

for X-ray security inspection. However, it faces challenges in 
complex scenarios: continuous convolution in the backbone 
introduces feature redundancy and computational cost, 
standard convolutions struggle to capture fine-grained 
features such as metal edges or container contours, and 
overlapping objects often lead to feature confusion and false 
positives. To address these issues, we propose the FDD-
YOLO model, which enhances detection accuracy while 
maintaining real-time capability. 

FDD-YOLO integrates the Frequency Domain 
Decomposition Network (FDDN) with C3K to replace the 
C3K module in C3K2, forming C3K2_FDD. FDDN 
significantly reduces redundant feature generation through 
the decomposition of high and low frequency features and an 
adaptive fusion mechanism, thereby improving 
computational efficiency and enhancing the extraction ability 
of fine-grained features such as the edges of metal cutting 
tools and the contours of liquid containers. Additionally, 
through the designed Dynamic Elastic Fusion Pyramid 
(DEFP) to optimize the neck structure, an innovative multi-
scale deformation adaptation mechanism is introduced to 
strengthen the ability to capture multi-scale features, 
effectively solving the feature confusion problem of 
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overlapping items. Subsequently, DualConv replaces the 
standard convolution in the network structure [23], adopting  
dual-path convolution and group compression techniques to 
reduce parameters and lower computational load. The overall 
structure of FDD-YOLO 11 is shown in Figure 1. 

3.2. Frequency Domain Decomposition 
Network 

In complex visual scenes, high-frequency information 
(local details such as edges and textures) and low-frequency 
information (global features such as overall structure and 
background) in contraband images are complementary to 

Figure 2. Detailed structure of the Frequency Domain Decomposition Networks

each other for visual tasks. Existing methods often fail to fully 
utilize these two types of information in a synergistic manner, 
and traditional frequency-domain processing methods are 
often accompanied by high computational overhead. To this 
end, we propose a lightweight Frequency Domain 
Decomposition Network (FDDN). This network first 
separates feature maps into high-frequency and low-
frequency components using a lightweight frequency-domain 
decomposition layer. It then enhances high-frequency details 
and low-frequency structural features through an efficient 
two-way processing mechanism. This significantly improves 
the model's feature representation capabilities in scenes with 
complex backgrounds and translucent objects while 
maintaining extremely low computational complexity. The 
overall structure of the FDDN is shown in Figure 2. The 
FDDN consists of three core components: a frequency-
domain decomposition layer, two-way feature enhancement, 
and an adaptive fusion mechanism. 

The frequency domain decomposition layer uses average 
pooling downsampling to extract low-frequency components, 
based on the theoretical principle that average pooling acts as 
a low-pass filter in the frequency domain and can effectively 
capture fundamental low-frequency information of the image. 

The high-frequency components are obtained by subtracting 
the upsampled low-frequency components from the original 
image. Bilinear interpolation is chosen here instead of 
transposed convolution for upsampling to avoid the risk of 
overfitting caused by introducing additional learnable 
parameters. Meanwhile, the fixed kernel of bilinear 
interpolation ensures the purity of frequency components and 
effectively reduces computational complexity. 

The high-frequency path is processed using our designed 
DSIB module, which integrates depthwise separable 
convolution [24], an inverted bottleneck structure, and 
residual connections. First, local details are extracted through 
grouped convolution, where the number of parameters is only 
1/G of standard convolution (with G being the number of 
groups). This approach avoids redundant inter-channel 
computations. A 1×1 convolution is then used to expand the 
channels by a factor of four, forming an inverted bottleneck. 
This design breaks the limitations of the traditional bottleneck 
structure by performing nonlinear transformations in the 
expanded layer, significantly enhancing feature 
representation capability. 

The GELU activation function is employed to provide 
smoother nonlinear mapping. Finally, a channel compression 
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layer restores the original number of channels via 1×1 
convolution, forcing the network to focus on key features. 
The entire process substantially reduces computational load 
while preserving high-frequency detail sharpness. The 
corresponding computational method is defined in equations 
(1) and (2).

( )( ( ))k kY GELU BN DepthwiseConv X X×= + (1)

1 1( ( ))( )Z GELU BN Conv Y×= (2)

Where C H WX R × ×∈ represents the input feature map, 
and C , H and W represent the number of channels, height, 
and width, respectively. Y C H WR × ×∈ represents the local 
features after grouped convolution, 4Z C H WR × ×∈ represents 
the high-dimensional features after channel expansion, and 

k kConv ×  represents a k k×  convolution. The low-
frequency path is processed by our proposed Multi-Scale 
Edge Enhanced (MSEE) module. This structure constructs a 
multi-scale feature pyramid. The initial scale is generated by 
1×1 convolution and sigmoid gating. Subsequent scales are 
gradually downsampled by cascaded average pooling 
(kernel=3, stride=1, padding=1) and the same 1 × 1 
convolution gating. Each scale feature is enhanced by Edge 
Enhancer. Edge Enhancer is an edge enhancement module 
designed for complex security inspection scenarios. This 
module first smoothes the input features using 3×3 average 
pooling, which is equivalent to extracting local background 
information from the image. Then, by calculating the 
difference between the original and smoothed features, it 
accurately captures the intensity mutation of the local area, 
which is the essential characteristic of the object edge. Its 
calculation method is defined in Equation (3). 

