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Abstract

X-ray security inspection faces challenges such as severe occlusion, scale variation, and complex background when detecting
prohibited items, requiring real-time and accurate detection. Although the YOLO series of models has high inference
efficiency, they suffer from problems such as feature redundancy, insufficient fine-grained feature extraction, and limited
adaptability to overlapping objects. To overcome these limitations, we propose FDD-YOLO and design three novel modules:
(1) The Frequency Domain Decomposition Network (FDDN) in the backbone network enhances the edges of metal objects
and the contours of liquid containers by decomposing high-frequency and low-frequency features while reducing
computational redundancy; (2) The Deformable Elastic Fusion Pyramid (DEFP) in the neck network adopts dynamic channel

allocation and multi-scale deformable convolution to handle the geometric changes of folded and overlapping objects; (3)
The lightweight Dual-channel Convolution (DualConv) improves multi-scale feature capture through grouping and point-
by-point convolution, thereby reducing the number of parameters while improving the accuracy of small object detection.
Tests on the SIXray, HIXray, and private GIX datasets show that FDD-YOLO achieves 2.6%, 3.2%, and 8.6% higher mAP
than YOLOV1 In, respectively, achieving accuracies of 94.8%, 84%, and 71.8%, respectively. This framework also reduces
the number of parameters by 30.6% and the number of FLOPs by 26.9%, achieving an optimal balance between accuracy
and efficiency, setting a new technical benchmark for real-time security inspections.
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1. Introduction

A promising new paradigm for automated X-ray security

Public safety relies on efficient baggage checks in key  jngpection has been made possible by the revolutionary
locations like airports and subways. X-ray imaging non-  advancements in deep learning, particularly the remarkable
invasively reveals internal object structures and has become  ccess of convolutional neural networks (CNNGs) in general
a core security tool worldwide [1]. However, manual  shiect detection [3]. Researchers have attempted to apply
inspection is prone to inefficiency and missed detection due sophisticated algorithms such as Faster R-CNN [4], YOLO
to sgbjectivg bias [2], leading to congestion and risks t0  [5] and SSD to the challenge of X-ray contraband detection
public security. due to their exceptional performance in natural picture
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identification [6]. However, X-ray images have unique
intrinsic properties, which make this direct transfer face
significant obstacles, resulting in model performance far from
meeting practical requirements [7]. The severe overlap and
occlusion of items in luggage result in blurred contours and
unclear boundaries of target objects, making it difficult to
separate them, as well as high class differences and inter-class
similarities. The same type of contraband (such as knives
made of different materials) may show completely different
textures and shapes, while everyday items with similar
appearances (such as laptops and explosive blocks) may have
similar grayscale distributions under X-rays [8]. Contraband
also has extremely multi-scale characteristics. The size range
of the objects to be inspected is extremely large, from tiny
lighters to large laptops, requiring the model to have strong
multi-scale perception capabilities.

Existing research addresses these challenges through two
main approaches. One involves designing specialized
network architectures, such as feature pyramid networks
(FPN) and their variants, to improve multi-scale feature
fusion [9]. For instance, Wang M et al. proposed a weight-
guided dual-direction-fusion feature pyramid network
(WDFPN) to handle scale variations in crowded scenes [10],
while others introduced attention mechanisms to highlight
suspicious regions [11]. The second approach utilizes
physical priors in X-ray imaging, such as employing dual-
energy data to distinguish organic and inorganic materials
based on atomic number [12].

Although the aforementioned studies have made progress
in the singular application of frequency-domain analysis or
deformable convolutions, limitations persist. Firstly, most
frequency-domain methods are computationally complex and
lack co-design with lightweight network architectures,
making them difficult to deploy on edge devices. Secondly,
existing deformable convolution modules often operate in
isolation, lacking a dynamic and elastic fusion mechanism
with multi-scale feature pyramids at both channel and spatial
dimensions. More importantly, few works can
simultaneously and cooperatively address the dual challenges
in X-ray images: the loss of high-frequency (detailed
textures) and low-frequency  (structural contours)
information, and the geometric variations caused by
occlusion and deformation.

This paper presents FDD-YOLO, a novel model for
contraband detection in X-ray images that employs multi-
feature adaptive enhancement through an efficient multi-
dimensional collaborative framework. The proposed
approach significantly improves feature extraction and fusion
capabilities for handling complex X-ray image characteristics,
with key contributions in the following four aspects.

The Frequency Domain Decomposition Network (FDDN)
is designed to decompose the input feature map into high- and
low-frequency components. The high-frequency path uses a
fused depthwise separable convolution (DSIB) module with
a reverse bottleneck design and residual connections to
enhance local details. The low-frequency path uses a multi-
scale edge enhancement (MSEE) module to sharpen the
global outline of objects. Finally, the Squeeze and Excitation
attention mechanism adaptively fuses high- and low-

frequency information, effectively addressing the dual issues
of blurred details and missing outlines.

The Deformable Elastic Fusion Pyramid (DEFP) module
is designed specifically for processing deformable and multi-
scale targets in X-ray images. It adaptively captures target
features with different geometries through dynamic channel
allocation and multi-branch deformable convolution, and
utilizes lightweight attention maps to adaptively fuse forward
and backward features from the FPN and backbone network,
thereby significantly improving the flexibility and
effectiveness of feature fusion.

