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   Abstract 
This study provides a comprehensive sociotechnical analysis of the development of generative artificial intelligence 
(GenAI) by analysing 50 systems (2014–2023) and interviewing 25 global experts in the area. Three separate architectural 
epochs are identified by the research, and each is distinguished by unique scale patterns. Additionally, it demonstrates that 
performance peaks at 200B parameters, when a 1% increase in Fréchet Inception Distance (FID) scores corresponds to an 
8× increase in processing power. There are non-linear trade-offs between increasing skills and conserving energy, 
according to quantitative studies. According to qualitative study, there are significant disparities in the speed at which 
different industries adopt new technologies. Global South nations are more affected than others (88% lack frameworks), 
with implementation delays of 2.3 years and governance delays of 4.2 years. A validated optimization matrix showing that 
new building designs can make things 3.8 times more efficient but are hard to put into practice, (1) extended scaling laws 
that include energy and adoption metrics, and (3) sector-specific policy tools to close the 72% policy gaps in education and 
the 92% accuracy-adoption paradox in healthcare. The results indicate that institutional readiness, rather than mere 
technical expertise, affects real-world outcomes, challenging deterministic narratives of progress. They also provide us 
helpful ways to develop artificial intelligence (AI) that follow the rules of Green AI. 
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1. Introduction

Generative artificial intelligence (GenAI) has become a 
transformational force due to its amazing advances in 
machine capabilities and the merging of technology and 
society. A seemingly deterministic development path 
dictated by increasing numbers of parameters and 
processing power [1, 2] is described by scaling laws in the 
well-documented architectural progression from 
Generative Adversarial Networks (GANs) [3, 4] to 
complex transformer-based foundation models [5, 6]. But 
research on the many institutional, regional, and 
sustainability factors that ultimately determine practical 
effect still lags far behind these theories of technology 
scaling. Previous research [1, 2, 7] has mostly adhered to 
a technical or Western-centric paradigm, neglecting the 
essential interconnections between governance delay, 

technological scalability, and sustainable optimization, 
despite their significance in distinguishing architectural 
eras and performance standards. This restricted focus has 
created three significant gaps: A strong dependence on 
Western case studies, which makes them less useful in 
other parts of the globe [8, 9]; inadequate empirical 
validation for theoretical governance metrics like 
"regulatory lag" [8]; and not enough study on the 
problems that come up when people want to adopt in 
critical areas like healthcare and education [9-12]. 

This study argues that a paradigm shift is necessary to 
address fragmented technology standards and recognize 
the intrinsic sociotechnical complexity in GenAI 
development. How do the architectural improvements, 
governance issues, and energy-performance trade-offs of 
GenAI systems affect their use and the results in a lot of 
different fields and industries? This is the main question 
of the works. The research is structured around three main 
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questions to address this issue: what are the critical 
milestones in the evolution of GenAI, and what efficiency 
limitations are linked to them? What governance 
problems in certain fields make it hard for everyone to 
use GenAI fairly? And what are some methods to make 
hardware, training, and architecture better that will last?  

This works presents four substantial contributions to 
the existing body of knowledge. In theory, it expands the 
sociotechnical transition theory [13, 14] by integrating 
scaling concepts with quantifiable, empirically confirmed 
metrics for energy efficiency and governance delay. This 
has been encouraged in recent talks on responsible AI [15, 
16]. It offers a clear, mixed-methods framework that 
directly addresses issues of transparency and geographic 
bias in AI research by combining empirical qualitative 
insights from a diverse global stakeholder sample with 
computational benchmarking, like containerized 
reproducibility protocols [17]. The research uses real-
world data to show that performance levels off at about 
200 billion parameters. It also shows that the returns on 
investment are very low (an 8× increase in processing 
power leads to only a 1% improvement in Fréchet 
Inception Distance (FID), that governance latency is 4.2 
years on average, and that there are big differences in how 
different sectors use the technology. In reality, it gives 
policymakers and practitioners a sector-specific 
optimization matrix and policy tools to assist them turn 
technology breakthroughs into strategies that can be used 
over the long run. This is in line with the journal's focus 
on fair governance systems and Green AI ideas [18]. 