( )3 ( )
1 3 3 ( )k

low kF AvgPool EdgeEnhancer X= ×= °⊕   (3) 

Where F  represents the feature, lowF  represents the low-

level feature, {1,2,3}k ∈ , and 3
1k =⊕   represents cascaded

three-way average pooling and edge enhancement. The initial 
input (0)

lowF X= , C H WX R × ×∈  represents the input feature.

 During the adaptive fusion stage, the varying importance 
of different frequency components for detecting specific 
contraband items—such as metallic objects relying on high-
frequency signals and liquids depending on low-frequency 
information—motivates the use of a Squeeze-and-Excitation 
(SE) attention mechanism for dynamic frequency-domain 
calibration. First, low-frequency features are upsampled to 
the original resolution and concatenated with high-frequency 
features along the channel dimension. These fused features 
are then weighted using the SE mechanism, which employs 

global average pooling to compress spatial information into a 
channel-wise feature vector. This vector captures the average 
response intensity of each feature channel across the entire 
image. The feature refinement is further performed through a 
bottleneck structure (with a compression ratio of 16) 
consisting of two fully connected layers: the first uses ReLU 
activation to introduce nonlinearity during dimensionality 
reduction, while the second applies a sigmoid function to 
generate normalized attention weights between 0 and 1, 
effectively forming a parameterized feature selection filter. 

The weighted dual-path features are subsequently fused 
spatially using a 3×3 convolution layer. This operation helps 
restore spatial correlations that might have been weakened 
during the frequency decomposition and enhancement stages. 
A residual connection is also incorporated to facilitate 
identity mapping, mitigate gradient vanishing, and preserve 
the integrity of the original features. The entire fusion process 
remains computationally efficient due to the extensive use of 
channel compression and 1×1 convolutions. 

In the YOLOv11 architecture, we integrate FDDN with 
C3k2 to form C3k2_FDDN, strategically deployed at 
backbone layers P4 and P5. This design employs channel 
splitting to reduce computational load while maintaining 
training stability through residual connections, thereby 
enhancing detection robustness in security scenarios without 
compromising real-time performance. 

3.3. Deformable Elastic Fusion Pyramid 

DEFP (Deformable Elastic Fusion Pyramid) is a 
lightweight feature fusion architecture designed to address 
the key challenge of cross-scale object detection in X-ray 
security images. Its structure is shown in Figure 3. 

First, a dynamic channel allocation mechanism is used to 
concatenate the input dual-path features y₁ and y₂ after 
bilinear interpolation and size alignment, resulting in f₁. 

1 1 2( , )f Concat y y=      (4) 

 Then the high-level features X are obtained through the 
conversion layer.

1( )x Transform f=           (5) 

Where Transform(⋅) represents a feature transformation 
layer consisting of 1×1 convolution, batch normalization, and 
ReLU activation. Based on x , the channel importance 
weights are generated by the lightweight channel attention 
unit:

2 1( ( ( )))w Softmax W ReLU W GAP x= ⋅ ⋅      (6) 

Where ( )GAP ⋅  represents global average pooling, 
( /4) 2

1
c cW R ×∈  and 2 ( /4)

2
c cW R ×∈  are the weights of the 

two linear transformation layers (compression ratio = 8). 
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After softmax normalization, the feature channels are 
dynamically sorted and reorganized by importance to obtain 

sortedx . The reorganized features are intelligently divided into 
four groups. 

1 2 3 4{ , , , } ( )sortedx x x x Split x=  (7) 

The first three groups of inputs are multi-scale elastic 
deformation units. Each unit contains an offset generator 
(predicting the sampling point position offset through 3×3 
convolution) and an adaptable convolution kernel (supporting 
three scales: 3 × 3, 5 × 5, and 7 × 7). This deformation 
perception capability can accurately fit non-rigid objects such

Figure 3. Detailed structure of the Deformable Elastic Fusion Pyramid 

as folding knives and curved containers in X-ray images. The 
fourth group retains the original features to maintain 
information integrity. The computational load of processing 
the four sets of features is reduced through a channel 
averaging strategy. The deformation convolution process can 
be expressed as: 

1
( ) ( )

K

k k k
k

y p W x P P P
=

= ∗ + + ∆∑   (8) 

k offset kp W x∆ = ∗  (9) 

Where ( )y p  represents the final calculated value at 
position p  on the output feature map, K  represents the total 
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number of convolution kernel sampling points ( K = 9 for a 3
×3 convolution kernel), k  is the index of the sampling point 
currently being calculated, kW  represents the convolution 
weight corresponding to the kth sampling point, x  represents 
the input feature map, and kP  represents the fixed offset 
coordinate of the kth sampling point relative to the center 
point p  in a standard convolution. kP∆  is the learned offset. 