To improve model efficiency and accuracy, we replaced
standard convolutions in Backbone and the neck with our
DualConv. This module utilizes a parallel structure of Group
Convolution and Pointwise Convolution to achieve an
equivalent multi-scale receptive field while significantly
reducing computation and parameter count. This paves the
way for model deployment on edge devices and meets the
real-time requirements of contraband detection.

In order to further improve the model's ability to detect
small objects, a self-built dataset called GIXray is also
constructed in this paper.

2. Related work

Convolutional neural networks (CNNs) have greatly
enhanced contraband detection accuracy and efficiency,
leading to broader adoption in recent years. Deep learning-
based methods are mainly divided into two-stage and one-
stage detectors. Two-stage detectors, such as R-CNN and its
successors (e.g., Fast R-CNN)), first generate region proposals
and then perform classification and regression [13]. These
models are known for high accuracy and have been
extensively studied in X-ray security inspection — for
example, Zhang W et al. improved Faster R-CNN with
ResNet-50 to detect overlapping items [14], while Sagar et al.
introduced MSA R-CNN with multi-scale feature extraction
to mitigate FPN information loss [15]. However, such
methods suffer from high computational cost, structural
complexity, and slow inference, making them less suitable for
real-time applications like embedded scanners and limiting
their practical use.

To overcome the limitations of two-stage detectors,
research has shifted toward efficient single-stage models like
SSD, YOLO, and DETR, which unify localization and
classification within a single network to achieve faster
inference. Improved YOLO variants are particularly
prominent in X-ray contraband detection. For instance, Zhang
H et al. enhanced YOLOvV7-tiny with a FasterNet backbone,
a PConv-ELAN neck module, and coordinate attention to
improve small object detection [16]. Guan F et al.
incorporated the ADown sampling module and DCNvV2 into
YOLOVS for efficient feature extraction and higher accuracy,
along with Fast SPPF_RE for better feature fusion [17]. Zhao
Cetal. introduced a label-aware (LA) method using gradient-
based channel weighting to handle overlapping objects
robustly [18]. Ding et al. proposed FE-DETR, integrating
split-attention, CBAM, DCN, and a transformer prediction
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head to enhance performance in detecting obscured objects
[19]. Zhou Y et al. developed EI-YOLO using Normalized
Wasserstein Distance (NWD) for improved bounding box
regression [20].

Current research emphasizes lightweight design for edge
device deployment. Zhou Y T et al. proposed a Low-
Parameter Feature Aggregation (LPFA) structure that utilizes
max pooling and NWD loss to enhance feature integration

and small object detection [21]. Similarly, Jia L et al.
employed MobileNetV3 as a lightweight backbone and
combined SIoU loss with coordinate attention to improve
YOLOvV7 performance [22].

Despite significant progress, current research still faces
common challenges: severe deformation in X-ray images due
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Figure 1. The structure of FDD-YOLO

to angles and occlusions, and a lack of adaptive fusion
strategies that effectively complement deep/shallow and
high/low-frequency features while maintaining a lightweight
design. We propose a Frequency Domain Decomposition
Network to address these gaps to enhance detailed texture and
structural information, effectively handling blur and
occlusion. We employ deformable convolution to adaptively
capture deformed objects through dynamic receptive fields,
and introduce adaptive weight maps for improved feature
fusion. Additionally, DualConv provides multi-scale
receptive fields with minimal computational cost, facilitating
lightweight deployment. We aim to achieve an optimal
balance between speed and accuracy, meeting the stringent
demands of real-world security inspection applications.

3. Proposed method

3.1. FDD-YOLO

The YOLO series is widely recognized in object detection
for its strong real-time performance, making it highly suitable

for X-ray security inspection. However, it faces challenges in
complex scenarios: continuous convolution in the backbone
introduces feature redundancy and computational cost,
standard convolutions struggle to capture fine-grained
features such as metal edges or container contours, and
overlapping objects often lead to feature confusion and false
positives. To address these issues, we propose the FDD-
YOLO model, which enhances detection accuracy while
maintaining real-time capability.

FDD-YOLO integrates the Frequency Domain
Decomposition Network (FDDN) with C3K to replace the
C3K module in C3K2, forming C3K2 FDD. FDDN
significantly reduces redundant feature generation through
the decomposition of high and low frequency features and an
adaptive  fusion  mechanism, thereby  improving
computational efficiency and enhancing the extraction ability
of fine-grained features such as the edges of metal cutting
tools and the contours of liquid containers. Additionally,
through the designed Dynamic Elastic Fusion Pyramid
(DEFP) to optimize the neck structure, an innovative multi-
scale deformation adaptation mechanism is introduced to
strengthen the ability to capture multi-scale features,
effectively solving the feature confusion problem of
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overlapping items. Subsequently, DualConv replaces the
standard convolution in the network structure [23], adopting
dual-path convolution and group compression techniques to
reduce parameters and lower computational load. The overall
structure of FDD-YOLO 11 is shown in Figure 1.

_________________________________________

3.2. Frequency Domain Decomposition
Network

In complex visual scenes, high-frequency information
(local details such as edges and textures) and low-frequency
information (global features such as overall structure and
background) in contraband images are complementary to
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Figure 2. Detailed structure of the Frequency Domain Decomposition Networks

each other for visual tasks. Existing methods often fail to fully
utilize these two types of information in a synergistic manner,
and traditional frequency-domain processing methods are
often accompanied by high computational overhead. To this
end, we propose a lightweight Frequency Domain
Decomposition Network (FDDN). This network first
separates feature maps into high-frequency and low-
frequency components using a lightweight frequency-domain
decomposition layer. It then enhances high-frequency details
and low-frequency structural features through an efficient
two-way processing mechanism. This significantly improves
the model's feature representation capabilities in scenes with
complex backgrounds and translucent objects while
maintaining extremely low computational complexity. The
overall structure of the FDDN is shown in Figure 2. The
FDDN consists of three core components: a frequency-
domain decomposition layer, two-way feature enhancement,
and an adaptive fusion mechanism.

