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Abstract—Recently, kinds of scaling schemes for general large
scale complex networks have been developed and attracted much
attention. We propose a new scaling scheme named “two-sites
scaling” and investigate how the degree distribution of network
changes in applying the proposed scheme to various networks.
Notably, the results indicate that networks constructed by BA
algorithm behave differently compared with networks commonly
appearing in the real world. In addition, since an iterative scaling
scheme could define a new renormalizing method, we argue about
using our scheme for Wilsonian renormalization group theory for
general complex networks and its application to analyzing the
dynamics of complex networks.

Index Terms—complex network, renormalization, BA network

I. INTRODUCTION

The complex networks have many interesting cross-
disciplinary natures. The notable fact pointed out by Barabasi
et al. is that power-law and scale-free properties are universal,
from cinema actors’ costarring network and the Internet to the
metabolic network of cells [1], [2]. The scale-free property
can be explained using BA algorithm that is a simple growing
network model based on the notion of preferential attachment
[3]. Other than frequently discussed quantities such as the
power of power-law distribution and cluster coefficient, we can
define numerous quantities that characterize the structure of
the network. However, it is difficult to know which quantities
are essential for the classification of networks. Moreover,
some of quantities are hard to calculate because of their high
computational complexity. Thus, our goal is to find an essential
and scalable characterizing quantity of complex networks.

Recently, the dynamics over complex networks has also
been attracting considerable attention [4] beside their struc-
tures. It is desirable to understand the dynamics over the
network from the viewpoint of application, because there are
many demands to control the dynamics over various networks.
However, these studies depend on the individual dynamical

systems and algorithms to generate complex networks. There-
fore, it is necessary to constitute a systematic and analytical
approach for the dynamics over complex networks.

In this paper, we propose a scaling method called two-sites
scaling that is essentially based on the Wilsonian renormaliza-
tion group theory. Using the Wilsonian renormalization group
theory, we can extract information about the dynamics such
as critical exponents in a systematic manner. The extracted
information is expected to possess universal nature and would
enable us to classify the networks from the viewpoint of
dynamics.

The organization of this paper is as follows. We review
briefly Wilsonian renormaliztion group theory in Section II. In
Section III, we propose two-sites scaling method that defines
the action of the renormalization group. In Section IV, we
apply our two-site scaling method iteratively to various net-
works: BA network, router-level network, AS-level network,
network of actors’ costarring and protein-protein interaction
network. In Section V, we discuss the result and the prospect
of Wilsonian renormalization theory for complex networks.

II. WILSONIAN RENORMALIZATION GROUP THEORY

Wilsonian renormalization group theory [5], [6] is powerful
and systematic approach in theoretical physics. Using the
renormalization theory, we can analyze the flow of the parame-
ters in the parameter space of dynamical systems. For example,
in condensed matter physics, it is known that the critical
exponents derived from the renormalization theory have strong
“universality” [7], [6]. The universality shows that the systems
would have same critical exponent if the dimension and the
numbers of states are same. Although the renormalization
theory is usually applied to the scaling of lattices, because
of the above mentioned universality, it is expected to be a
systematic analytical approach for the dynamics over complex
networks.

Wilsonian renormalization group theory has an important
procedure called “rescaling”. This is a procedure to integrate
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the dynamics in the subgraphs which is contracted by scaling,
that is an action of renormalization group, and represent their
contributions by renormalizing the parameters of the dynamics
such as the parameters of the Hamiltonian. However, in this
paper, we do not discuss rescaling but focus only on how to
define the scaling in the complex networks.

Thanks to the universality, the critical exponents of the
dynamical systems over the networks would be good measures
for the classification of the systems. The resulting classes are
called universality classes. For example, the critical exponents
for Ising models can be calculated numerically.

Renormalization approaches have been already applied to
complex network such as Watts-Strogatz’s small world net-
work [8] and geographical embedded network [9]. These
approaches renormalize structural quantities of the networks
using the natural scaling methods for the networks embeded
in Euclidean space. However, they have not been applied to
the renormalization of the dynamical systems. Thus they are
not Wilsonian renormalization procedures.