Essentially, it uses a small convolutional network offsetW , 

guided by the input feature kx , to predict the optimal 

direction and distance kp∆  for each sampling point of the 
main convolution kernel. This allows the entire convolution 
operation to adaptively focus on irregular target geometries.  

In the feature conversion stage, multi-scale outputs are 
integrated through 1×1 convolution to generate a spatial 
attention map.  

 

1 2 3 4( * ( , , , ))aa W Concat x x x xσ=           (10) 
 

1 2,x x , and 3x  are features processed by deformable 

convolutions of different scales (3x3, 5x5, and 7x7). The * 
symbol represents convolution, and aW  is the weight of the 
convolution kernel. 

This is innovatively weighted fused with the dual-path 
efficient attention-enhanced features (features processed 
using an efficient attention module with an 8:1 compression 
ratio):  
 

 
 
 

Figure 4. Detailed structure of the (a)Standard Convolution and (b)Dual Convolution 
 
 

1 2 1 2( ) (1 ) ( )out a Attn y a Attn y y y= ⋅ + − ⋅ + +     (11) 
 

The learned coefficients dynamically balance the 
contribution of features at different scales (such as detailed 
information at the P3 layer and semantic information at the 
P5 layer), and ultimately refine the features through 
depthwise separable convolution (3×3 grouped convolution 
and 1×1 point convolution):  

 

1 1 3 3( * )Output W W out× ×= ⋅                  (12) 
 

In the YOLOv11 architecture, the DEFP module is 
deployed at the key fusion nodes P3 and P4 of the feature 
pyramid. This design is based on deep feature characteristics; 
layer P4 (downsampled by 1/16) carries the structural 
information of medium-sized contraband, while layer P3 
(downsampled by 1/8) retains key details for small target 
detection. DEFP achieves breakthroughs through several 
lightweight design features: channel attention uses 1×1 
convolutions instead of fully connected layers to reduce 
parameters; it combines Softmax to achieve adaptive channel  

feature selection; the deformable convolution's offset 
generator shares the computation path with the underlying 
feature extraction, avoiding additional overhead; and the 
multi-scale separable convolution architecture decouples 
spatial convolution from channel projection, significantly 
reducing the computational cost of standard convolutions in 
layer P4. This design provides an excellent balance between 
accuracy and efficiency for security inspection systems, 
significantly improving the detection rate of contraband in 
complex scenarios. 

3.4. DualConv 

In X-ray security image processing, the single convolution 
kernel of traditional standard convolution struggles to balance 
local texture details with global semantic expression. This 
makes optimizing the complex structures of metal objects and 
the low-contrast features of liquid contraband challenging. 
Furthermore, as the number of channels increases, the 
computational complexity of standard convolution increases 
significantly, resulting in excessive computational load in 
deep networks (such as the P5 layer). We introduced the 
DualConv dual-path convolution module to overcome these 
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limitations, which restructures the feature extraction 
paradigm through a dual-path parallel architecture. Its 
structural comparison with standard convolution is shown in 
Figure 4. 

The DualConv module is deeply integrated into the P2, P3, 
P4, P5, and Neck feature fusion paths of the backbone 
network to construct a hierarchical optimization system. In its 
dual-path collaborative design, the grouped convolutional 
path decomposes the input channels through a spatial 
separation strategy and uses 3×3 convolutions to efficiently 
extract local texture features, while the point convolutional 
path establishes global channel interaction through 1×1 
convolutions to accurately convey material density 
information. The dual outputs are fused element-wise, which 
enhances semantic feature expression while maintaining the 
integrity of the spatial structure, significantly improving the 

recognition ability of complex metal structures and low-
contrast materials. 

