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Abstract– Ensemble Kalman filter (EnKF) is an efficient algo-
rithm in dealing with nonlinear and discontinuous data assimila-

tion problems. We designed a scheme that integrated the EnKF 
and Simplified Simple Biosphere model (SSiB) to improve the 
estimate of land surface temperature and evapotranspiration (ET) 

using Moderate Resolution Imaging Spectroradiometer (MODIS) 
Land Surface Temperature (LST) products. This scheme can 
make a judgment whether there are MODSI LST products 

available to assimilate at every time step. Then we compared the 
assimilation results with SSiB open loop simulation and station 
observations. The results showed that the EnKF algorithm could 

improve the land surface temperature and evapotranspiration 
estimate. Then we discussed five challenges during the experi-
ment. In a word, this scheme provides a practical way for im-

proving land surface models estimates with assimilating remote 
sensing observations. 

I. INTRODUCTION 

Water and energy circulation are two important processes. 

Accurately simulation of them will help us to research 

land-atmosphere interaction, land surface processes and cli-

mate change processes. Land surface models convert real 

world into physical equations and dynamic processes. With 

that, we can obtain variables that we concerned over time and 

space. J. K. Entin et al. had used many land surface process 

models, such as Simple Biosphere model (SiB), Simplified 

Simple Biosphere model (SSiB), Biosphere-Atmosphere 

Transfer Scheme (BATS) and Eta model, to simulate the global 

soil moisture [1]. The results showed that none of the models 

could accurately simulate the soil moisture in any regions. 

Consequently, low simulation accuracy usually restricts the use 

of land surface model. On the other hand, traditional observa-

tions can obtain relatively true value of land surface characters; 

however, spatial heterogeneity and time discontinuity are two 

disadvantages of observation data [2]. How to integrate model 

simulation and observation data has been a focus in geoscienc-

es for decades. In recent years, data assimilation techniques 

realize the integration perfectly. 

Data assimilation is method, which can dynamically merge 

together observations with a numerical model in order to de-

termine the model state variables as accurately as possible con-

sidering the observation errors and model errors. In 1960s, data 

assimilation technique had been proposed. This method was 

first used in Numerical Weather Prediction [3], and then ap-

plied into oceanographic models. In 1990s, data assimilation 

method was used in land surface models and hydrological 

models. The essential idea of data assimilation is that using 

appropriate observation operator to integrate different spatial 

resolution data into land surface model; adjusting the model 

outcome by assimilating the observation data and decreasing 

the error of the simulations [2]. 

Generally, from algorithmic point of view, data assimilation 

exists at present under two forms, variational assimilation and 

sequential assimilation [3]. Variational assimilation aims at 

globally adjusting a model solution to all the observations 

available over the assimilation period. 3-dimensional varia-

tional (3D-Var) and 4-dimensional variational (4D-Var) are 

two main algorithm in variational assimilation which need an 

adjoint model when dealing with the nonlinear models, and it is 

difficult to derive an adjoint model from a land surface model 

[4]. On the other hand, Kalman filter and its family are typical 

algorithms in sequential assimilation. Unfortunately, traditional 

Kalman filter [5] cannot handle the nonlinear and discontinu-

ous problems. Kalman filter is first proposed by Kalman in 

1960, and widely used in linear data assimilation. R. N. Miller, 

M. Ghil and F. Gauthiez [6] developed extended Kalman filter 

(EKF) to assimilate nonlinear problems in 1994. However, this 

method performance poorly when the problems were complex 

and highly nonlinear. G. Burgers, P. J. van Leeuwen and G. 

Evensen [7] first proposed ensemble Kalman filter that applies 

an ensemble of model state variable to represent the error sta-

tistics of the model estimate and to predict the error statistics 

continuously [8]. It has been used in various fields, such as 

numerical weather report, ocean prediction, land surface mod-

els and hydrological models [7, 9, 10]. The assimilation results 

showed that EnKF is an effective method to deal with nonline-

ar assimilation problems, and performed well in non-Gaussian 

error statistics in some case [11]. C. L. Huang [8] used ensem-

ble Kalman filter (EnKF) to assimilate soil moisture in Revised 

Simple Biosphere model (SiB2) with microwave remote sens-

ing data, and the results showed that surface soil moisture were 

significantly improved. C. L. Huang [12] used Moderate Reso-

lution Imaging Spectroradiometer (MODIS) Product to assimi-

late soil surface temperature and deep soil temperature in 

CoLM with EnKF. The simulation accuracy was improved by 

1K. X. J. Han [11] had reviewed the modern nonlinear filters, 

and compared the performance of EnKF, unscented Kalman 

ziglio
Typewritten Text
CHINACOM 2010, August 25-27, Beijing, ChinaCopyright © 2011 ICST 973-963-9799-97-4DOI 10.4108/adim.2010.4