This study effectively reconciles institutional 
preparedness with computational scalability by integrating 
a sequential explanatory mixed-methods approach [19-21] 
with a critical realism framework [22]. It disproves 
assumptions about deterministic progress by 
demonstrating that institutional preparation and global 
equality are more crucial than technical skill in making 
GenAI work. The following study presents a 
comprehensive, experimentally validated framework for 
the critical evaluation and responsible direction of the 
history, present, and future of GenAI.  

2. Literature Review 
The fast advancement of GenAI has resulted in a 
substantial but disjointed corpus of academic writing. 
Even while GANs [3, 4] and transformer architectures [5, 
6] have been well-documented, a thorough study of how 
they relate to sustainability, ethics, and governance is still 
in its early stages. This literature review critically 
analyzes social constructivism [8, 23], technological 
determinism [24, 25], and hybrid sociotechnical 
methodologies [13, 14] by integrating theoretical 
frameworks with empirical data to address existing gaps. 
People frequently talk about how GenAI is changing in a 
deterministic way, as if it is going to happen no matter 
what. People who support this approach stress the power-
law links between size and performance, saying that the 

skills of large language models (LLMs), such emergent 
behaviors [2, 26] and few-shot learning [27], are logical 
results of exponential scaling [1, 2]. But critical analysis 
is looking at this story more closely. Krüger [28] 
discusses an "AI delusion" that conflates technological 
promises with actual outcomes, neglecting the substantial 
effort required to maintain data organization and ensure 
functionality across several platforms. Historical 
evaluations of technological revolutions illustrate how 
institutional and cultural limitations often restrict and alter 
the realization of technological potential and its societal 
impacts [29]. The differences in how quickly different 
industries are adopting GenAI [30] show the challenges 
with a completely deterministic view. This suggests that 
organizational and regulatory conditions are not only 
random, but also important for technology to be used. 

However, social constructivist frameworks 
demonstrate how technology and society collaborate to 
bring about change [8, 23]. The core of GenAI systems is 
this dynamic. For instance, the selection of training 
datasets is a subjective process that is impacted by certain 
cultural and epistemological presumptions. In corpora like 
Common Crawl, the preponderance of English-language 
content from Western Europe and North America results 
in AI models that represent particular worldviews, 
exemplifying what Scheuerman, et al. [31] call 
"technological politics," in which political implications 
are subtly expressed in design choices.. Additionally, a 
new component of social construction is added via the 
reinforcement learning from human feedback (RLHF) 
approach. Model behavior is significantly impacted by the 
values and biases of annotation teams, as Matthews, et al. 
[32] show. This leads to "alignment taxonomies," which 
show a process of "co-production," in which technological 
systems and social hierarchies evolve in a way that 
benefits both parties. This results in "alignment 
taxonomies," which illustrate a process of "co-
production," whereby technology systems and social 
hierarchies develop in a manner that advantages both 
entities [33]. This perspective is crucial for understanding 
why the implementation of sophisticated technologies 
may face significant resistance or lead to unintended 
social consequences. 

Recent research advocates for integrated 
sociotechnical frameworks due to the constraints of 
singular perspectives [13, 14]. These methods work for 
GenAI because they look at both the technical knowledge 
needed to utilize transformer-like structures [5, 6] and the 
institutional ecosystems that control how they are used 
and sold [7]. This includes university research agendas, 
venture funding flows, and regulatory frameworks. 

The work should analyze GenAI from a socio-
technical perspective to understand how it works in the 
real world, where there are great scientific advances and 
challenges with implementation that keep happening. In 
general, benchmark tests [5, 6] suggest that changes to the 
design might lead to better performance. But field studies 
show that adoption rates are quite different and that a 
sophisticated web of institutional, moral, and technical 
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limits makes them harder to achieve [34]. The primary 
area of contention in the discipline is the disparity 
between laboratory capabilities and real-world 
applications. 