In system-level collaboration, DualConv is deeply coupled 
with higher-order modules. At the P4 layer, its optimized 
feature representation provides structured low-frequency 
input to the FDDN frequency-domain decomposition 
network, collaboratively improving liquid container detection 
accuracy. In the Neck path, its spatial compression features 
provide key input to the DEFP elastic fusion module, jointly 
improving the recognition accuracy of small-sized cutting 
tools. The module employs an adaptive grouping strategy, 
enhancing edge feature extraction in the shallow P2 layer and 
semantic compression in the deep P5 layer. It optimizes 
memory access efficiency through group convolution and  

Figure 5. Examples of three datasets, HIXray contains 8 categories, SIXray contains 5 categories, and GIXray 
contains 6 categories. 

eliminates channel computational redundancy through point 
convolution. 

This module demonstrates exceptional performance in 
complex security inspection scenarios, significantly 
improving the accuracy of occluded object detection and 
significantly increasing the recognition rate of low-contrast 
contraband. This establishes an efficient, reliable feature 
extraction architecture foundation for real-time X-ray 
security inspection systems. 

4. Experimental results and analysis

We conduct several tests on the SIXray [25], HIXray [26],
and GIXray datasets to evaluate the effectiveness of the 
proposed method. We present the experimental results after 
introducing the datasets and performance evaluation criteria. 
Next, we conduct an ablation study to demonstrate the 
effectiveness of each module in the proposed method. 
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Finally, we compare the experimental results with some state-
of-the-art techniques. Figure 5 shows several sample 
examples from these three datasets. 

4.1. Datasets 

The SIXray dataset is the largest prohibited item detection 
dataset released to date, containing 1,059,321 X-ray images, 
but only 8,929 images contain prohibited items, which are 
manually labeled into six categories. There are six common 
categories of prohibited items: gun, knife, wrench, pliers, 
scissors and hammer. However, this category is not used in 
the official labeling due to the low number of hammers. The 
training set included 7496 images, and the test set included 
1433 images. 

The HIXray dataset is a larger dataset of X-ray images 
compared to the SIXray dataset. HIXray contains 45,364 
high-quality X-ray images of eight prohibited items. There 
are eight common categories: portable charger 1, portable 
charger 2, water, laptop, mobile phone, tablet, cosmetic, and 
non-metallic lighter. The training set includes 36,295 images, 
and the test set consists of 9,069 images. 

Regarding the construction details of the GIXray dataset, 
all X-ray images in this dataset were acquired from real 
security inspection scenarios using a Smiths Detection HI-
SCAN 6040aTiX dual-energy X-ray scanner. The acquisition 
process followed standard airport baggage security 
procedures. To enrich the diversity of small-sized prohibited 
items, we designed various placement protocols, including 
placing the target item at different depths in the baggage, 
overlapping it with other everyday items, and placing it at 
different angles. All images were independently labeled by 
three professionally trained annotators using LabelImg. The 
final annotation results underwent consistency testing, and 
inter-evaluator consistency was guaranteed by calculating the 
mean intersection-union ratio (mIoU), achieving a mIoU of 
0.92, ensuring high-quality and consistent bounding boxes. 

All baggage data collected for GIXray strictly adhered to 
data privacy protection guidelines. Due to the sensitive data 
contained in this dataset from real security inspection 
scenarios, the GIXray dataset cannot be publicly released at 
this time for security and privacy protection reasons. 
However, to ensure the rigor and verifiability of the research, 
we have provided the complete model architecture and 
training details in this paper. We believe that the FDD-YOLO 
method proposed in this study, as a general framework, is also 
applicable and effective on other publicly available X-ray 
security inspection datasets (e.g., SIXray, HIXray). 

4.2. Evaluation criteria 

Three datasets, SIXray, HIXray, and ZLXray, are used in 
this paper's experiments to assess FDD-YOLO's performance 
thoroughly. The primary metrics used to compare the 
experiments with the state-of-the-art detection techniques are 
Precision (P), Recall (R), Mean Average Precision (mAP), 
Parameters (Params), and Giga Floating Point Operations per 
Second (GFLOPs). 

With TP (True Positives) representing successfully 
recognized object instances and FP (False Positives) 
representing background instances incorrectly categorized as 
objects, precision is the percentage of true positives among 
all samples anticipated as positive. Meanwhile, FN (False 
Negatives) denotes cases that are real objects but go 
unnoticed, and recall quantifies the percentage of genuine 
positives that were accurately predicted out of all actual 
positive samples. A standard measure for comparing the 
overlap of two bounding boxes is the Intersection over Union 
(IoU), which is usually employed to gauge how closely the 
anticipated and ground-truth boxes match. The detection is 
usually considered legitimate when the IoU is above a certain 
threshold (such as 0.5 or 0.7). One of the most popular 
comprehensive assessment measures in object identification 
is Mean Average Precision (mAP), which shows how well the 
model performs throughout the dataset.  It is calculated by 
averaging all category-specific Average Precision (AP) 
values after calculating each category's AP.  A model's 
memory footprint and computational complexity are directly 
impacted by its parameters, representing the total number of 
trainable parameters in the model; larger parameter counts 
often correspond to a more complicated model.  A crucial 
measure of computational effectiveness and inference speed, 
GFLOPs (Giga Floating-point Operations) count the number 
of floating-point operations needed for a single forward run 
through the model.  The following equations are used to 
represent them.