 

filter (UKF), sampling importance resampling particle filter 

(SIR-PF) and unscented particle filter (UPF) in Lorentz system, 

and used them in VIC-3L model to assimilate soil moisture 

with microwave remote sensing data. W.T. Crow [13] used 

remote sensing data to retrieve soil moisture and assimilated 

the runoff prediction in Sacramento hydrologic model. J.D. 

Bolten [14] used Advanced Microwave Scanning Radiometer 

(AMSR-E) data to assimilate soil moisture for Operational Ag-

ricultural Drought Monitoring. R. Reichle, J. Walker, R. Koster 

and P. Houser [15] used the EnKF to estimate soil moisture 

profile and found that the EnKF had a better performance than 

EKF. R.C. Pipunic, J.P. Walker and A. Western [16] have at-

tempted to use indirect data assimilation technique to improve 

evapotranspiration (ET) estimation accuracy. 

In this study, we integrated ensemble Kalman filter algo-

rithm and SSiB [17] to improve the accuracy of land surface 

temperature and evapotranspiration (ET) simultaneously with 

assimilating the MODIS Land Surface Temperature (LST) 

products. 

II. METHOD 

Generally, a data assimilation system needs model, data as-

similation algorithm, observation operator and data sets. In our 

experiment, we choose SSiB as the model, and ensemble 

Kalman filter as the data assimilation algorithm. We use 

MODIS LST products to assimilate land surface temperature, 

which is the model state variable that we defined. Therefore, 

the observation operator is the formula that transforms radiant 

temperature into observation temperature. The flowchart of 

our data assimilation scheme which assimilating MODIS LST 

products with EnKF is showed in Fig. 1. 

A. Land surface model  

The Land surface model used in this study is the Simplified 

Simple Biosphere model (SSiB) modified by Y.K. Xue from 

the Simple Biosphere model (SiB) which was developed by P.J. 

Sellers, Y. Mintz, Y.C. Sud and A. Dalcher [18]. In SSiB, the 

calculation of radiation fluxes, aerodynamic resistance and 

surface resistance are simplified and it has been proven that the 

simplification had little effect to the results. D. Q. Zhu has val-

idated SSiB model in arid region and the sensitivity results 

showed that this model are suitable for arid regions if only the 

parameters were correctly defined [19]. In SSiB, the land sur-

face temperature, Tgs, is calculated as [17],  
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Fig 1.  The flowchart of data assimilation scheme 

where Cgs is the effective heat capacity of soil, Rngs is the net 

radiation flux at the ground, Hgs is the sensible heat flux from 

the ground, Egs is the latent heat flux from the ground, λ  is 

the latent heat of vaporization, τ  is the day length, Td is the 

temperature for deep soil, rd is the aerodynamic resistance be-

tween ground and canopy air space, ρ  is the density of air, cp 

is the specific heat of air,fh is the relative humidity of the air at 

the soil surface, e*(gs) is the saturation vapor pressure at tem-

perature Tgs, Ta is the temperature of air, ea is the vapor pres-

sure in canopy air space, rsurf is the surface resistance. 

B. Data assimilation algorithm 

As we mentioned in the first part, the EnKF is an efficient 

method for nonlinear data assimilation. In this study, random 

perturbations with the appropriate expectation and variance 

were added to the observations, which generate an ensemble of 

observations. Researches have proven that this process can 

bring about lower variance in the ensemble of updated model 

state variables. The error covariance for the forecast and analy-

sis estimate,  
f

P  and a
P  of model state variable X are de-

fined as [9], 

f ff f f f T
eP P = X X (X) X( )≅                            (4)  

a aa a a a T
eP P = X X (X) X( )≅                            (5) 



 

where overbar denotes an average over the ensemble, and the 

superscripts a and f refer to analysis and forecast, respectively. 