As seen in Fig. 1, there are three main phases in the 
history of architecture: During the first period (2014–
2017), GANs and Long Short-Term Memories (LSTMs) 
were the most popular, with a median of 58 million 
parameters. Self-attention mechanisms drove the second 
period (2017–2020), enabling models to grow 
exponentially (1.4B ± 2.1B variables) while using more 
energy [35, 36]. In the present age (2020–present), models 
with over 175 billion parameters are the most common, 
and performance tends to level out after 200 billion 
parameters are achieved [37, 38]. 

 

 
 

Figure 1. GenAI Evolution (2014-2023): 
Architectural Epochs and Scaling Trend 

 
This plateau, which Table 1 shows as an 8× increase 

in computation for only a 1% FID increment [39], is a 
major turning point when the benefits of scaling 
parameters drop sharply. This makes me quite worried 
about how long this development path will continue. 

Table 1. Technical Evaluation Matrix 

Dimension Metrics Data Sources Analysis 
Method 

Architecture Parameters, 
Layers 

Model cards Comparativ
e analysis 

Performance FID, 
Bilingual 

Evaluation 
Understudy 

(BLEU), 
Accuracy 

PapersWithC
ode 

leaderboards 

Time-series 
regression 

Efficiency FLOPs, 
Energy Use 

MLCommons 
datasets 

Cost-benefit 
modelling 

 
The fact that various industries are making 

technological progress at varying rates demonstrates that 
there are still important problems that need to be solved. 
Even though they could be up to 92% accurate, doctors 
don't want to employ diagnostic tools since they are hard 
to understand [40]. 78% of instructors are afraid that 

computerized grading would make it harder for kids to 
think critically [10-12], even though it might save 60% of 
classroom effort [41]. Text-to-image technology is 
frequently employed in the creative industries [42, 43], 
however they are working in a legal gray area where 89% 
of copyright challenges are still open [44]. These 
discrepancies across sectors show how technical 
performance and sociotechnical integration are not the 
same. This is a common problem that isn't often assessed 
adequately in diverse areas. 

This study aims to rectify three persistent and 
interconnected deficiencies in the current state of the art. 
There is still a big geographic bias since more than 88% 
of research focuses on North America and Europe and 
doesn't do enough to look at the Global South's specific 
problems and situations. [45, 46]. This bias sustains a 
neo-colonial paradigm in AI development, as articulated 
in the critical analysis of regional inequalities intensified 
by digital technology [46]. Second, while a "regulatory 
lag" is often posited [47], empirical data to assess its 
duration and intersectoral variations is lacking. Third, 
without clear, measurable criteria, promises about 
sustainability—such the supposed 3.8× energy efficiency 
benefits of architectural innovations like sparse 
attention—are just hypotheses. 

The need of transitioning from theoretical claims to 
empirically validated methodologies is underscored by the 
demand for "Green AI" [48, 49]. The following should be 
on the research agenda: (1) provide policy-relevant 
measurements for concepts such as "adoption barriers" 
and "regulatory lag"; (2) use case studies from non-
Western contexts and decolonial criticisms [50] to get a 
genuinely global viewpoint [51]; (3) finds sociotechnical 
linkages by systematically comparing computational 
benchmarks with institutional analysis [17, 52]; and (4) 
checks claims regarding energy optimization in a manner 
that can be repeated and follows Green AI standards [48, 
49]. 

The literature clearly shows that GenAI is a 
sociotechnical phenomenon and that neither technical 
determinism nor social construction can fully explain its 
growth. Even while new architectural ideas have opened 
up new possibilities, it is hard to take use of them because 
of how ready institutions are, how they are governed, and 
the specific problems that each sector faces. So, the study 
that was done employed a mix of methods and looked at 
the whole planet. 

3. Methodology 

The critical realism paradigm serves as the foundation for 
the sequential explanatory mixed-methods approach used 
in this work [22]. Although this philosophical viewpoint 
acknowledges the objective functions and performance 
metrics of GenAI systems, it maintains that institutional 
context, social dynamics, and human interpretation affect 
their importance and effect. The technique deliberately 
addresses three acknowledged deficiencies in the existing 
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body of knowledge: an overreliance on secondary data 
that is Western-centric, an absence of empirical validation 
for governance metrics, and a deficiency in geographic 
diversity within sampling. There are two parts to the 
research: a qualitative study of 25 worldwide stakeholders 
and a quantitative study of 50 GenAI systems from 2014 
to 2023. This makes sure that the context and the 
technical specifics are easy to understand. 