The frequency domain decomposition layer uses average
pooling downsampling to extract low-frequency components,
based on the theoretical principle that average pooling acts as
a low-pass filter in the frequency domain and can effectively
capture fundamental low-frequency information of the image.

< EAI

The high-frequency components are obtained by subtracting
the upsampled low-frequency components from the original
image. Bilinear interpolation is chosen here instead of
transposed convolution for upsampling to avoid the risk of
overfitting caused by introducing additional learnable
parameters. Meanwhile, the fixed kernel of bilinear
interpolation ensures the purity of frequency components and
effectively reduces computational complexity.

The high-frequency path is processed using our designed
DSIB module, which integrates depthwise separable
convolution [24], an inverted bottleneck structure, and
residual connections. First, local details are extracted through
grouped convolution, where the number of parameters is only
1/G of standard convolution (with G being the number of
groups). This approach avoids redundant inter-channel
computations. A 1x1 convolution is then used to expand the
channels by a factor of four, forming an inverted bottleneck.
This design breaks the limitations of the traditional bottleneck
structure by performing nonlinear transformations in the
expanded layer, significantly = enhancing feature
representation capability.

The GELU activation function is employed to provide
smoother nonlinear mapping. Finally, a channel compression
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layer restores the original number of channels via 1x1
convolution, forcing the network to focus on key features.
The entire process substantially reduces computational load
while preserving high-frequency detail sharpness. The
corresponding computational method is defined in equations
(1) and (2).

Y = GELU(BN(DepthwiseConv,, (X)) + X (1)
Z = GELU(BN(Conv,,(Y))) @)

Where X € R represents the input feature map,
and C, Hand W represent the number of channels, height,

and width, respectively. Y € R represents the local

features after grouped convolution, Z € RACHW represents
the high-dimensional features after channel expansion, and

Conv,,, represents a kxk convolution. The low-

frequency path is processed by our proposed Multi-Scale
Edge Enhanced (MSEE) module. This structure constructs a
multi-scale feature pyramid. The initial scale is generated by
1x1 convolution and sigmoid gating. Subsequent scales are

gradually downsampled by cascaded average pooling
(kernel=3, stride=1, padding=1) and the same 1 x 1
convolution gating. Each scale feature is enhanced by Edge
Enhancer. Edge Enhancer is an edge enhancement module
designed for complex security inspection scenarios. This
module first smoothes the input features using 3x3 average
pooling, which is equivalent to extracting local background
information from the image. Then, by calculating the
difference between the original and smoothed features, it
accurately captures the intensity mutation of the local area,
which is the essential characteristic of the object edge. Its
calculation method is defined in Equation (3).

F, = @Ll (Angool(k)°EdgeEnhancer(X)) (3)

3x3

Where F' represents the feature, EOW represents the low-

level feature, k € {1,2,3}, and @2:1 represents cascaded
three-way average pooling and edge enhancement. The initial
input £ =X, X € R™™" represents the input feature.

During the adaptive fusion stage, the varying importance
of different frequency components for detecting specific
contraband items—such as metallic objects relying on high-
frequency signals and liquids depending on low-frequency
information—motivates the use of a Squeeze-and-Excitation
(SE) attention mechanism for dynamic frequency-domain
calibration. First, low-frequency features are upsampled to
the original resolution and concatenated with high-frequency
features along the channel dimension. These fused features
are then weighted using the SE mechanism, which employs

2 EA

global average pooling to compress spatial information into a
channel-wise feature vector. This vector captures the average
response intensity of each feature channel across the entire
image. The feature refinement is further performed through a
bottleneck structure (with a compression ratio of 16)
consisting of two fully connected layers: the first uses ReLU
activation to introduce nonlinearity during dimensionality
reduction, while the second applies a sigmoid function to
generate normalized attention weights between 0 and 1,
effectively forming a parameterized feature selection filter.

The weighted dual-path features are subsequently fused
spatially using a 3%3 convolution layer. This operation helps
restore spatial correlations that might have been weakened
during the frequency decomposition and enhancement stages.
A residual connection is also incorporated to facilitate
identity mapping, mitigate gradient vanishing, and preserve
the integrity of the original features. The entire fusion process
remains computationally efficient due to the extensive use of
channel compression and 1x1 convolutions.

In the YOLOvVI11 architecture, we integrate FDDN with
C3k2 to form C3k2 FDDN, strategically deployed at
backbone layers P4 and P5. This design employs channel
splitting to reduce computational load while maintaining
training stability through residual connections, thereby
enhancing detection robustness in security scenarios without
compromising real-time performance.

3.3. Deformable Elastic Fusion Pyramid

DEFP (Deformable Elastic Fusion Pyramid) is a
lightweight feature fusion architecture designed to address
the key challenge of cross-scale object detection in X-ray
security images. Its structure is shown in Figure 3.

First, a dynamic channel allocation mechanism is used to
concatenate the input dual-path features y: and y: after
bilinear interpolation and size alignment, resulting in fi.