TPPrecision
TP FP

=
+

 (13)      

TPRecall
TP FN

=
+

 (14)    

1

0
( )AP p x dx= ∫   (15)    

1

1 c

i
i

mAP AP
c =

= ∑   (16) 

Where mAP is the average of all AP categories, C is the 
number of categories for the item, and AP may be computed 
using the area of the Precision-Recall curve. 

4.3. Evaluation criteria 

In this paper, we use the PyTorch 2.6.0 framework to build 
the network model, CUDA 12.1, Python 3.11, Intel(R) 
Core(TM) i9-14900K for the hardware CPU, and NVIDIA 
GeForce RTX 4090 D with 24GB memory for the graphics 
card. To be fair to all methods, we use the training set for 
training. For training, the test set is evaluated using SGD 
optimizer with configured momentum of 0.9, batch size of 16, 
epoch of 300, and initial learning rate set to 0.01. All the 
experiments are unified in terms of input resolution (640×
640) and training strategy (SGD optimizer, 500 epochs) to
ensure fairness.
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4.4. Ablation studies 

To systematically verify the effectiveness of each 
innovative module, we conducted comprehensive ablation 
experiments on the most challenging GIXray dataset (focused 
on small object detection) and the most representative SIXray 
dataset. The baseline model was the original YOLOv11n 
model without any improvements. 

We conducted comprehensive ablation studies to evaluate 
the contributions of each module in FDD-YOLO.  

The introduction of the Frequency Domain Decomposition 
Network (FDDN) into the backbone improved mAP50 on 
SIXray and GIXray by 1.5% and 3.4%, respectively, while 
reducing computation by 6.3% and parameters by 9.3%. This 

confirms FDDN’s effectiveness in enhancing feature 
extraction for blurred, small, and occluded objects through 
explicit decoupling of high- and low-frequency information. 

The Deformable Elastic Fusion Pyramid (DEFP) in the 
neck further increased mAP50 by 2.1% on SIXray and 5.4% 
on GIXray, while reducing computation and parameters by 
9.5% and 12.8%, respectively.  Its dynamic channel 
allocation and multi-scale deformable convolution allowed 
the model to adapt more accurately to objects of varying 
shapes and complex backgrounds. 

The lightweight DualConv module improved mAP50 by 
1.0% and 1.5% on the two datasets while reducing 
computation and parameters by 15.9% and 16.7%.

Table 1. Ablation experiments on the SIXray dataset 

FDDN DEFP DualConv P R mAP50 mAP50:95 GFLOPs Params 
93.6 86.8 92.2 72.0 6.3 2.58 

 94.5 87.7 93.4 73.5 5.9 2.34 
 94.8 88.1 93.8 74.1 5.7 2.25 

 94.2 87.4 93.2 73.3 5.3 2.15 
  95.2 88.4 94.3 74.4 5.4 2.16 

  95.0 88.2 93.9 74.2 4.9 1.97 
  94.9 88.2 94.1 74.2 5.1 1.95 
   96.1 88.3 94.8 75.2 4.6 1.79 

Table 2. Ablation experiments on the GIXray dataset 

FDDN DEFP DualConv P R mAP50 mAP50:95 GFLOPs Params 
73.0 55.1 63.2 39.2 6.3 2.58 

 73.1 61.5 66.6 42.3 5.9 2.34 
 73.8 58.0 68.6 42.8 5.7 2.25 

 74.1 55.6 64.7 41.7 5.3 2.15 
  73.7 56.4 70.7 43.3 5.4 2.16 

  73.8 58.1 69.5 43.0 4.9 1.97 
  75.6 59.5 67.1 42.6 5.1 1.95 
   79.9 62.5 71.8 44.1 4.6 1.79 

Table 3. Comparison results with advanced methods on the SIXray dataset 

Methods P R mAP50 mAP50:95 GFLOPs Params Year 
Faster R-CNN 84.5 77.5 82.8 65.5 210.4 41.09 2016 
Mask R-CNN 86.1 76.7 83.9 65.4 283.5 60.04 2017 
Grid R-CNN 85.6 77.8 83.3 66.0 328.8 64.32 2019 
POD-Y 92.3 85.1 90.4 70.5 108.1 47.19 2023 
AO-DETR 85.4 76.2 83.3 65.2 268.9 58.38 2024 
MLSA‑YOLO 92.5 86.5 90.8 71.0 32.5 12.14 2024 
YOLOv10n 94.4 86.3 92.5 72.2 8.2 2.69 2024 
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YOLOv11n 93.6 86.8 92.2 72.0 6.3 2.58 2024 
YOLOv12n 95.0 86.6 92.6 73.1 6.3 2.56 2025 
RT-DETR 94.2 87.1 93.1 73.8 107.21 32.1 2025 
D-FINE 93.8 86.9 92.8 73.2 91.35 31.5 2025 
DEIM 94.5 87.3 93.5 74.1 91.42 31.62 2025 
FDD-YOLO 96.1 88.3 94.8 75.2 4.6 1.79 2025 