Generally, the EnKF has two steps, forecast step and analy-

sis step. In the forecast step, the model state X is calculated by 

[9], 

f a
i,t+1 i,t iX =M(X )+u

        
                                 (6)                                  

where X
 f

 i,t+1 is the forecasted state variable of the ith ensemble 

member at time t+1, X
 a

 i,t is the analyzed state variable of the 

ith ensemble member at time t, M is the model operator, ui is 

the model error which assumed to satisfy Gaussian distribution 

with zero mean and covariance matrix Q. 

In the analysis step, the forecast of each ensemble member is 

updated as follows [9], 

a f f
i,t i,t t t i i,t[(X =X +K Y +ε H(X) )]  (7) 

f T f T 1
t t tK =P H HP H +R][ −

                   (8)         

where H is the observation operator that relates the model state 

variables to the observation, Yt is the observation at time t. εi is 

the Gaussian distributed observation error with zero mean and 

covariance matrix R, Kt is the Kalman gain at time t, f
tP  is the 

forecast background covariance matrix at time t.  

In this data assimilation scheme, we define land surface 

temperature as the model state variable, Xt; MODIS LST 

products as the observation variable Yt; and the number of en-

semble size as 50. In the forecast step, the ensemble of land 

surface temperature is generated by SSiB estimate of land sur-

face temperature adding appropriate random error. At every 

time step, the scheme will check if there are MODIS LST 

products available; if not, the scheme moves on as usual; if yes, 

the scheme begins to launch data assimilation as follows, 

1) Generate the ensemble the MODIS LST products with 

adding appropriate random error using (6). 

2) Calculate the forecast error covariance with forecast land 

surface temperature using (4). 

3) Calculate the Kalman gains with observation operator and 

MODIS LST products covariance using (8). 

4) Calculate the analysis land surface temperature using (7). 

5) Update the forecast land surface temperature at time t+1 

with analysis land surface temperature at time t using (6). 

In this process, the land surface temperature was quantifica-

tionally adjusted by MODIS LST observation, which is con-

sidered more accurate than the model simulation. And this 

process illustrated above will repeat every time step. Therefore, 

at the end of the scheme, the observations will greatly affect 

the model estimates, if the observations are accurate enough, 

the model estimates will improve the simulation accuracy. 

C. Experiment Area 

The one-dimensional assimilation experiments were con-

ducted at Arou station (E100°27′, N38°02′; 3030m) which is 

located in upstream of the Heihe river basin in northwestern 

China. Arou station lies on the southern slope of Qilian Moun-

tain northeast of Qinghai province. The annual average air 

temperature is about 1℃, while the annual precipitation is 

about 270 - 600mm. The underlying surface around the station 

is predominated by meadows with 20 – 30 cm height. In Arou 

station, there are a set of automatic meteorological station and 

a set of eddy correlation system. 

III. RESULTS AND DISCUSSION 

The EnKF assimilation scheme is used to assimilate MODIS 

LST products from June 1st to June 30th (Julian Day 152 to 

181), with a time step of one hour. The value of land surface 

temperature from observation, SSiB open loop run and data 

assimilation method are shown in Fig. 2 (a); and the value of 

ET are shown in Fig. 2 (b). 

In land surface temperature estimate, there are significant 

improvements when the MODIS LST products are available. 

However, in the last a few days, the improvements are not very 

obvious, due to frequently precipitation and absence of MODIS 

LST products. In addition, in precipitation days, the quality of 

MODIS LST products will decline owing to the reflection and 

scattering effects of the clouds. Sometimes, the MODIS LST 

products will be a null value because of clouds. Another im-

portant reason for the indistinctive improvement is that the 

SSiB open loop simulation of land surface temperature is 

comparative close to the observations. The root mean square  

 

Fig 2.  The results of observation, SSiB open loop run, data assimilation in 
land surface temperature and evapotranspiration 



 

error (RMSE) of SSiB estimate of land surface temperature is 

0.89K, while the RMSE of assimilation with MODIS LST is 

0.76K, which has been improved by 13%. The error between 

SSiB open loop simulated and observation is about 0.74K av-

erage and 1.68K maximum, while the error between assimilat-

ed results and observation is about 0.63K average and 1.92K 

maximum. 