In general complex network, there is not such natural scaling
method. Thus we should define how to scale them. In these
years, several scaling methods for general complex networks
have been proposed [10], [11], which could help to define
renormalization group methods for general complex networks.

III. TWO-SITES SCALING

A well-known approach to scaling general complex net-
works is “box covering method” (or its variants) proposed
by Song-Havlin-Makse[10] and succeeding works (e.g. [11]).
This method divides a network to subgraphs whose diameters
are smaller than a given size. From the graph theoretical view,
this procedure corresponds to contraction1. In contraction, a
subgraph is regarded as one virtual node v and the links
between inside of the subgraph and outside of the subgraph
as a link connected to the node v. In other words, scaling
methods divide a network into subgraphs called “box” and
contract these boxes in general.

We propose a scaling method called two-sites scaling that
divides a network into boxes, each of which is either randomly
selected pair of adjacent nodes or a fragmentary single node.
However, if a network has many degree-1 nodes (called “leaf”
hereinafter), the randomly selected pairs tend to be pairs
consisting of a leaf and its adjacent node, and contraction is
reduced to just removing one leaf. This makes contraction too
inhomogeneous and is undesirable in order to extract infor-
mation on dynamics and homogeneity of the whole network,
which is our intention to develop two-sites scaling method.
To cope with this issue, we just ignore leaves and apply the
scaling procedure to only nodes with degree more than or
equal to 2. For degree-1 nodes (leaves), a set of leaves which
have an identical adjacent node are contracted.

More precisely, the proposed procedure is defined as fol-
lows:

1) count the number of degree-1 nodes
2) remove all degree-1 nodes

1Although in the above-mentioned papers the authors only count the number
of subgraphs and this graph theoretical interpretation is not essential

Fig. 1. example of two-sites scaling

3) cover the network by randomly selected pairs of adjacent
nodes

4) contract those pairs.
5) add a half number of removed degree-1 nodes
This algorithm makes the size (the number of nodes) of the

network approximately be half. By applying this algorithm
iteratively, we can scale a network half by half, while the
previous scaling methods could not control the number of
nodes.

A. Comparison with other scaling methods

The method defined above resembles to the renormaliza-
tion by block spin transformation(BST) in condensed matter
physics. For d dimensional lattice, a usual method is to
divide the lattice to d dimensional cubes and contracts the
d dimensional cube as one site.

However, since in a general complex network we cannot
expect d-dimensional cube appears homogeneously, we need
another methods. Box-covering method proposed by [10]
divides a network by boxes where distance between any pair
of nodes in a box is less then ℓS . A simplified version of this
method is proposed by [10], [11]. The method consist of a
box that is composed of randomly selected node v and nodes
whose distance from v is less than ℓB .

The box covering method resembles to the scaling method
to calculate fractal dimension. Actually, it is intended not to
define renormalization scheme but to calculate fractal dimen-
sion of complex networks. Thus, there are some problems such
as dispersion of the box sizes, if we employ box covering
method as a scaling method for the renormalization.

Another approach to define a renormalization scheme is to
embed a complex networks into a 1-dimensional lattice or d-
dimensional lattice and contract d dimensional cube[8], [12],
[13], [9]. Although this method can be regarded as a natural
extension of renormalization, it cannot be applied to general
complex networks.

B. Features of two-sites scaling

One of the notable characteristics of two-sites scaling is
that one step of iteration of two-sites scaling is homogeneous
contraction, where almost all nodes are included in the boxes
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Fig. 2. scaling of network by BA algorithm: scaling property of degree
distribution by every two times of two-sites scaling
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Fig. 3. scaling of the router network of the internet

whose size are the same, say two, which is minimum number
of contraction. This characteristics minimizes the loss of
fine link structure. Therefore we can have a coarse grained
network with a demanded size without the significant loss of
fine structure of the network. On the other hand, a special
treatment for degree-1 nodes may cause a problem. However,
without this exceptional treatment, we cannot scale network
homogeneously.