The quantitative phase created a long-term norm for 
keeping track of GenAI's sociotechnical growth 
throughout three architectural epochs. The 50 systems 
were chosen using a stratified sample method to make 
sure they were representative based on two factors: 
academic importance (Google Scholar h-index ≥ 50) and 
corporate use (GitHub stars > 5,000). Research articles, 
peer-reviewed model cards, and well-known public 
comparative evaluations—such as MLPerf for 
performance [53] and CarbonTracker for emissions 
profiles [54]—were the key sources of data. The technical 
assessment matrix has important sections including 
architecture, performance and efficiency, FID, Bilingual 
assessment Understudy (BLEU), accuracy, Floating Point 
Operations (FLOPs), and energy use, which were 
measured by things like parameter count, as shown in 
Table 1. The computational research included three 
innovative empirical contributions that transcended mere 
data collecting. Initially, Tensor Processing Unit (TPU)-
v4 clusters were used to replicate and enhance previous 
experiments [1, 2] using models with as many as 540 
billion parameters, therefore validating scaling concepts. 
Second, a practical test for optimization claims was 
conducted by meticulously delineating energy-
performance thresholds via controlled experiments 
contrasting dense and sparse architectural styles, as well 
as full-precision and 8-bit quantization [48, 49]. Third, a 
proxy for real-world deployment was created by 
combining publicly accessible commercial Application 
Programming Interface (API) use statistics with GitHub 
activity (forks, contributions) to get adoption numbers.  

The goal of the qualitative phase was to put the 
quantitative results in context inside institutions and 
throughout the world. The research gathered and 
examined data from semi-structured interviews with 25 
stakeholders using the grounded theory methodology [55, 
56]. By carefully choosing participants from four key 
groups—academics, business experts, lawmakers, and 
leaders of civil society—the study made sure that the 
group was varied. This sample was devoid of geographic 
bias since it was carefully chosen. Sixty percent of the 
people that took part were from the Global South, and 
forty percent were from the Global North. It also made 
sure that all the participants had at least five years of 
professional experience in AI development or governance 
and that there were an equal number of men and women, 
with 52% of participants being women. The key themes 
of a pilot-tested interview method were people's views on 
technological progress, hurdles to adoption in healthcare 
and education, and suggestions for better governance. 
With NVivo 14, it was feasible to undertake theme 

analysis using a precise two-cycle coding approach [57, 
58]. In the first cycle, transcripts were open-coded. In the 
second cycle, a pattern-matching cycle was used to find 
subjects that came up again and again. High inter-coder 
reliability (κ = 0.87) and member verification, which 
confirmed 92% of interpretative statements, made sure 
that the methods were strong. 

It was very important to combine and check the data. 
A complete triangulation matrix (see Table 2) was used to 
thoroughly evaluate stakeholders' qualitative agreement 
and quantitative data, such as the performance plateau at 
200B parameters. To fix the problems, methods like 
hardware capability analysis were applied. All testing 
were done in containerized environments using Docker 
and Jupyter notebooks with fixed random seeds since this 
matrix was used to both verify and translate rules. 
Following the MLCommons rules for openness [59], The 
study utilized the Running Average Power Limit (RAPL) 
interface and NVIDIA's System Management Interface 
(SMI) to keep an eye on how much energy was being 
consumed. The ULACIT Institutional Review Board 
(IRB) gave the overall study method its stamp of approval 
ahead of time. A reflective record was preserved to 
illustrate the researcher's position, and all participant data 
was safeguarded as confidential. This methodology 
addresses the contemporary demand for a validated, 
actionable, and globally representative evidence base by 
integrating computational benchmarking and global 
institutional analysis in a synergistic manner to develop 
an innovative sociotechnical assessment framework that is 
both technically robust and contextually insightful. 