On the other hand, in ET estimation, the assimilated results 

also significantly improved the accuracy of ET estimate. 

However, in the last three days, ET assimilation also has obvi-

ously underestimated. The main causes of this situation are the 

absence and low quality of MODIS LST products. There is 

only one scene of MODIS LST product available in the last 

five days. Moreover, if the quality of MODIS LST product is 

low, the data assimilation algorithm will also lead the model to 

the opposite direction. Therefore, a data set quality control 

scheme is very important to a data assimilation system. Fortu-

nately, the quality of MODIS LST product has an acceptable 

accuracy for our study area. The RMSE of SSiB open loop 

simulation is 0.49, while the RMSE of data assimilation simu-

lation is 0.43, which has been improved by 12%. The average 

daily ET of SSiB simulation is overestimated by 0.23mm, 

while the ET estimate of EnKF algorithm is 2.93mm, underes-

timated by 0.06mm. The statistics shows that the EnKF algo-

rithm has respectable achievements in ET estimate. 

However, we have faced five challenges or problems in sim-

ulation and assimilation. First, owing to the influence of terrain 

and heterogeneity of spatial scale, there are differences be-

tween the value retrieved from MODIS LST products and ob-

served from the station. Moreover, these differences are not 

belonging to systematic error. Therefore, more experiments 

and researches are needed to resolve this problem. Second, 

although the time step of the SSiB model is one hour, the 

MODIS LST products collected by the satellites are instanta-

neous values. Apparently, an instantaneous value cannot match 

with a one-hour average value. Accordingly, it is crucial to 

build a reliable relationship between the MODIS LST products 

and station observation. Third, the error covariance of the 

model state variable and the observation, Q and R, which men-

tioned in (6) and (7) respectively, are difficult to define. Usu-

ally, there are systematic biases of the model estimate, there-

fore, the error distribution cannot be Gaussian distributed with 

zero mean. In our experiment, we can infer that the EnKF has a 

limit to deal with systematic bias problems. Consequently, 

model parameters and model structures are also needed to op-

timize in order to reduce the systematic biases. Besides, ET 

observations are usually converted from latent heat flux ob-

served by eddy correlation system, which also have great inde-

terminacy in data quality. In our experiment, frequency re-

sponse [20] corrections and Webb, Pearman & Leuning correc-

tions [21] has been done for the eddy correlation data. Finally, 

the performance of EnKF algorithm also depends on the fre-

quency of available observations. Unfortunately, the maximum 

frequency of MODIS LST products is one scene per day. Due 

to the influence of the clouds, there are only 15 scenes of the 

MODIS LST products available in 30 days, that is to say there 

are only 15 observations can be assimilated in 720 time steps. 

Consequently, in order to obtain better assimilation results, we 

need more satellites and sensors to provide us more remote 

sensing data. 

From this paper, we can infer that data assimilation method 

can improve the model estimates with accurate observations 

when the models cannot describe the real process analyticly 

and observations are accurately enough. Therefore, this algo-

rithm can be imported into other fields, such as chemical engi-

neering, marine navigation and military fields. 

IV. CONCLUSION 

This paper shows how the EnKF works and provides us an 

executable way to improve model estimates, such as land sur-

face temperature and evapotranspiration. We have designed a 

one-dimensional land surface temperature assimilation scheme 

with EnKF algorithm and SSiB. This scheme can decide 

whether there are MODIS LST products to assimilate. Moreo-

ver, from the results, we can draw a conclusion that the EnKF 

algorithm can improve the accuracy of land surface tempera-

ture and ET estimate with MODIS LST products. Though the 

improvement are not evident enough, we found some other 

way to make the estimate better, which is also important, such 

as optimizing the model parameter, studying the relationships 

between the MODIS LST products and station observations in 

mountain area and using other kind of satellites to get more 

frequent and reliable data. On the other hand, we can also use 

other kind of data, such as soil moisture, LAI and precipitation, 

to assimilate corresponding model state variables in different 

models, such as Common Land Model (CLM), Dynamic Glob-

al Vegetation Model (DGVM) and Soil Water Assessment 

Tool (SWAT). 
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