IV. SCALING OF DEGREE DISTRIBUTION OF VARIOUS
NETWORKS

Figures 2, 3, 4, 5, and 6 show the scaling property of
degree distribution of network constructed by BA algorithm,
the Internet topologies of router level and AS level, actor’s
costarring network and protein-protein interaction network,
respectively. Two-sites scaling method acts to these networks
iteratively. For every two (one for protein protein networks)
times of iteration, degree distributions of these network are
plotted.

As is clear in figure 2, degree distribution of network
constructed by BA algorithm shows rapid transition from
power-law distribution to bimodal distribution. On the other
hand, other networks observed in nature keep power law
distribution.

V. DISCUSSION

Two-sites scaling method, which is inspired from block spin
transformation in renormalization theory, gives new quanti-
ties to complex networks. We would like to emphasize that
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Fig. 4. scaling of the AS network of the internet
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Fig. 5. scaling of actors’ costarring network

quantities given from renormalization theory would influence
the dynamics of networks especially in critical phenomena.
Although we have not tried to calculate critical exponents
in this paper, these critical exponents are expected to have
universal property, and would be used to classify the universal
classes of dynamical systems over the complex networks.

A. Peculiarity of BA networks

We found that the degree distribution of the networks con-
structed by BA algorithm transforms from power-law distribu-
tion into bimodal distribution. It is peculiar behavior compared
with the networks seen in the nature like the Internet, actor
network, protein interaction network, which keeps power law
by iteration of two-sites scaling. In other words, the networks
seen in the nature would have more strong scale invariance in
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terms of not only in degree distribution but also in two-site
scaling method.

As far as we have considered, the reason of this peculiarity
of BA networks is still not unknown. Analysis of this phe-
nomena should be done in future work.

B. Towards Wilsonian renormalization group method

Studies of complex networks are often accompanied by the
problem of computational complexity. It is because many ele-
mental problems such as isomorphism problem is known to be
NP[14]. Renormalization method with scaling of the complex
network would provide scalable theory of the dynamics of the
complex networks.

Two-site scaling method is resemble to block spin trans-
formation in condensed matter physics. There is attempt to
define fractal dimension of complex networks[15]. However
the dimension of the complex networks can not be defined
straightforwardly. Therefore more deep investigation is needed
to verify whether two-site scaling method can define renormal-
ization group action.

The renormalization scheme defined from box covering
method, which is originally proposed to define fractal dimen-
sion, would be robust to the difference of fractal dimension.
However, since the iteration of box covering contracts rapidly
large network to one node, it is difficult to get some infor-
mation such as critical exponents from the few iterations of
box-covering method. In other words, these computation of
renormalization is executed numerically,and numerical error
of critical exponent become large.

In the future works, we should verify that the renormal-
ization scheme defined by two-sites scaling functions like
other block spin transformations. It is a difficult problem that
the regular lattice is not necessarily mapped to the regular
lattice but to the complex networks in our scaling scheme.
For this reason, we should employ numerical methods such
as Monte Carlo Renormalization. It may be good to verify
that the problem will be overcomed by applying this scheme
to the regular lattices, whose universality classes are known.
If we have same critical exponent from two-sites scaling
method as other renormalization schemes, we can expect
these exponents provide the classification of dynamics and
underlying networks.

Moreover the fact that networks constructed by BA al-
gorithm have peculiar scaling property compared with the
natural networks would mean that BA networks have different
structure from the natural networks. Also, such difference may
affect the dynamics over BA networks especially in critical
phenomena.

VI. CONCLUSION

We have proposed a scaling method called “two-sites
scaling”. This scaling scheme keeps the shape of degree
distribution of various networks commonly appearing in the
real world. However, the degree distribution of BA networks
changes drastically by applying this scaling method. This
implies that these networks show more strong scale invariance
than scale-free degree distribution. Finally, we discussed the

application of our scaling method to Wilsonian renormal-
ization. To complete Wilsonian renormalization theory for
complex networks, there are many things to do.
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