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Abstract—In this paper, we initiate a framework to address
the capacity scaling trends in Vehicular Ad Hoc Networks
(VANET)s with arbitrary topologies. Towards this end we
utilize the conventional definition of transport capacity in which
destination nodes are chosen at random by the source nodes.
Also, to get more VANET-specific, we set up a new variation
of transport capacity in which the destination nodes are again
chosen at random, but this time are within a distance d of
the source node which is called the distance-limited capacity.
Emergency and accident avoidance scenarios are just, some of
the direct applications of distance-limited capacity. Moving on
further, we study the effect of infrastructure node deployment
in the capacity analysis of VANETs. We’ve initiated this trend
with our focus on the distance-limited capacity of a single road
VANET. Using analytical expressions we show that exploiting
any number of infrastructure nodes beyond a certain amount,
enhances the achievable capacity.

I. INTRODUCTION

The emerging field of Vehicular Ad hoc Networks
(VANET)s has attracted the attention of many researchers
in recent years. Due to the high priority ascribed to safety
and emergency applications in transportation systems, the
VANET frontier has evolved into a dynamic research field.
VANETs use Inter-Vehicle Communication (IVC) that is
an important component of the Intelligent Transportation
System (ITS) architecture. VANET will enable a wide range
of novel applications such as accident avoidance messaging,
congestion sensing, traffic metering, and general information
services (e.g., Internet access). The allocation of 75 MHz
in the 5.9 GHz band for Dedicated Short Range Commu-
nications (DSRC) may also enable future delivery of rich
media content to vehicles at short to medium ranges via
both inter-vehicle and road-vehicle communications. The
soon-to-be-launched Vehicle Infrastructure Integration (VII)
in the U.S. envisions that a future vehicle will be equipped
with On-Board Equipment (OBE), and the communication
infrastructure will include Roadside Equipment (RSE)s that
is deployed at strategic locations along the roadside.

Despite the increasing amount of research on VANETs,
the capacity scaling analysis of such networks is still in
its infancy. In [1], some expressions were derived to assess
the asymptotic behavior of VANETs in single road and grid
topology cases. As it was seen there, even a single isolated
rural area road can potentially have every possible capacity

scaling just based on its path geometry. Such a phenomenon
was not observed in ordinary analysis of wireless networks.
Thus, there is a need to categorize roads based on their
geometric properties.

Another issue is the effect of vehicle mobility in VANET’s
capacity scaling. There is some interesting literature on the
effects of mobility on the capacity of wireless networks
[4-8]. In these analyses it is usually assumed that there
is high delay tolerance, nodes have huge buffer sizes, and
the network topology changes over time-scale of packet
delivery. Indeed none of the assumptions hold in VANETs.
For example, emergency and safety-related messages are
extremely delay sensitive in VANETs. More importantly, a
very common assumption in the literature is that the nodes
move independently of each other. This assumption by no
means holds in VANETs. In fact our results suggests unlike
the existing literature, mobility does not improve capacity
scaling in VANETs. This is in contrast with the previous
conception on mobility and capacity.

Finally note that, in the study of transport capacity it is
usually assumed that each node has a random destination
chosen uniformly from the available nodes in the network.
In [2] we focused on how to determine the capacity bounds
and its achievability for VANETs’ distance-limited capacity.
In distance-limited communications each vehicle is only
interested to communicate with other vehicles which reside
in a predetermined area of its vicinity. This definition, is of
course an outcome of the specific application of VANETs
in emergency situations and significantly affects the scaling
laws for throughput.

In this paper we extend the study of VANETs’ scaling
laws towards more general transportation systems topolo-
gies. Also we provide elementary results regarding the
deployment of infrastructure nodes, termed as Road Side
Units (RSU)s, in single road VANET deployment. For
simplicity, we adopt the protocol model introduced in [13].
The methodology can be extended to other models as well.
The conventional transport capacity of a VANET with n
nodes is shown by Λ(n). It is assumed that each node has
a communication radius rt.
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II. FORMULATION AND PRELIMINARIES

We show a lane on a road by a parameterized smooth
continuous curve Xn(s) = (xn(s), yn(s)), s ∈ [0, 1] on
the plane. The length of each section of the curve is
obtained using the Hausdorff one-dimensional measure [9].
The subscript n shows the number of vehicles on the road.
The curve shows the trajectory of the road. Xn(0) is the
beginning of the lane and Xn(1) shows the end. It is
assumed a road can intersect itself only a finite number
of times. Multi-lane roads are indicated by several parallel
curves. A transportation network usually consists of several
roads. The density, kn(s), of a road is defined by the average
number of vehicles per unit length at point Xn(s). At any
part of the road, the density of cars is assumed to be a
bounded positive number as in reality the density is limited
by the physical size of cars. In this paper, for simplicity
we assume kn(s) = k, for all s ∈ [0, 1] in all proofs.
However, the results are easily extendable to the general
case. For transportation networks consisting of several roads,
the values of densities are chosen in a way that the flow
conservation principle is satisfied at the intersections.