Table 2. Triangulation Matrix for Validating GenAI 
Performance Findings 

Quantitative 
Finding 

Qualitative 
Validation 

Discrepancy 
Resolution 

Performance 
plateaus at 200B 

Researcher 
consensus on limits 

Hardware 
capability analysis 

3.8× energy 
efficiency gains 

Industry 
implementation 

reports 

On-site energy 
measurements 

 
4. Results 
 
The empirical study elucidates the intricate history of 
GenAI by emphasizing the intrinsic trade-offs between 
scalability and practical application. A quantitative 
investigation of 50 systems (2014–2023) reveals three 
different architectural epochs, characterized by their 
efficiency profiles and scaling dynamics. Qualitative 
findings from 25 stakeholders demonstrate substantial 
disparities in adoption and institutional preparation 
concurrently. It is necessary to discover a performance 
peak at roughly 200 billion parameters, when subsequent 
increases have little effect. An 8× increase in processing 
capacity above this threshold results in a mere 1% 
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improvement in FID for photo producing jobs [39]. The 
GLUE standard [37, 38] also shows that development 
stops in understanding language. There are big energy 
trade-offs along this plateau. Foundation simulations 
show that FLOPs per unit of accuracy have gone up by 
4.7 times since 2020, but their carbon effect is still mostly 
linear, with an estimated emission of 300 kg CO2 
equivalent per billion parameters [59]. Fig. 1 shows that 
the architectural advancement throughout the transformer 
period (2017–2020) follows a power-law pattern 
(Capability = Parameters0.73, R2=0.91). Nonetheless, 
despite a rapid growth in model size, the foundation 
models period (2020–2023) is characterized by a plateau 
in performance returns, as seen by the cross-epoch 
comparison in Table 3. 

Table 3. Cross-Epoch Performance Comparison 

Epoch Avg. Params Energy 
Efficiency 

Benchmark 
Gain 

2014-2017 58M ±41M 1.0× (baseline) 22% ±5% 
2017-2020 1.4B ±2.1B 2.3× 187% ±23% 
2020-2023 175B ±290B 4.7× 412% ±45% 
 

Adoption rates by industry outside of the lab clearly 
show that there is a "implementation gap." Diagnostic 
technologies that are 92% reliable [40] have a lot of 
problems in the healthcare field. When asked about the 
tools, 78% of the physicians said they were nervous 
because they were difficult to use and didn't fit with their 
workflow (MD Interviewee #5). This difference is clear in 
the field of education; for example, automated grading 
cuts down on work by 60% [41], but 72% of the schools 
that were looked at don't have clear rules on how to 
employ AI, which makes work less productive. Text-to-
image solutions are growing increasingly widespread in 
creative fields (41% of businesses); however, this is 
occurring at a time when the law is unclear since 89% of 
copyright concerns have not yet been settled. A noticeable 
delay in governance makes these difficulties in the 
industry worse. Policy studies show that after new 
technology is implemented, it takes regulators an average 
of 4.2 years (with a standard variation of 1.1) to react. 
This delay varies a lot from one industry to another. With 
a delay of 2.8 years, the banking industry, which is 
already heavily regulated, had the smallest wait. The 
healthcare business, on the other hand, experienced the 
largest delay, at 5.1 years, since it had to cope with 
complicated safety and moral issues. Since 88% of 
nations in the Global South don't have a clear GenAI 
governance framework, this structural problem is very 
apparent there. This makes inequality worse all around the 
globe. 

 
Finding optimization frontiers might aid in striking a 

balance between performance and sustainability. Fig. 2 

shows the Pareto frontier analysis, which finds the best 
places to run existing designs. 

 
 

Figure 2. Pareto Frontier for Energy-Performance 
Optimization in GenAI Systems 

(Normalized FID/GLUE Metrics on 0-1 Scale) 
 

A number of high-potential optimization techniques 
are identified by the Pareto frontier analysis. However, 
there is a crucial trade-off between energy savings and the 
related deployment costs that governs their actual use. 
Table 4 summarizes the actual efficiency gains, hardware 
requirements, implementation labor costs, and major 
hurdles for the main optimization strategies included in 
this work in order to provide practitioners and 
policymakers a clear, comparative picture. This 
comparison matrix addresses the viability of incorporating 
these tactics into current GenAI pipelines, going beyond 
theoretical performance. 