Its grouped and pointwise convolution design maintained 
feature extraction capacity with minimal computational cost. 

Combining all three modules yielded the highest gains: 
mAP50 improved by 2.6% on SIXray and 8.6% on GIXray, 
with a total reduction of 26.9% in computation and 30.6% in 
parameters. The complete FDD-YOLO model achieves an 
optimal balance of accuracy, efficiency, and model size, 
making it well-suited for high-performance real-world 
security inspection systems.  

4.5. Comparison Experiments 

To comprehensively evaluate the advancedness and 
comprehensive advantages of the model proposed in this 
paper, we selected several of the most representative 
advanced object detection models for comparison, including 
the two-stage Faster R-CNN [4], Mask R-CNN [27], Grid R-
CNN and the single-stage POD-Y [29], AO-DETR [1], 
MLSA-YOLO [30], YOLOv10n [31], YOLOv11n [32], and 
YOLOv12n [33], RT-DETR, D-FINE, DEIM [34]. To 
maintain fairness, all comparative tests were conducted using 
the same hardware setup and dataset splitting. 

1) Comparative Experiments on the SIXray Dataset:

The SIXray dataset contains many simple negative 
samples, challenging the model's ability to localize rare 
objects in complex scenes. Table 3 compares the performance 
of various models on this dataset. 
As shown in Table 3, our model achieves the best 
performance among all compared models on the SIXray 
dataset, achieving 94.8% mAP50 and 75.2% mAP50-95. 
Compared to YOLOv12n, a strong competitor in the 
lightweight field, our model achieves a 2.1% improvement in 
mAP50 while reducing computational overhead and 
parameter count by 1.7 GFLOPs and 0.77 MB, achieving an 
optimal trade-off between accuracy and efficiency. More 
importantly, compared to the baseline model, YOLOv11n, 
our approach achieves a 2.6% improvement in mAP50 and 
reduces computational overhead and parameter count by 1.7 
GFLOPs and 0.79 MB, fully demonstrating the effectiveness 
of our improved solution. 

2) Comparative Experiments on the HIXray Dataset:
The HIXray dataset offers high-quality images and detailed 
annotations, making it ideal for evaluating the model's overall 
performance in realistic scenarios. The comparative results 
are shown in Table 4. 

Table 4 Comparison results with advanced methods on the HIXray dataset 

Methods P R mAP50 mAP50:95 GFLOPs Params Year 
Faster R-CNN 78.5 70.2 73.1 44.8 210.4 41.09 2016 
Mask R-CNN 79.8 69.6 72.9 44.3 283.5 60.04 2017 
Grid R-CNN 81.5 70.1 73.8 45.4 328.8 64.32 2019 
POD-Y 84.3 72.8 76.4 47.5 108.1 47.19 2023 
AO-DETR 84.2 73.5 75.8 47.0 268.9 58.38 2024 
MLSA‑YOLO 87.2 78.3 80.1 50.3 32.5 12.14 2024 
YOLOv10n 87.9 78.6 78.9 49.8 8.2 2.69 2024 
YOLOv11n 86.5 78.5 80.8 51.1 6.3 2.58 2024 
YOLOv12n 87.1 78.7 80.6 50.7 6.3 2.56 2025 
RT-DETR 88.5 79.2 81.5 51.5 107.21 32.1 2025 
D-FINE 87.8 79.0 81.0 51.0 91.35 31.5 2025 
DEIM 88.3 79.5 81.8 51.8 91.42 31.62 2025 
FDD-YOLO 89.8 82.1 84.0 52.7 4.6 1.79 2025 