The mobility model for vehicles is an important fac-
tor in vehicular ad hoc networks. It is assumed that the
movements of vehicles on the roads follow a stationary
stochastic process. Note that in VANETs, the vehicles do
not move independently from each other. However, it has
been observed that at any time t, the positions of vehicles
can be modeled based on a Poisson process on the road,
thus the spacing between them has exponential distribution
[10-12]. In this paper we follow this assumption, however, it
can be shown that the results hold for more general mobility
models that satisfy some specific conditions. To define our
model rigorously, we extend the lane Xn(s) from both ends
to infinity. Then, we place a Poisson point process with
density k on the extended curve. Any point of the process
will correspond to a vehicle. At time t = 0, all vehicles on
the same lane will choose a common speed v ∈ [0, vmax]
uniformly at random. It is assumed that vmax is a fixed and
bounded real number. It is assumed that the vehicles do not
change their speed. Thus, at any time t, the positions of
vehicles is still a Poisson process. Since we assume Poisson
distribution and are interested in scaling laws, we can often
combine parallel lanes to obtain one curve whose density is
given by the summation of densities, i.e, k = k1+k2+...+kl

to simplify the analysis. However, it is important to note that
this is possible only when we are providing macroscopic
analysis, otherwise we need to consider each lane separately
and account for the interactions between lanes. We assume
B(X, r) is the closed ball with radius r centered at X in
R2. Also, C(X, r) is the circle with radius r centered at X .

We consider transportation networks that consist of n cars
equipped with OBEs. We are interested in the fundamental

limits of these networks as n grows large for general road
topologies. Since the density of cars is a bounded positive
number, to have a large number of nodes, the total lengths
of the roads are assumed to be large, L = n

k = Θ(n).
We also make the assumption that the roads are not highly

dense on the plane. We call this the sparseness condition.
To make this rigorous, for any point Y ∈ R2, let l(Y, r) be
the Hausdorff one-dimensional measure (combined length)
of the sections of the roads inside B(Y, r). It is assumed that
l(Y, αrt) = O(rt) for all Y ∈ R2 and any constant α > 0.
For any point X on a road let n(X) be the number of times
that C(X, rt) intersects with the road curves. It is assumed
that n(X) is bounded. Let Art be the sections of the roads
consisting of points with n(X) > 2. We say that the road
system is sparse if the combined length of Art is o(L). If
n(X) ≤ 2 for all points on the roads, then the system is
said to be highly sparse. At any intersection, it is assumed
that only a bounded number of roads can intersect with each
other.

III. RESULTS AND DISCUSSIONS

Before stating the results we need a simple lemma. This
lemma is used in the proofs of the capacity results.

Lemma 1. Consider a transportation network that consists
of u single roads with lengths l1, l2, ..., lu. Suppose that we
divide the roads to sections of lengths βrt, where β is a
constant. We can place these sections into a bounded finite
number of non-interfering groups.

This result states that we can schedule parallel transmis-
sions in the network as long as the transmissions belong to
different groups. This is a standard method used to obtain
lower bound on the capacity of wireless networks. The
lemma can be proved using graph coloring.

A. Transport Capacity of General Transportation Networks

Here we discuss a general scenario that includes down-
town grids as a special case. Figure 1 shows a typical
downtown area. We provide a general result on the capacity
of vehicular ad hac networks. In particular, we define the
concept of street connectivity. This is somewhat similar to
edge-connectivity in Graph Theory. Remember, the edge
connectivity shows the size of the minimum cut in a graph. It
also relates to the number of disjoint path that exists between
two nodes.

Consider two vehicles C1 and C2 located on the roads R1

and R2 respectively. Two different paths from C1 to C2 are
called street-disjoint if they do not intersect with each other
except on R1 and R2. We say that a transportation network
has street connectivity m if there are at least m street disjoint
paths between any two points in the network. Although it is
very similar to edge-connectivity in Graph Theory, the street
connectivity is affected by both geometrical and the graph



theoretical properties of the system. In particular, using the
assumptions such as sparseness and network connectivity,
we show that the street connectivity cannot grow faster than
Θ(

√
n

ln n ). Note that in Graph Theory, the edge-connectivity
can grow as fast as Θ(n). We point out the following two
lemmas before stating the main result.