J, = Concat(y,,y,) 4)

Then the high-level features X are obtained through the
conversion layer.

x = Transform(f)) %)

Where Transform(-) represents a feature transformation
layer consisting of 1x 1 convolution, batch normalization, and
ReLU activation. Based on Xx , the channel importance
weights are generated by the lightweight channel attention

unit:
w = Softmax(W, - ReLU (W, - GAP(x))) (6)

Where GAP(:) represents global average pooling,
W, e RV and W, € R**“/Y are the weights of the

two linear transformation layers (compression ratio = 8).
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After softmax normalization, the feature channels are
dynamically sorted and reorganized by importance to obtain

. The reorganized features are intelligently divided into
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Figure 3. Detailed structure of the Deformable Elastic Fusion Pyramid

as folding knives and curved containers in X-ray images. The
fourth group retains the original features to maintain
information integrity. The computational load of processing
the four sets of features is reduced through a channel
averaging strategy. The deformation convolution process can

be expressed as:

< EAI

K
y(p)=Y W, *x(P+PF,+AR)
k=1

Ap, = Vanﬁet * Xy

perception capability can accurately fit non-rigid objects such

.
.
.

®)
(€))

Where y(p) represents the final calculated value at

position p on the output feature map, x represents the total
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number of convolution kernel sampling points (x =9 for a 3
%3 convolution kernel), # is the index of the sampling point

currently being calculated, }¥, represents the convolution
weight corresponding to the kth sampling point, X represents
the input feature map, and P, represents the fixed offset
coordinate of the kth sampling point relative to the center
point p ina standard convolution. AP, is the learned offset.
Essentially, it uses a small convolutional network VVOﬁfset ,

guided by the input feature x, , to predict the optimal

direction and distance Ap, for each sampling point of the

main convolution kernel. This allows the entire convolution
operation to adaptively focus on irregular target geometries.

In the feature conversion stage, multi-scale outputs are
integrated through 1x1 convolution to generate a spatial
attention map.

(10)

a=ocW, *Concat(x,,x,,X;,x,))

X,,X, , and x, are features processed by deformable

convolutions of different scales (3x3, 5x5, and 7x7). The *
symbol represents convolution, and W, is the weight of the
convolution kernel.

This is innovatively weighted fused with the dual-path

efficient attention-enhanced features (features processed
using an efficient attention module with an 8:1 compression

ratio):
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out=a-Attn(y,)+(1—a)- Attn(y,)+y, +y, (1)
The learned coefficients dynamically balance the
contribution of features at different scales (such as detailed
information at the P3 layer and semantic information at the
P5 layer), and ultimately refine the features through
depthwise separable convolution (3x3 grouped convolution

and 1x1 point convolution):

Output =W, -(W,,; *out) (12)
In the YOLOvI1 architecture, the DEFP module is
deployed at the key fusion nodes P3 and P4 of the feature
pyramid. This design is based on deep feature characteristics;
layer P4 (downsampled by 1/16) carries the structural
information of medium-sized contraband, while layer P3
(downsampled by 1/8) retains key details for small target
detection. DEFP achieves breakthroughs through several
lightweight design features: channel attention uses 1x1
convolutions instead of fully connected layers to reduce
parameters; it combines Softmax to achieve adaptive channel

feature selection; the deformable convolution's offset
generator shares the computation path with the underlying
feature extraction, avoiding additional overhead; and the
multi-scale separable convolution architecture decouples
spatial convolution from channel projection, significantly
reducing the computational cost of standard convolutions in
layer P4. This design provides an excellent balance between
accuracy and efficiency for security inspection systems,
significantly improving the detection rate of contraband in
complex scenarios.

3.4. DualConv

In X-ray security image processing, the single convolution
kernel of traditional standard convolution struggles to balance
local texture details with global semantic expression. This
makes optimizing the complex structures of metal objects and
the low-contrast features of liquid contraband challenging.
Furthermore, as the number of channels increases, the
computational complexity of standard convolution increases
significantly, resulting in excessive computational load in
deep networks (such as the PS5 layer). We introduced the
DualConv dual-path convolution module to overcome these
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limitations, which restructures the feature extraction
paradigm through a dual-path parallel architecture. Its
structural comparison with standard convolution is shown in
Figure 4.

The DualConv module is deeply integrated into the P2, P3,
P4, PS5, and Neck feature fusion paths of the backbone
network to construct a hierarchical optimization system. In its
dual-path collaborative design, the grouped convolutional
path decomposes the input channels through a spatial
separation strategy and uses 3%3 convolutions to efficiently
extract local texture features, while the point convolutional
path establishes global channel interaction through 1x1
convolutions to accurately convey material density
information. The dual outputs are fused element-wise, which
enhances semantic feature expression while maintaining the
integrity of the spatial structure, significantly improving the

recognition ability of complex metal structures and low-
contrast materials.

In system-level collaboration, DualConv is deeply coupled
with higher-order modules. At the P4 layer, its optimized
feature representation provides structured low-frequency
input to the FDDN frequency-domain decomposition
network, collaboratively improving liquid container detection
accuracy. In the Neck path, its spatial compression features
provide key input to the DEFP elastic fusion module, jointly
improving the recognition accuracy of small-sized cutting
tools. The module employs an adaptive grouping strategy,
enhancing edge feature extraction in the shallow P2 layer and
semantic compression in the deep PS5 layer. It optimizes
memory access efficiency through group convolution and

HIXray

Figure 5. Examples of three datasets, HIXray contains 8 categories, SIXray contains 5 categories, and GlXray
contains 6 categories.

eliminates channel computational redundancy through point
convolution.