Table 5. Comparison results with advanced methods on the GIXray dataset 

Methods P R mAP50 mAP50:95 GFLOPs Params Year 
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Faster R-CNN 68.0 52.0 58.5 36.3 210.4 41.09 2016 
Mask R-CNN 67.5 51.5 57.1 35.4 283.5 60.04 2017 
Grid R-CNN 69.3 52.7 59.3 36.9 328.8 64.32 2019 
POD-Y 70.2 53.1 59.8 37.1 108.1 47.19 2023 
AO-DETR 69.5 52.8 59.3 36.8 268.9 58.38 2024 
MLSA‑YOLO 69.3 55.2 58.5 36.3 32.5 12.14 2024 
YOLOv10n 69.9 55.3 61.6 37.6 8.2 2.69 2024 
YOLOv11n 73.0 55.1 63.2 39.2 6.3 2.58 2024 
YOLOv12n 68.0 58.5 62.9 39.2 6.3 2.56 2025 
RT-DETR 75.5 58.8 67.5 42.5 107.21 32.1 2025 
D-FINE 74.2 57.9 66.2 41.8 91.35 31.5 2025 
DEIM 75.8 58.5 67.9 42.7 91.42 31.62 2025 
FDD-YOLO 79.9 62.5 71.8 44.1 4.6 1.79 2025 

Table 6. Performance comparison results of different categories on the GIXray dataset 

Methods mAP50 Lighter Pressure Knife Scissors Powerbank Zippo 
Faster R-CNN 58.5 64.6 67.3 51.4 35.7 76.3 55.7 
Mask R-CNN 57.1 63.1 65.7 50.1 34.8 74.4 54.3 
Grid R-CNN 58.7 64.9 68.1 51.0 36.2 76.5 55.9 
POD-Y 59.8 66.1 68.8 52.5 36.5 77.9 56.9 
AO-DETR 59.3 65.5 68.2 52.1 36.2 77.3 56.4 
MLSA‑YOLO 58.5 64.6 67.3 51.4 35.7 76.3 55.7 
YOLOv10n 61.6 68.1 70.9 54.1 37.6 80.3 58.6 
YOLOv11n 63.2 72.7 73.6 58.0 39.1 80.8 55.0 
YOLOv12n 62.9 71.6 74.1 58.6 35.4 81.6 56.0 
RT-DETR 67.5 75.2 76.8 63.1 42.8 84.5 63.1 
D-FINE 66.2 73.8 75.3 61.7 41.9 83.1 61.8 
DEIM 67.9 75.5 77.1 63.4 43.1 84.8 63.4 
FDD-YOLO 71.8 80.8 81.4 65.5 45.2 89.9 67.2 

 

Table 7. Performance Comparison on Edge Devices 

Methods Devices FPS Size(MB) Inference(ms) 
YOLOv11n Jetson Nano 12.3 12.45 81.3 
FDD-YOLO Jetson Nano 17.8 8.95 56.2 
YOLOv11n Jetson Xavier NX 35.1 12.68 28.5 
FDD-YOLO Jetson Xavier NX 47.6 9.05 21.0 
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Figure 6. (a) Original image,(b) YOLOv11n baseline heatmap,(c) Baseline detection result,(d) FDD-YOLO 
heatmap, (e) FDD-YOLO detection result. 

On the HIXray dataset, our model also demonstrated 
dominant performance, achieving a mAP50 score of 
84.0%, surpassing all other compared models. Compared 
to our baseline model, YOLOv11n, we achieved a 3.2% 
lead in accuracy. Compared to YOLOv12n, we achieved a 
3.4% lead in accuracy. Our proposed model outperformed 
all other two-stage models in accuracy, significantly 
reducing computational complexity and parameter count. 
This result demonstrates that our model is not overfit to a 
specific dataset but possesses strong generalization 
capabilities, enabling widespread improvement in 
detection accuracy on high-quality X-ray images. 

3) Comparative Experiments on the GIXray Dataset 
The GIXray dataset focuses on small contraband and is 

specifically designed to validate the model's robust 
detection capabilities for small objects, a core challenge in 
real-world security inspections. The comparative results 
are shown in Table 5. 

Our model's advantages are most evident on the 
challenging GIXray small object dataset. Its mAP50 of 
71.8% and Precision of 79.9% significantly surpass all 
compared models. Compared to YOLOv10n, its mAP50 is 
10.2% higher. Compared to the baseline model YOLOv11-
n, its mAP50 significantly improves by 8.6%. Table 6 
shows that our model achieves significant improvements in 
mAP50 for the small object categories Lighter and 
Zippooil, demonstrating the exceptional effectiveness of 
our core innovations, the Frequency Domain 
Decomposition Network and the Deformable Elastic 

Fusion Pyramid, in enhancing detail perception and 
handling deformed and occluded small objects. 

Extensive comparisons on these three authoritative 
datasets with varying focus confirm that our proposed 
improved model comprehensively surpasses existing 
detectors in detection accuracy while maintaining 
exceptionally low model complexity (number of 
parameters and computational effort), surpassing state-of-
the-art detection models. Our work successfully achieved 
the goal of finding the optimal balance between accuracy 
and efficiency, providing a powerful solution for deploying 
high-performance X-ray contraband detection algorithms 
in embedded security inspection equipment with limited 
computing resources. 