Lemma 2. Consider a transportation network that consists
of u single roads. Let L be the subset of R2 containing
the road curves and H(.) be the Hausdorff one-dimensional
measure. Let A1, A2, ..., Ai ⊆ L be sections of the roads
satisfying the following property: For all I ∈ {1, 2, ..., i}
with |I| > c, we have

⋂
j∈I Aj = ∅. Then we have

i∑

j=1

H(Aj) ≤ cH(
i⋃

j=1

Aj). (1)

Lemma 3. Consider a transportation network with street
connectivity m that consists of u single roads with lengths
l1, l2, ..., lu. Assume that ε < 1i

lj
< γ for some fixed constant

numbers ε and γ and for any i, j ∈ {1, 2, ..., u}. Then we
have m = o(

√
n

ln n ).

We now can state the following theorem on transport
capacity of general transportation networks.

Theorem 1. Consider a transportation network with street
connectivity m that consists of u single roads with lengths
l1, l2, ..., lu. Assume that ε < li

lj
< γ for some fixed constant

numbers ε and γ and for any i, j ∈ {1, 2, ..., u}. The
transport capacity of the corresponding VANET is Ω(m

n ).

The above theorem simply states that the capacity is
determined by the street connectivity of the transporta-
tion network. Note that when the stated assumptions such
as sparseness and network connectivity hold, it can be
shown that the street connectivity cannot grow faster than
Θ(

√
n

ln n ). Thus, the capacity does not have to grow faster

than Θ(
√

1
n ln n ).

B. Effects of RSUs

So far we have assumed there is no infrastructure in the
network. A natural question is how the infrastructure affects
the network capacity. There are some work in the literature
discussing the capacity of wireless networks with infras-
tructure, see for example [3]. Here we consider a similar
scenario in which the RSUs do not generate new information
and only serve to help the communication between vehicles.
Suppose that R(n) is the number of RSUs in the system. It
is assumed that the nodes can communicate with each other
using a channel with a bounded bandwidth W1 < ∞, and
they can communicate with the RSUs using a channel with
a bounded bandwidth W2 < ∞ that does not interfere with
W1. Note that, for this case, we consider distance-limited

Fig. 1. A typical urban area. This is the map of some part of Boston taken
from Google map.

capacity, where nodes can communicate with other nodes
which are within a certain range, d(n), of their vicinity.

Theorem 2. Assume the sparseness condition is satisfied.
Assume that rt(n) = Θ(ln n). Let ΛR

d (n) be the distance-
limited capacity of a single road X(s), s ∈ [0, 1] with R(n)
RSUs.
• If d(n) = Ω(rt(n)) and R(n)d(n) = O(n) and

R(n) = O( n
ln n ), then ΛR

d (n) = Θ( 1
d ).

• If d(n) = O(rt(n)) or R(n) = Ω( n
ln n ), then ΛR

d (n) =
Θ( 1

ln n ).
• If R(n)d(n) = Ω(n), and d(n) = Ω(rt(n)), and

R(n) = O( n
ln n ), then ΛR

d (n) = Θ(R(n)
n ).

The above formula simply states that, when the number
of RSUs is so small that it’s unlikely that there exists at
least one RSU in any section of length d(n) of the road, the
capacity is virtually the same as the pure ad hoc case. More-
over by increasing the number of RSUs, so that we have at
least one RSU in each section, the capacity increases almost
linearly with the number of RSUs. Increasing the number of
RSUs beyond a certain amount is of no use as capacity is
limited by the number of simultaneous transmissions each of
them can handle. In figure 2, we have illustrated the capacity
regions for a single road VANET with R(n) RSUs.

IV. PROOFS AND ANALYSIS

Here we outline the basis of the proofs for lemma 1 and
the aforementioned theorems.

Proof of Lemma 1
Proof: Construct the interference graph G in the fol-

lowing way. Any section of any road will be a vertex in G.
Two vertices in G are connected to each other if the distance
between the two corresponding sections is less than or equal
to rt. The requirements of sparseness condition guarantee
that the maximum degree of G is a finite bounded number.



Fig. 2. Capacity regions for VANETs on a single road with R(n) RSUs.

Thus the chromatic index of G is a bounded number, too.
We conclude that the vertices of G can be colored using a
finite number of colors so that no two vertices with the same
color are adjacent. Each color group represents the sections
of the road belonging to one of the non-interfering groups.
The number of groups is bounded because the chromatic
index is bounded.