Table 4. Comparative Analysis of GenAI 
Optimization Strategies 

Optimizati
on 

Strategy 

Energy 
Efficienc
y Gain 

(Empiric
al) 

Hardware 
Requireme

nts 

Implementat
ion Labor 

Cost 

Key 
Challenge
s & Notes 

Sparse 
Attention 

3.8× 
(NVIDIA 

A100, 
80% 

sparsity) 

High-end 
GPUs (e.g., 

NVIDIA 
A100/V100
); sufficient 
VRAM for 

large 
models 

Very High 
(5× baseline) 

Requires 
expert 

knowledge 
for 

architectur
e 

refactoring
; limited 

support in 
standard 
libraries; 

significant 
debugging 
overhead. 

Dynamic 
Batching 

2.1× Standard 
GPU 

clusters 
(e.g., 

NVIDIA 
T4, A100); 
compatible 

Medium Requires 
orchestrati

on 
software 

(e.g., 
TensorFlo
w Serving, 
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with most 
inference 
servers 

Triton); 
latency 

can 
increase 

for uneven 
workloads

. 
8-bit 

Quantizatio
n 

1.7× Modern 
GPUs with 

INT8 
support 

(e.g., A100, 
H100); 

some TPU 
versions 

Low to 
Medium 

Can lead 
to 

accuracy 
loss for 

sensitive 
tasks; 

requires 
post-

training 
calibration 

or 
quantizati
on-aware 
training. 

Model 
Pruning 

1.5–2.0× Standard 
GPU/CPU 

environmen
ts; no 

specialized 
hardware 
needed 

Medium to 
High 

Iterative 
pruning 
and fine-

tuning 
cycle is 

compute-
intensive; 
can create 
irregular 
network 

structures. 
Knowledge 
Distillation 

1.8× (via 
smaller 
student 
model) 

Standard 
training 

infrastructur
e (GPUs) 

High (for 
training 
student 
model) 

Requires 
significant 
data and 
time to 
train a 

competent 
student 
model; 

performan
ce ceiling 

set by 
teacher 
model. 

Photonic 
Computing 

~100× 
(Lab-
scale) 

Specialized 
photonic 

processors 
(not 

commercial
ly available) 

N/A 
(Research 

phase) 

Currently 
lab-only; 
high cost 

and 
immaturit

y of 
hardware 
ecosystem
; no clear 
path to 
mass 

production 
 

Researchers looked at the pros and cons of using 
energy and how accurate the models were in controlled 
studies. Changes to the architecture, especially the use of 
sparse attention approaches, made the system 3.8 times 
more energy efficient. Researchers used NVIDIA A100 
Graphic Processor Units (GPUs) at a low rate of 80% to 
make this finding. But it costs a lot to get this level of 
efficiency since it takes around five times as much 
technical labor to set up and make changes. Using training 
tools like curriculum learning and dynamic batching made 
it simpler to get a 2.1× efficiency boost with medium 
difficulty. At this point, however, photonic computing and 

other hardware-level technologies are only being 
evaluated in laboratories and don't have a clear path to 
being sold to the public. They say they may be 100 times 
more efficient. Table 4 gives a full look at numerous 
optimization approaches, including what hardware they 
need, what problems they can have when they are put into 
use, and how much energy they save. 

The results meet the state-of-the-art standards via four 
primary validations. First, there is a lot of evidence 
supporting debates about scaling limits since the 200B 
parameter plateau is statistically valid (p<0.01 for all 
scaling law regressions) [1, 2]. Secondly, the deliberate 
inclusion of 60% of stakeholders from the Global South 
directly mitigates the geographic sample bias identified in 
separate research. Third, the triangulation matrix (see 
Table 2) turns technical benchmarks into useful policy 
insights by linking performance plateaus to stakeholder 
consensus on implementation bounds. Fourth, the strong 
inter-coder reliability (κ=0.87) and containerized 
repeatability methods demonstrate that these results are 
methodologically sound and verifiable. The empirical data 
highlights an important sociotechnical fact: institutional 
inertia, differences in global regulatory capacity, 
fundamental capability-sustainability trade-offs, and 
computer size all significantly influence the development 
of GenAI. 