This module demonstrates exceptional performance in
complex security inspection scenarios, significantly
improving the accuracy of occluded object detection and
significantly increasing the recognition rate of low-contrast
contraband. This establishes an efficient, reliable feature
extraction architecture foundation for real-time X-ray
security inspection systems.

< EAI

4. Experimental results and analysis

We conduct several tests on the SIXray [25], HIXray [26],
and GIXray datasets to evaluate the effectiveness of the
proposed method. We present the experimental results after
introducing the datasets and performance evaluation criteria.
Next, we conduct an ablation study to demonstrate the
effectiveness of each module in the proposed method.
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Finally, we compare the experimental results with some state-
of-the-art techniques. Figure 5 shows several sample
examples from these three datasets.

4 1. Datasets

The SIXray dataset is the largest prohibited item detection
dataset released to date, containing 1,059,321 X-ray images,
but only 8,929 images contain prohibited items, which are
manually labeled into six categories. There are six common
categories of prohibited items: gun, knife, wrench, pliers,
scissors and hammer. However, this category is not used in
the official labeling due to the low number of hammers. The
training set included 7496 images, and the test set included
1433 images.

The HIXray dataset is a larger dataset of X-ray images
compared to the SIXray dataset. HIXray contains 45,364
high-quality X-ray images of eight prohibited items. There
are eight common categories: portable charger 1, portable
charger 2, water, laptop, mobile phone, tablet, cosmetic, and
non-metallic lighter. The training set includes 36,295 images,
and the test set consists of 9,069 images.

Regarding the construction details of the GIXray dataset,
all X-ray images in this dataset were acquired from real
security inspection scenarios using a Smiths Detection HI-
SCAN 6040aTiX dual-energy X-ray scanner. The acquisition
process followed standard airport baggage security
procedures. To enrich the diversity of small-sized prohibited
items, we designed various placement protocols, including
placing the target item at different depths in the baggage,
overlapping it with other everyday items, and placing it at
different angles. All images were independently labeled by
three professionally trained annotators using Labellmg. The
final annotation results underwent consistency testing, and
inter-evaluator consistency was guaranteed by calculating the
mean intersection-union ratio (mloU), achieving a mloU of
0.92, ensuring high-quality and consistent bounding boxes.

All baggage data collected for GIXray strictly adhered to
data privacy protection guidelines. Due to the sensitive data
contained in this dataset from real security inspection
scenarios, the GIXray dataset cannot be publicly released at
this time for security and privacy protection reasons.
However, to ensure the rigor and verifiability of the research,
we have provided the complete model architecture and
training details in this paper. We believe that the FDD-YOLO
method proposed in this study, as a general framework, is also
applicable and effective on other publicly available X-ray
security inspection datasets (e.g., SIXray, HIXray).

4 .2. Evaluation criteria

Three datasets, SIXray, HIXray, and ZL Xray, are used in
this paper's experiments to assess FDD-YOLO's performance
thoroughly. The primary metrics used to compare the
experiments with the state-of-the-art detection techniques are
Precision (P), Recall (R), Mean Average Precision (mAP),
Parameters (Params), and Giga Floating Point Operations per
Second (GFLOPs).

2 EA

With TP (True Positives) representing successfully
recognized object instances and FP (False Positives)
representing background instances incorrectly categorized as
objects, precision is the percentage of true positives among
all samples anticipated as positive. Meanwhile, FN (False
Negatives) denotes cases that are real objects but go
unnoticed, and recall quantifies the percentage of genuine
positives that were accurately predicted out of all actual
positive samples. A standard measure for comparing the
overlap of two bounding boxes is the Intersection over Union
(IoU), which is usually employed to gauge how closely the
anticipated and ground-truth boxes match. The detection is
usually considered legitimate when the IoU is above a certain
threshold (such as 0.5 or 0.7). One of the most popular
comprehensive assessment measures in object identification
is Mean Average Precision (mAP), which shows how well the
model performs throughout the dataset. It is calculated by
averaging all category-specific Average Precision (AP)
values after calculating each category's AP. A model's
memory footprint and computational complexity are directly
impacted by its parameters, representing the total number of
trainable parameters in the model; larger parameter counts
often correspond to a more complicated model. A crucial
measure of computational effectiveness and inference speed,
GFLOPs (Giga Floating-point Operations) count the number
of floating-point operations needed for a single forward run
through the model. The following equations are used to

represent them.

.. TP
Precision =—— (13)
TP+ FP
TP
Recall =—— (14)
TP+ FN
AP = jol P(x)dx (15)
mAP = 1 > AP (16)
C izl

Where mAP is the average of all AP categories, C is the
number of categories for the item, and AP may be computed
using the area of the Precision-Recall curve.

4.3. Evaluation criteria

In this paper, we use the PyTorch 2.6.0 framework to build
the network model, CUDA 12.1, Python 3.11, Intel(R)
Core(TM) 19-14900K for the hardware CPU, and NVIDIA
GeForce RTX 4090 D with 24GB memory for the graphics
card. To be fair to all methods, we use the training set for
training. For training, the test set is evaluated using SGD
optimizer with configured momentum of 0.9, batch size of 16,
epoch of 300, and initial learning rate set to 0.01. All the
experiments are unified in terms of input resolution (640x
640) and training strategy (SGD optimizer, 500 epochs) to
ensure fairness.
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4 4. Ablation studies

To systematically verify the effectiveness of each
innovative module, we conducted comprehensive ablation
experiments on the most challenging GIXray dataset (focused
on small object detection) and the most representative SIXray
dataset. The baseline model was the original YOLOv1In
model without any improvements.