Proof of Lemma 2
Proof: Since the set L is bounded it is completely inside

a square S0 with side b. Define shb(.) : R2 7→ R2, as
shb(x, y) = (x + b, y). For any measurable set E ∈ R2,
we have H(shb(E)) = H(E). Define

L1 =
i⋃

j=1

Aj

L2 = shb(L1)
L3 = shb(L2) = sh2

b(L1)
.

.

.

Lc = shc−1
b (L).

Now define functions fj : R2 7→ R2, j ∈ {1, 2, ..., i} in the
following way. fj(x, y) = (x+tb, y), where x belongs to t of
the sets A1, A2, ..., Aj−1. We conclude from the assumptions
of the lemma that

i⋃

j=1

fj(Aj) ⊆
c⋃

k=1

Lk. (2)

For all j 6= k, we have fj(Aj) ∩ fk(Ak) = ∅. Moreover,
since i is a finite number, we have H(fj(Aj)) = H(Aj).
We conclude

H(
i⋃

j=1

fj(Aj)) =
i∑

j=1

H(fj(Aj)) =
i∑

j=1

H(Aj). (3)

Combining Equations (2) and (3), we obtain
i∑

j=1

H(Aj) ≤ H(
c⋃

k=1

Lk) = cH(L1) = cH(
i⋃

j=1

Aj). (4)

Proof of Lemma 3
Proof: Since the system has street connectivity m, we

conclude that each road intersects with at least m other roads
and also u ≥ m. Thus the number of intersections in the
system is i(n) ≥ m2. Number the intersections in the system
from 1 to i(n), Remember that for any point X on a road
n(X) is the number of times that C(X, rt) intersects with
the road curves. For any point X on a road, we say that X is
contradicting point if n(X) > 2. Note that any intersection
will create a section of length at least Θ(rt) consisting of
contradicting points. For the jth intersection let Aj be the
sections of the road consisting of the contradicting points
due to the intersection. Then Aj = Ω(rt). since we assume
that n(X) is bounded at any point in the network, there
exists a constant c > 0 such that n(x) < c for all X . That
means that for all I ∈ {1, 2, ..., i(n)} with |I| > c, we have⋂

j∈I Aj = ∅. Now using Lemma 2 we conclude

i(n)∑

j=1

H(Aj) ≤ cH(
i(n)⋃

j=1

Aj). (5)

However, from the sparseness condition we conclude that
H(

⋃i(n)
j=1 Aj) = o(n). Thus, we have

i(n)∑

j=1

H(Aj) = o(n). (6)

On the other hand, we have
∑i(n)

j=1 H(Aj) ≥ i(n)Θ(rt).
Connectivity of the network implies that rt(n) = Ω(ln n),
thus we have

i(n)∑

j=1

H(Aj) = Ω(m2 ln n). (7)

combining Equations (6) and (7), we conclude m =
o(

√
n

ln n ).



Proof of Theorem 1
Proof: We provide a routing strategy that achieves

Θ(m
n ) per node throughput. First note that by the definitions

of street connectivity we have u ≥ m. The algorithm works
in the following way. First, as usual, divide the road into
sections of length rt

2 = Θ( ln n
2k ). Using the coloring Lemma

1, we can divide the sections into a finite number of non-
interfering groups. For any source-destination pair consider
a set of m disjoint street paths. Choose one of the paths
at random and use multi-hop communications between the
sections to send the messages from the sender to the receiver
node. We prove we can achieve Θ(m

n ) per node throughput
using this algorithm.

At any time, there are n(1 + o(1)) nodes in the network.
Order these nodes randomly and call them node1, node 2,
..., and node n. Define Boolean random variables Xij in
the following way. Xij = 1 if and only if the routing path
starting at node j uses at least one section of road i in the
network. We claim Prob {Xij = 1} = O( 1

m ). Indeed, if the
node j or its destination are on the road i, then Xij = 1 with
probability one. This event occurs with probability Θ( 1

u ). On
the other hand, if node j and its destination are not on the
road i, then Prob {Xij = 1} ≤ 1

m , because the road i can
be in at most one of the m street-disjoint paths from node
j to its destination. Thus,

Prob{Xij = 1} ≤ Θ(
1
u

) +
1
m

= O(
1
m

), (8)

where we used u ≥ m. Thus we conclude that EXij =
ρ(1+o(1)) 1

m , where ρ is a positive constant number. Define
the random variables Xi as

Xi =
n∑

j=1

Xij . (9)

We have EXi = ρ(1 + o(1)) n
m . Define the event Ei as

{Xi ≤ (1+ 1
ρ )EXi}. We show that the event

⋂u
i=1 Ei occurs

with high probability. Define Fi = Ec
i . Note that Xij are

i.i.d random variables. Thus we can construct a martingale
and apply the Azuma’s inequality. We conclude

Prob{Fi} ≤ Prob{|Xi − EXi| > 1
ρ
EXi} (10)

< exp
(
− (EX)2

ρ2u

)

= exp
(
− n2(1 + o(1))

um2

)

≤ exp
(
− n2

2um2

)
.