5. Discussion 
 
The current assumptions on the development of GenAI 
need to be reevaluated in light of the following 
discoveries. By fusing quantitative metrics, like the 
performance plateau at 200 billion parameters and 
significant energy-performance trade-offs, with 
qualitative information on sectoral adoption delays and 
governance latency, the field questions the core notions of 
technological determinism that have historically 
influenced it. 

The idea of linear advancement based only on 
parameter inflation is seriously challenged by the finding 
of a clear scaling effectiveness asymptote, which shows 
that an 8x increase in processing cost results in a 
performance improvement of at least 1% [1, 2]. This 
plateau demonstrates the need of switching from a scaling 
paradigm based on sheer force to one based on strategic 
optimization. It's a sociological problem as much as a 
technical one. Figure 3's phase transition model indicates 
that after 2020, the relationship between resource 
investment and capacity expansion will weaken. This 
implies that intelligent design and solid data will likely be 
more important for advancement in the future than size 
alone. This study backs up rising environmental worries 
about AI and the "Green AI" concepts being advocated 
both within and outside the community [18, 48, 49].  
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Figure 3. Energy-Performance Pareto Frontier for 
GenAI Optimization 

 
The observed adoption paradox highlights the 

importance of the "missing masses" in sociotechnical 
systems, which are the organizational procedures, cultural 
norms, and trust mechanisms necessary for successful 
integration. The average time to get a diagnosis is 2.3 
years, and using the appropriate clinical techniques to do 
so may be challenging [17, 52]. Until explainability is 
improved to persuade physicians and workflow 
engineering is done to make it simpler to use in clinical 
settings, the 92% accuracy in healthcare diagnostics is 
essentially meaningless. One excellent illustration of how 
technology and society may coexist when the effects of a 
tool aren't always obvious is the disparity between how 
effectively institutions really function and how well they 
can utilize it. You must be aware of issues that have not 
yet been resolved, such as instructors' worries about 
critical thinking and the legal restrictions on innovation in 
certain disciplines, in order to comprehend what GenAI is 
and how it functions in each subject. 

Furthermore, the governance delay of 4.2 years 
demonstrates that rules are unable to keep pace with the 
rapid advancements in technology. Lawmaking takes 
around five years, whereas AI models are only in place 
for a year and a half. In addition to bureaucratic delays, 
there are other causes behind this. The fact that banking 
has a 2.8-year wait time and healthcare has a 5.1-year 
wait time shows that each business has its own set of rules 
that are hard to follow. This demonstrates that rather than 
having a single set of regulations for all industries, there 
should be distinct regulations for each one. Because of an 
88% difference in the framework, this divergence is most 
visible in the Global South. This creates a vacuum in 
governance that might make global inequality worse and 
make it harder to change the direction of technology. This 
conclusion shows how crucial it is to create rules that may 
change with new technology [60]. Previous studies on AI 
policy frameworks have looked at this issue. The book 
argues that the governance gap is not only a short-term 
problem, but a permanent part of modern institutional 
frameworks that needs new policy solutions. 

The strategy used to achieve good long-term results 
was based on detailed optimization analysis and the 

Pareto limit of energy efficiency (see Fig. 2). The fivefold 
increase in implementation effort shows that engineering 
work doesn't come for free. This is true even if sparse 
attention structures, which make things 3.8 times more 
efficient, may be used instead of parameter inflation. This 
complicated information should be known by politicians 
and experts. It shows that they need to compare the 
expected advantages of deployment to the actual costs in 
order to make a decision. Dynamic batching is a better 
choice for quick changes since it's easier to set up and 
gives you 2.1 times the advantages. These optimization 
restrictions help the switch to green artificial intelligence 
because they provide you a lot of options for finding the 
right balance between energy usage, performance, and 
applicability. 