We conducted comprehensive ablation studies to evaluate
the contributions of each module in FDD-YOLO.

The introduction of the Frequency Domain Decomposition
Network (FDDN) into the backbone improved mAP50 on
SIXray and GIXray by 1.5% and 3.4%, respectively, while
reducing computation by 6.3% and parameters by 9.3%. This

confirms FDDN’s effectiveness in enhancing feature
extraction for blurred, small, and occluded objects through
explicit decoupling of high- and low-frequency information.

The Deformable Elastic Fusion Pyramid (DEFP) in the
neck further increased mAP50 by 2.1% on SIXray and 5.4%
on GIXray, while reducing computation and parameters by
9.5% and 12.8%, respectively. Its dynamic channel
allocation and multi-scale deformable convolution allowed
the model to adapt more accurately to objects of varying
shapes and complex backgrounds.

The lightweight DualConv module improved mAP50 by
1.0% and 1.5% on the two datasets while reducing
computation and parameters by 15.9% and 16.7%.

Table 1. Ablation experiments on the SIXray dataset

FDDN DEFP DualConv P R mAP50 mAP50:95 GFLOPs Params
93.6 86.8 92.2 72.0 6.3 2.58
v 94.5 87.7 93.4 73.5 59 2.34
v 94.8 88.1 93.8 741 5.7 2.25
4 94.2 87.4 93.2 73.3 5.3 2.15
4 4 95.2 88.4 94.3 74.4 5.4 2.16
4 4 95.0 88.2 93.9 74.2 4.9 1.97
4 4 94.9 88.2 94.1 74.2 5.1 1.95
4 4 4 96.1 88.3 94.8 75.2 4.6 1.79
Table 2. Ablation experiments on the GIXray dataset
FDDN DEFP DualConv P R mAP50 mAP50:95 GFLOPs Params
73.0 55.1 63.2 39.2 6.3 2.58
4 731 61.5 66.6 42.3 59 2.34
4 73.8 58.0 68.6 42.8 5.7 2.25
4 741 55.6 64.7 41.7 53 2.15
4 4 73.7 56.4 70.7 43.3 54 2.16
4 4 73.8 58.1 69.5 43.0 4.9 1.97
4 4 75.6 59.5 67.1 42.6 51 1.95
4 4 4 79.9 62.5 71.8 441 4.6 1.79
Table 3. Comparison results with advanced methods on the SiXray dataset
Methods P R mAP50 mAP50:95 GFLOPs  Params Year
Faster R-CNN 84.5 77.5 82.8 65.5 210.4 41.09 2016
Mask R-CNN 86.1 76.7 83.9 65.4 283.5 60.04 2017
Grid R-CNN 85.6 77.8 83.3 66.0 328.8 64.32 2019
POD-Y 92.3 85.1 90.4 70.5 108.1 47.19 2023
AO-DETR 85.4 76.2 83.3 65.2 268.9 58.38 2024
MLSA-YOLO 92.5 86.5 90.8 71.0 32.5 12.14 2024
YOLOv10n 94.4 86.3 92.5 72.2 8.2 2.69 2024
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YOLOvlln 93.6 86.8 92.2
YOLOvI12n 95.0 86.6 92.6
RT-DETR 94.2 87.1 93.1
D-FINE 93.8 86.9 92.8
DEIM 94.5 87.3 93.5
FDD-YOLO 96.1 88.3 94.8

72.0 6.3 2.58 2024
731 6.3 2.56 2025
73.8 107.21 32.1 2025
73.2 91.35 31.5 2025
741 91.42 31.62 2025
75.2 4.6 1.79 2025

Its grouped and pointwise convolution design maintained
feature extraction capacity with minimal computational cost.

Combining all three modules yielded the highest gains:
mAP50 improved by 2.6% on SIXray and 8.6% on GIXray,
with a total reduction of 26.9% in computation and 30.6% in
parameters. The complete FDD-YOLO model achieves an
optimal balance of accuracy, efficiency, and model size,
making it well-suited for high-performance real-world
security inspection systems.

4.5. Comparison Experiments

To comprehensively evaluate the advancedness and
comprehensive advantages of the model proposed in this
paper, we selected several of the most representative
advanced object detection models for comparison, including
the two-stage Faster R-CNN [4], Mask R-CNN [27], Grid R-
CNN and the single-stage POD-Y [29], AO-DETR [1],
MLSA-YOLO [30], YOLOvV10n [31], YOLOvl1n [32], and
YOLOv12n [33], RT-DETR, D-FINE, DEIM [34]. To
maintain fairness, all comparative tests were conducted using
the same hardware setup and dataset splitting.

1) Comparative Experiments on the SIXray Dataset:

The SIXray dataset contains many simple negative

samples, challenging the model's ability to localize rare
objects in complex scenes. Table 3 compares the performance
of various models on this dataset.
As shown in Table 3, our model achieves the best
performance among all compared models on the SIXray
dataset, achieving 94.8% mAP50 and 75.2% mAPS50-95.
Compared to YOLOvVI2n, a strong competitor in the
lightweight field, our model achieves a 2.1% improvement in
mAP50 while reducing computational overhead and
parameter count by 1.7 GFLOPs and 0.77 MB, achieving an
optimal trade-off between accuracy and efficiency. More
importantly, compared to the baseline model, YOLOv1In,
our approach achieves a 2.6% improvement in mAP50 and
reduces computational overhead and parameter count by 1.7
GFLOPs and 0.79 MB, fully demonstrating the effectiveness
of our improved solution.