By Lemma 3, we can write m =
√

n
ln n

1
w(n) , where

w(n) →∞ as n goes to infinity. Thus we conclude

Prob{
u⋃

i=1

Fi} ≤ exp
(
− n2

2um2

)
(11)

= exp
(
− n ln nw2(n)

2u

)

≤ n−
w2(n)

2 = o(1).

Since we have Prob{⋂u
i=1 Ei} = 1 − Prob{⋃u

i=1 Fi}, we
conclude

⋂u
i=1 Ei occurs with high probability. This shows

that each section of the roads has to support at most O( n
m )

path, and thus the throughput Θ(m
n ) is achievable.

Proof of Theorem 2
Proof:

The first of the three listed items, represents the case
where we are concerned with multi-hop communications and
the fact that we don’t necessarily have an RSU in all sections
of length d(n) of the road. So in this case what upper bounds
the distance-limited capacity is the Ad hoc capacity of the
network, which has previously been worked out as Θ( 1

d ) and
also proved to be an achievable bound in [2].

The second item consists of two cases, which represent the
cases where either we are facing single hop communications
or where there exists at least one RSU in the transmission
range of each vehicle, respectively. In both these cases the
achievable upper bound is Θ( 1

rt(n) ), which leads to Θ( 1
ln n )

as rt(n) = Θ(ln n). Note that in the former case, nodes com-
municate directly in a single hop manner without utilizing
RSUs, whereas in the latter case, any two communicating
nodes fully rely on RSUs to send their data to each other.

The last item represents the case where we are facing
multi-hop communications and we do have at least one RSU
in all sections of length d(n) of the road, but at the same time
the existence of an RSU in the transmission range, rt(n),
of each and every node is not guaranteed. Lets first find an
upper bound for the distance limited capacity of the network
under these circumstances:

First we divide the road of length L into divisions of
length n

R(n) each. In this case, its quite obvious that we can
place at least one RSU in each division. So, following the
method utilized in [13], we have the following for the upper
bound of the distance limited capacity:

n× ΛR
d (n)×

n
R(n)

r ≤ n
r → ΛR

d (n) = O(R(n)
n ) (12)

To better understand the above relation, take in mind that
in this case, for any d(n) distance limited communications,
knowing that d(n) ≥ n

R(n) and that all vehicles do not have



immediate access to an RSU, data needs to be sent in ad hoc
mode for at most a distance of n

R(n) before it gains access
to an RSU. For the achievability, again assume divisions
of length n

R(n) of the road, where each of the R(n) RSUs
is placed in the middle of each division. We are interested
in the maximum number of paths that can pass through an
arbitrary section of length rt

2 . Each vehicle, in order to send
its data to a destination, d(n) away from itself, reaches the
nearest RSU, which is at most a distance of n

2R(n) from
it. Thus it is clear that a section exactly at the middle of
such division, where an RSU is placed, has the most number
of paths passing through it. That is, the data of all n

R(n)
vehicles within that division has to pass through this section
to reach the RSU in that division, Hence the achievability
of a throughput of Θ(R(n)

n ).
To sum up, we emphasize the main ideas behind the

proof. There are several factors limiting the capacity, and in
each region the dominant factors determine the achievable
throughput. The first factor is the capacity of the ad hoc
part of the network which is Θ( 1

d(n) ). The capacity due

to the RSUs is given by Θ(R(n)
n ). Also, we should note

that capacity higher than Θ( 1
ln n ) is not achievable since

there is always a section of length rt(n) that has Θ(ln n)
receiver nodes. These nodes cannot receive at rates higher
than Θ( 1

ln n ).

V. CONCLUSION

In this paper we calculated the transport capacity of
VANETs utilized in arbitrarily dense downtown road sys-
tems. Moreover we introduced a new metric for the capacity
of VANETs, in which their specific application, i.e. safety,
is accounted for. This is the distance limited capacity, in
which nodes need only to communicate with other parties
which are within a certain distance from them. Following
on, we utilized Road Side Units (RSU)s to see how they
affect the VANET capacity in the special case of a single
road. Indeed, several simplifying assumptions regarding the
mobility models, geometric properties, communication mod-
els, and capacity definitions are adopted in this paper. Future
work will include extending our results for the single road
VANET with infrastructure, to more diverse road topologies,
like the grid and general shapes and also developing and
analyzing more realistic models.
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