4.6. Deployment of edge devices 

To validate the practical deployment efficacy of FDD-
YOLO, we supplemented our evaluation with performance 
tests on typical edge devices. The testing platforms 
included the NVIDIA Jetson Nano (4GB) and Jetson 
Xavier NX, which are widely used in embedded AI 
applications. All models were optimized and accelerated 
using TensorRT, with an input resolution of 640×640 and 
a batch size of 1 to simulate real-time video stream 
processing. Key metrics including frames per second 
(FPS), peak memory consumption, and average latency are 
reported in Table 7. 
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4.7. Visualization Analysis 

To gain a deeper understanding of the nature of FDD-
YOLO's performance improvement over the baseline 
model YOLOv11n, this study conducted a detailed visual 
analysis. Based on samples from the test set, we compared 
the results across two dimensions: feature response and 
prediction. 

The class activation heatmaps generated by Grad-CAM 
(Figure 6) demonstrate that our proposed model more 
accurately and densely focuses on the target, particularly in 
complex backgrounds and small target areas. While the 
baseline model's response is diffuse and easily distracted 
by background noise, FDD-YOLO's heatmaps are highly 
focused and fully cover the target area, demonstrating the 
FDDN module's ability to enhance high-frequency detail. 
In heavily occluded scenes, the baseline model exhibits 
only a weak response to visible portions, while our 
proposed model demonstrates strong anti-occlusion 
reasoning capabilities. The heatmap significantly covers 
occluded areas, demonstrating the role of the deformable 
convolutions in the DEFP module in adaptively adjusting 
the receptive field and inferring the complete structure. 
Even in a cluttered background with multiple metal objects, 
our proposed model clearly focuses on the subject and 
effectively suppresses background noise, demonstrating 
enhanced robustness to interference.  

Visual analysis proves that FDD-YOLO can accurately 
allocate attention to the prohibited items area, which is a 
direct reflection of its high recognition rate. At the same 
time, it shows better stability and accuracy under 
occlusion, overlap and complex background conditions. 

5. Conclusions and prospective research 

This paper proposes a lightweight object detection 
model for X-ray security inspection images. It aims to 
address the inadequate performance of current detectors 
when dealing with challenges such as small objects, severe 
occlusion, and object deformation. Our core contribution is 
first introducing a Frequency Domain Decomposition 
Network that decouples and adaptively enhances the 
image's high-frequency details and low-frequency 
structural information, significantly improving the model's 
perception of blurred and small objects. Second, the 
Deformable Elastic Fusion Pyramid utilizes dynamic 
channel allocation and multi-scale deformable 
convolutions to fuse complex deformable objects and 
multi-scale features adaptively. Finally, the DualConv 
module is introduced to achieve efficient feature extraction 
using a parallel architecture, providing the model with 
excellent lightweight properties. Extensive experiments on 
three authoritative datasets, SIXray, HIXray, and GIXray, 
demonstrate that this scheme achieves state-of-the-art 
performance in balancing detection accuracy (mean 
Average Precision Index) and model efficiency (parameter 
count and computational effort). This approach provides a 
practical solution for deploying high-performance deep 

learning models in resource-constrained real-time security 
inspection systems. 

Despite the encouraging results achieved in our current 
work, several directions remain worthy of future 
exploration. We have outlined a clear technological 
development roadmap. First, in terms of multimodal 
fusion, we will explore the deep fusion of material atomic 
number information and visual features based on dual-
energy X-ray diffraction. Specific technical paths include: 
First, in early fusion, using material property maps as the 
fourth input channel of the network, establishing a 
correlation between physical properties and visual 
appearance from the very beginning of feature extraction. 
Then, employing a cross-modal attention mechanism, we 
will design an interactive attention module that allows 
RGB features and material features to guide and 
complement each other, enhancing each other to accurately 
distinguish between items that look similar but have vastly 
different materials (such as plastic toy guns and real iron). 
Second, addressing the core challenge of scarce labeled 
data, we will systematically study weak supervision and 
few-shot learning strategies, establishing image-level 
label-based detection. Using only weak labels such as 
"knife present in image" to train the detection model will 
significantly reduce labeling costs. Subsequently, we will 
establish a meta-learning framework to build a detector 
capable of quickly adapting to new categories of 
contraband, effectively detecting newly emerging 
threatening items with only a small number of samples 
(e.g., 1-5 images). This technical approach aims to 
fundamentally address the core pain points of data 
annotation difficulties and the rapid emergence of new 
threats in security inspection scenarios, and will greatly 
enhance the practicality and scalability of the model. 
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