2) Comparative Experiments on the HIXray Dataset:

The HIXray dataset offers high-quality images and detailed
annotations, making it ideal for evaluating the model's overall
performance in realistic scenarios. The comparative results
are shown in Table 4.

Table 4 Comparison results with advanced methods on the HIXray dataset

Methods P R mAP50 mAP50:95 GFLOPs  Params Year
Faster R-CNN 78.5 70.2 731 448 210.4 41.09 2016
Mask R-CNN 79.8 69.6 72.9 443 283.5 60.04 2017
Grid R-CNN 81.5 70.1 73.8 454 328.8 64.32 2019
POD-Y 84.3 72.8 76.4 47.5 108.1 47.19 2023
AO-DETR 84.2 73.5 75.8 47.0 268.9 58.38 2024
MLSA-YOLO 87.2 78.3 80.1 50.3 32.5 12.14 2024
YOLOv10n 87.9 78.6 78.9 498 8.2 2.69 2024
YOLOvlin 86.5 78.5 80.8 511 6.3 2.58 2024
YOLOv12n 871 78.7 80.6 50.7 6.3 2.56 2025
RT-DETR 88.5 79.2 81.5 51.5 107.21 321 2025
D-FINE 87.8 79.0 81.0 51.0 91.35 31.5 2025
DEIM 88.3 79.5 81.8 51.8 91.42 31.62 2025
FDD-YOLO 89.8 82.1 84.0 52.7 4.6 1.79 2025
Table 5. Comparison results with advanced methods on the GlXray dataset
Methods P R mAP50 mAP50:95 GFLOPs  Params Year
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Faster R-CNN 68.0 52.0 58.5 36.3 2104 41.09 2016
Mask R-CNN 67.5 51.5 571 35.4 283.5 60.04 2017
Grid R-CNN 69.3 52.7 59.3 36.9 328.8 64.32 2019
POD-Y 70.2 53.1 59.8 371 108.1 47.19 2023
AO-DETR 69.5 52.8 59.3 36.8 268.9 58.38 2024
MLSA-YOLO 69.3 55.2 58.5 36.3 32.5 12.14 2024
YOLOV10n 69.9 55.3 61.6 37.6 8.2 2.69 2024
YOLOvlIn 73.0 55.1 63.2 39.2 6.3 2.58 2024
YOLOVI2n 68.0 58.5 62.9 39.2 6.3 2.56 2025
RT-DETR 75.5 58.8 67.5 42.5 107.21 32.1 2025
D-FINE 74.2 57.9 66.2 41.8 91.35 31.5 2025
DEIM 75.8 58.5 67.9 42.7 91.42 31.62 2025
FDD-YOLO 79.9 62.5 71.8 441 4.6 1.79 2025

Table 6. Performance comparison results of different categories on the GIXray dataset

Methods mAP50 Lighter  Pressure Knife Scissors Powerbank Zippo
Faster R-CNN 58.5 64.6 67.3 51.4 35.7 76.3 55.7
Mask R-CNN 57.1 63.1 65.7 50.1 34.8 74.4 54.3
Grid R-CNN 58.7 64.9 68.1 51.0 36.2 76.5 55.9
POD-Y 59.8 66.1 68.8 52.5 36.5 77.9 56.9
AO-DETR 59.3 65.5 68.2 52.1 36.2 77.3 56.4
MLSA-YOLO 58.5 64.6 67.3 51.4 35.7 76.3 55.7
YOLOv10n 61.6 68.1 70.9 541 37.6 80.3 58.6
YOLOv11n 63.2 72.7 73.6 58.0 391 80.8 55.0
YOLOv12n 62.9 71.6 741 58.6 35.4 81.6 56.0
RT-DETR 67.5 75.2 76.8 63.1 42.8 84.5 63.1
D-FINE 66.2 73.8 75.3 61.7 41.9 83.1 61.8
DEIM 67.9 75.5 771 63.4 431 84.8 63.4
FDD-YOLO 71.8 80.8 81.4 65.5 45.2 89.9 67.2

Table 7. Performance Comparison on Edge Devices

Methods Devices FPS Size(MB) Inference(ms)
YOLOv11n Jetson Nano 12.3 12.45 81.3
FDD-YOLO Jetson Nano 17.8 8.95 56.2
YOLOv11n Jetson Xavier NX 35.1 12.68 28.5
FDD-YOLO Jetson Xavier NX 47.6 9.05 21.0
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Figure 6. (a) Original image,(b) YOLOv11n baseline heatmap,(c) Baseline detection result,(d) FDD-YOLO
heatmap, (e) FDD-YOLO detection result.

On the HIXray dataset, our model also demonstrated
dominant performance, achieving a mAP50 score of
84.0%, surpassing all other compared models. Compared
to our baseline model, YOLOv11n, we achieved a 3.2%
lead in accuracy. Compared to YOLOv12n, we achieved a
3.4% lead in accuracy. Our proposed model outperformed
all other two-stage models in accuracy, significantly
reducing computational complexity and parameter count.
This result demonstrates that our model is not overfit to a
specific dataset but possesses strong generalization
capabilities, enabling widespread improvement in
detection accuracy on high-quality X-ray images.

3) Comparative Experiments on the GIXray Dataset

The GIXray dataset focuses on small contraband and is
specifically designed to validate the model's robust
detection capabilities for small objects, a core challenge in
real-world security inspections. The comparative results
are shown in Table 5.