This works makes four theoretical contributions. It 
improves scaling theory by adding energy and acceptance 
metrics, which makes it a better way to monitor how 
GenAI is becoming better. It offers empirically validated 
sector-specific governance delay indicators, beyond 
simple hypothesis. It shows a strong validation process 
that uses containerized repeatability and meets the 
strictest open research requirements set by MLCommons 
[59]. Last but not least, it talks about the geographic bias 
of the field and agrees with decolonial criticisms of AI by 
providing a framework that is reflective of the whole 
world, with 60% of its qualitative data originating from 
places outside of the West [46]. These contributions have 
three different consequences. In research, scale must give 
way to sustainable innovation, with an emphasis on 
efficiency and sociotechnical alignment. To narrow the 
4.2-year lag gap, it is very important that policymakers 
create governance institutions that can forecast and adjust. 
If capacity is expanded worldwide, investment must be 
made to close the 88% regulatory gap that exists in the 
Global South. This means that the most important parts of 
the South-North link must be fair funding and the ability 
to share open data. After the talk, people's opinions about 
AI change. Instead of trying to surpass benchmarks, I 
focus on understanding the phenomenon of computer 
scaling and how to use technology in a fair and moral way 
in society. 

6. Conclusions 
 
This work provides a definitive, empirically supported re-
examination of the GenAI paradigm, showing that its 
development is essentially sociotechnical and limited by 
computational principles, institutional capacities, and 
environmental constraints. The study's main conclusions 
show that a development paradigm that depends only on 
parameter scaling is no longer practical. The performance 
plateau at 200 billion features, the 4.2-year governance 
delay, and the established energy-performance objectives 
are the outcomes. The boundaries of the economic and 
physical realms are shown by this performance 
asymptote. The company must stop attempting to expand 
and begin making good use of design and algorithms if it 
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is to meet Green AI's pressing objectives [18, 48, 49]. 
However, policy mechanisms aren't keeping up with the 
changes, as seen by the pervasive governance gaps, 
particularly the 88% absence of regulation in the Global 
South. Because of this, it is simpler for individuals to 
abuse technology, which increases inequality in the globe 
[60]. Given that the real deployment of GenAI depends on 
a complex interaction between institutional preparedness, 
technical know-how, and fair governance, these findings 
cast doubt on deterministic views of development. 

There are significant impacts on research and practice 
that need a shift in focus. It takes as much time and 
money to become acclimated to new technology as it does 
to do technical research and development. The average 
adoption latency across all sectors is 2.3 years, which 
demonstrates this. Two factors should be considered when 
evaluating new ideas: their usefulness (in terms of 
execution, energy consumption, and social integration) 
and their effectiveness in comparison to more established 
concepts. A defined set of tools for this change is now 
available thanks to Pareto frontier analysis. Although 
photonic computing is still a way off, it demonstrates that 
sparse structures and dynamic training techniques are now 
feasible. Sector-specific delay indicators may be used by 
policymakers to determine which regulatory changes need 
to be implemented first. These indicators demonstrate the 
necessity for adaptable and modular frameworks in order 
to stay up with political and technological developments. 

These figures illustrate three distinct approaches of 
implementing the concept. In terms of technology, the 
primary objective should be to prioritize sparse structures 
and quick training paradigms above simply increasing the 
number of parameters. Energy conservation is one of the 
most crucial considerations while designing. Establishing 
regulatory modules for every sector with specific 
objectives can help to accelerate the 4.2-year gap. The 
most important thing to keep in mind is that the evidence 
indicates that formal South-North research collaboration 
is required globally. These need to go beyond token 
gestures and include practical actions like establishing 
explicit agreements for data and model sharing, equitable 
funding procedures, and collaboration to create 
regulations that are applicable in many political contexts. 
The study's shortcomings—such as its reliance on 
Western knowledge systems and the ambiguity of private 
models— actually support the central thesis, 
corresponding to the hope for a just and sustainable 
future, GenAI cannot be developed in distinct technical 
domains. It has to be developed cooperatively via a 
critical, inclusive, and open analysis of sociotechnical 
integration. This finding offers a fresh perspective on 
responsible innovation that carefully strikes a balance 
between advancements in science and global justice, 
technological advancement and global justice, and 
computing power and environmental sustainability. 
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