Our model's advantages are most evident on the
challenging GIXray small object dataset. Its mAP50 of
71.8% and Precision of 79.9% significantly surpass all
compared models. Compared to YOLOv10n, its mAP50 is
10.2% higher. Compared to the baseline model YOLOv11-
n, its mAP50 significantly improves by 8.6%. Table 6
shows that our model achieves significant improvements in
mAP50 for the small object categories Lighter and
Zippooil, demonstrating the exceptional effectiveness of
our core innovations, the Frequency Domain
Decomposition Network and the Deformable Elastic
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Fusion Pyramid, in enhancing detail perception and
handling deformed and occluded small objects.

Extensive comparisons on these three authoritative
datasets with varying focus confirm that our proposed
improved model comprehensively surpasses existing
detectors in detection accuracy while maintaining
exceptionally low model complexity (number of
parameters and computational effort), surpassing state-of-
the-art detection models. Our work successfully achieved
the goal of finding the optimal balance between accuracy
and efficiency, providing a powerful solution for deploying
high-performance X-ray contraband detection algorithms
in embedded security inspection equipment with limited
computing resources.

4.6. Deployment of edge devices

To validate the practical deployment efficacy of FDD-
YOLO, we supplemented our evaluation with performance
tests on typical edge devices. The testing platforms
included the NVIDIA Jetson Nano (4GB) and Jetson
Xavier NX, which are widely used in embedded Al
applications. All models were optimized and accelerated
using TensorRT, with an input resolution of 640x640 and
a batch size of 1 to simulate real-time video stream
processing. Key metrics including frames per second
(FPS), peak memory consumption, and average latency are
reported in Table 7.
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4.7. Visualization Analysis

To gain a deeper understanding of the nature of FDD-
YOLO's performance improvement over the baseline
model YOLOV11n, this study conducted a detailed visual
analysis. Based on samples from the test set, we compared
the results across two dimensions: feature response and
prediction.

The class activation heatmaps generated by Grad-CAM
(Figure 6) demonstrate that our proposed model more
accurately and densely focuses on the target, particularly in
complex backgrounds and small target areas. While the
baseline model's response is diffuse and easily distracted
by background noise, FDD-YOLO's heatmaps are highly
focused and fully cover the target area, demonstrating the
FDDN module's ability to enhance high-frequency detail.
In heavily occluded scenes, the baseline model exhibits
only a weak response to visible portions, while our
proposed model demonstrates strong anti-occlusion
reasoning capabilities. The heatmap significantly covers
occluded areas, demonstrating the role of the deformable
convolutions in the DEFP module in adaptively adjusting
the receptive field and inferring the complete structure.
Even in a cluttered background with multiple metal objects,
our proposed model clearly focuses on the subject and
effectively suppresses background noise, demonstrating
enhanced robustness to interference.

Visual analysis proves that FDD-YOLO can accurately
allocate attention to the prohibited items area, which is a
direct reflection of its high recognition rate. At the same
time, it shows better stability and accuracy under
occlusion, overlap and complex background conditions.

5. Conclusions and prospective research

This paper proposes a lightweight object detection
model for X-ray security inspection images. It aims to
address the inadequate performance of current detectors
when dealing with challenges such as small objects, severe
occlusion, and object deformation. Our core contribution is
first introducing a Frequency Domain Decomposition
Network that decouples and adaptively enhances the
image's high-frequency details and low-frequency
structural information, significantly improving the model's
perception of blurred and small objects. Second, the
Deformable Elastic Fusion Pyramid utilizes dynamic
channel allocation and multi-scale deformable
convolutions to fuse complex deformable objects and
multi-scale features adaptively. Finally, the DualConv
module is introduced to achieve efficient feature extraction
using a parallel architecture, providing the model with
excellent lightweight properties. Extensive experiments on
three authoritative datasets, SIXray, H[Xray, and GIXray,
demonstrate that this scheme achieves state-of-the-art
performance in balancing detection accuracy (mean
Average Precision Index) and model efficiency (parameter
count and computational effort). This approach provides a
practical solution for deploying high-performance deep

learning models in resource-constrained real-time security
inspection systems.

Despite the encouraging results achieved in our current
work, several directions remain worthy of future
exploration. We have outlined a clear technological
development roadmap. First, in terms of multimodal
fusion, we will explore the deep fusion of material atomic
number information and visual features based on dual-
energy X-ray diffraction. Specific technical paths include:
First, in early fusion, using material property maps as the
fourth input channel of the network, establishing a
correlation between physical properties and visual
appearance from the very beginning of feature extraction.
Then, employing a cross-modal attention mechanism, we
will design an interactive attention module that allows
RGB features and material features to guide and
complement each other, enhancing each other to accurately
distinguish between items that look similar but have vastly
different materials (such as plastic toy guns and real iron).
Second, addressing the core challenge of scarce labeled
data, we will systematically study weak supervision and
few-shot learning strategies, establishing image-level
label-based detection. Using only weak labels such as
"knife present in image" to train the detection model will
significantly reduce labeling costs. Subsequently, we will
establish a meta-learning framework to build a detector
capable of quickly adapting to new categories of
contraband, effectively detecting newly emerging
threatening items with only a small number of samples
(e.g., 1-5 images). This technical approach aims to
fundamentally address the core pain points of data
annotation difficulties and the rapid emergence of new
threats in security inspection scenarios, and will greatly
enhance the practicality and scalability of the model.
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